首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mechanical site preparation (MSP) causes a mixing disturbance of the soil, which may increase decomposition of soil organic matter and subsequent carbon (C) dioxide emissions to the atmosphere. MSP also promotes the establishment and growth of tree seedlings, and hence ecosystem C fixation. However, there are uncertainties regarding the net effects of MSP on C stocks at the ecosystem scale. To assess decennial effects of MSP on ecosystem C stocks, C stocks in soil, ground vegetation and trees at three experimental forest sites with Pinus contorta, Pinus sylvestris and Picea abies in Sweden were sampled and measured for ca. 25 years in a control and after three MSP treatments: disc trenching, mounding and ploughing. After 25 years, all of the MSP treatments resulted in larger ecosystem C stocks than the control treatment due to positive effects on the tree biomass C stock. The tree C stock was highest after ploughing, intermediate after mounding or disc trenching and lowest in untreated control plots at all experimental sites. The MSP treatments did not affect the soil C stocks down to 30?cm. We recommend mounding or disc trenching to promote C sequestration as they disturb sites’ ecological, aesthetic and recreational values less than ploughing.  相似文献   

2.
A 3-year study measured the effects of ground cover treatments and N fertilization on biomass and nitrogen dynamics in an irridiated hybrid poplar (Populus deltoides Bartr. X P. trichocarpa Torr. and Gray, clone NC-9922) plantation in northern Wisconsin, U.S.A. Annually fertilized (112 kg N ha−1 year−1) and unfertilized plots were maintained weed free (bare soil), allowed to revegetate with native weeds, or seeded to birdsfoot trefoil (Lotus corniculatus L.). Biomass and N in trees and ground-cover vegetation were sampled before and after each growing season.Trees in bare-soil plots responded to fertilization primarily in the third growing season, but total biomass of 3-year-old trees was not increased by annual fertilization. In plots with a ground cover,fertilization increased tree growth but cover crop treatment had no effect. Ground cover biomass peaked during the second growing season, but declined thereafter, primarily due to reductions in below-ground biomass. Estimated recovery of fertilizer N was low in bare soil plots after 3 years, with 2% in the ‘perennial’ portion of the trees and 13% in the leaf litter. In contrast, recovery in the cover crop plots was 44%–51% in years 2–4. During that period, both biomass and N pool dominance shifted from primarily cover crop to primarily trees. The ground cover appeared to reduce tree growth in years 1–3, but total tree biomass after 4 years was greater in fertilized plots with ground cover (22.7 Mg/ha) than in fertilized bare soil plots (16.7 Mg/ha). Biomass production in fertilized trefoil plots in the fourth year (15.1 Mg ha−1 year−1, excluding leaves) exceeds that of local forests by 50%, and may be comparable to corn productivity in the area.  相似文献   

3.
Abstract

Effects of stump harvesting on the properties of surface soil and on the density, structure and growth of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) stands were estimated in a field trial in western Finland. The experiment was established in 1977 and measured in 2010. Stems and logging residues were harvested after clear-cutting, and stumps were lifted and removed from half of the experimental area. Sixteen plots were planted with pine seedlings and 16 with spruce. The main effects of stump harvesting were improved survival of planted trees and an increase in natural regeneration. No clearly negative effects were noted in the stand development. Stump harvesting had no or minimal effects on the properties of the organic layer and those of the 0- to 10-cm mineral-soil layer. Soil properties did not differ between tree species. Pine production was higher on plots with stump removal compared to plots without soil treatment.  相似文献   

4.
Abstract

There is a growing interest in the effects of deciduous trees on biodiversity, soil processes and long-term productivity in boreal, conifer-dominated forests. This study investigated whether individual birch trees allowed to grow to maturity in the coniferous forest can have a local effect on floristic richness and regeneration of tree saplings. The ground vegetation was compared in 2?m radius plots around the stem under the canopies of matched conifer–deciduous trees in a mature, conifer-dominated forest, and included in the analysis variables that could potentially mediate the tree effect (soil pH, cover of lichens, bryophytes, leaf and needle litter). The field layer vegetation was more species rich under birch (Betula pendula and B. pubescens) than under conifers (Picea abies and Pinus sylvestris), and several vascular plant species (including saplings of tree species) occurred more often under birch than under conifers. However, when the effect of the number of subordinate trees was taken into account the difference between birch and pine was not significant. The number of tree regenerations (saplings) was lowest under pines, but did not differ between spruce and birch. There were no effects of the canopy species on soil pH or on cover of lichens and bryophytes. The difference in diversity may be caused by the different effects of leaf and needle litter, and it is also likely that canopy structure has an influence via interception and throughfall and by affecting the light and microclimate.  相似文献   

5.

The main objective of this case study was to explore the possible influence of forest management on the levels and distribution of biomass and carbon (C) in even-aged stands of Norway spruce [Picea abies (L.) Karst.] in Denmark. Data originated from a long-term thinning experiment and an adjacent spacing experiment at stand ages of 58 and 41 years, respectively. Biomass of 16 trees from different thinning and spacing treatments was measured or partly estimated, and soils were sampled for determination of C stocks. All trees in each plot were measured for stem diameter and some for total height, to allow for scaling-up results to stand-level estimates. For trees of similar size, foliage biomass tended to be higher in the spacing experiment, which was located on slightly more fertile land. Foliage biomass increased with increasing thinning grade, but the effect could not be separated from that of tree size. At stand level, foliage biomass tended to increase with increasing spacing as well as with increasing thinning grade. For branchwood, stems and roots (including below-ground stump), the biomass increased with increasing tree size and stand volume at tree and stand level, respectively, but no differences between stands, spacings or thinning grades were observed, apart from that expressed by tree size or stand volume. At stand level, C stocks of all biomass compartments decreased with increasing thinning grade, while the distribution between compartments was hardly influenced. The ratio between above-ground and stem biomass was about 1.21 at stand level, while the ratio between below- and above-ground biomass was about 0.17. Thinning influenced the C stock of the forest floor and mineral soil oppositely, resulting in no effect of thinning on total soil C.  相似文献   

6.
The present paper deals with C and N storage in soil and vegetation, litter fall and CO2 efflux from the soil 32–33 years after early thinning in a Norway spruce (Picea abies (L.) Karst.) stand in order to evaluate the effect of thinning regime on C sequestration. At 22 years old, the stand was reduced from 3190 to 2070, 1100 and 820 trees per hectare in four replicates. The N2070 treatment represents the recommended start density in practical forestry, while the other represent a moderate to large reduction in tree number at the present stand age. Aboveground biomass was estimated from single tree measurements of diameter and height based on allometric functions. Litter fall was collected during one and a half years and soil respiration was measured on five occasions during one summer. Ground vegetation was mapped and sampled for biomass, C and N determination. A significant decrease in aboveground tree (including stump-root system) C storage of 27% and 22% due to thinning was found in the N820 and N1100 treatments, respectively, compared to the N2070 treatment. Ground vegetation C storage was little affected by treatment, while litter fall C showed a non-significant decrease in the N820 and N1100 treatments compared to the N2070 treatment. Soil respiration was significantly lower in parts of the summer in the N2070 treatment compared to the N820 treatment. The reason for this is still unexplained since no differences in soil temperature, soil moisture or litter fall chemistry was found between the treatments. No significant treatment effects on humus and mineral soil C storage could be detected. With the present soil variability, the time period of 32 years is probably too short to detect soil C differences due to thinning. The N storage followed the same pattern as for C.  相似文献   

7.
《Southern Forests》2013,75(3):235-245
Global sustainable development goals include reducing greenhouse gas emissions from land-use change and maintaining biodiversity. Many studies have examined carbon stocks and tree species diversity, but few have studied the humid Guinean savanna ecosystem. This study focuses on a humid savanna landscape in northern Sierra Leone, aiming to assess carbon stocks and tree species diversity and compare their relationships in different vegetation types. We surveyed 160 sample plots (0.1 ha) in the field for tree species, aboveground carbon (AGC) and soil organic carbon (SOC). In total, 90 tree species were identified in the field. Gmelina arborea, an exotic tree species common in the foothills of the Kuru Hills Forest Reserve, and Combretum glutinosum, Pterocarpus erinaceous and Terminaria glaucescens, which are typical savanna trees, were the most common species. At landscape level, the mean AGC stock was 29.4 Mg C ha?1 (SD 21.3) and mean topsoil (0–20 cm depth) SOC stock was 42.2 Mg C ha?1 (SD 20.6). Mean tree species richness and Shannon index per plot were 7 (SD 4) and 1.6 (SD 0.6), respectively. Forests and woodlands had significantly higher mean AGC and tree species richness than bushland, wooded grassland or cropland (p < 0.05). In the forest and bushland, a small number of large diameter trees covered a large portion of the total AGC stocks. Furthermore, a moderate linear correlation was observed between AGC and tree species richness (r = 0.475, p < 0.001) and AGC and Shannon index (r = 0.375, p < 0.05). The correlation between AGC and SOC was weak (r = 0.17, p < 0.05). The results emphasise the role of forests and woodlands and large diameter trees in retaining AGC stocks and tree species diversity in the savanna ecosystem.  相似文献   

8.
Pinus radiata trees were grown on a podzolized sandy soil at a second rotation site under the following treatments: total weed control, total weed control plus ammonium nitrate, strip weed control and no weed control. During the first two summers after planting the differences in needle water potential between trees under no, strip or total weed control were very small. Despite similar rates of net N-mineralization in strip and total weed control treatments, which averaged 64 kg ha–1 yr–1 in the 0–15 cm soil depth, weeds in the strip weed control treatment reduced soil mineral-N concentrations by 50–80%, leaching of N by the end of the first growing season by 45%, foliar-N concentrations by 4–14% and stem biomass at 20 months after planting by 46%. Although N-uptake by above-ground vegetation (trees plus weeds) was 49% higher in the strip weed control treatment, the amount of N apportioned to trees during the first 20 months after planting was reduced from 15.5 to 9.0 kg ha–1. These effects of weeds were even more pronounced in the no weed control treatment. Since weeds had little effect on the needle water potential of trees and the annual rates of N-mineralization, but adversely affected N-uptake by trees, results indicate that weeds directly competed with trees for N, and thereby aggravated N-deficiency in trees. Application of ammonium nitrate after complete weed control increased foliar-N concentrations, and N-uptake and growth of trees, but also induced severe stem deformation.  相似文献   

9.
We hypothesized that tree-based intercropping in southwestern Québec, Canada, would stimulate soil microbial activity and increase soil nutrient supply, thereby benefiting the growth of trees. Our experimental design comprised alternating rows of hybrid poplar (Populus nigra L. × P. maximowiczii A. Henry) and high-value hardwood species spaced 8 m apart, between which two alley treatments were applied 5–6 years after planting the trees. The first alley treatment consisted of a fertilized soybean (Glycine max (L.) Merr.) intercrop grown over two consecutive years, while the second consisted of repeatedly harrowing to minimize vegetation in the alley. Tree rows were mulched with a 1.5 m wide polythene mulch. Microbial respiration and biomass, and mineral N concentrations and mineralization rates were measured on five or six dates at 0, 2 and 5 m from hybrid poplar rows. On some of the sampling dates, we found significantly higher soil microbial biomass, mineral N concentrations and nitrification rates, and a significantly lower microbial metabolic quotient (qCO2), in the soybean intercropping than in the harrowing treatment. Over the 2 year period, hybrid poplar biomass increment and N response efficiency (NRE) were significantly higher (51 and 47%, respectively) in the intercropping than in the harrowing treatment. Microbial biomass and mineral N supply were significantly lower beneath the polyethylene mulch than in the alleys, and we posit that this may stimulate the growth of tree roots into the alley. We conclude that soybean intercropping improves nutrient turnover and supply for hybrid poplar trees, thereby increasing the land equivalent ratio (LER).  相似文献   

10.
Throughout the Amazon of Brazil, manioc (Manihot esculenta) is a staple crop produced through slash-and-burn agriculture. Nutrient losses during slash-and-burn can be large and nutrient demand by food crops so great that fields are often abandoned after two years. In recent decades, farmers have reduced the fallow phase from 20 to ~5 years, limiting plant nutrient accumulation to sustain crop yields. Improved fallows through simultaneous planting of trees with food crops may accelerate nutrient re-accumulation. In addition, slash-and-mulch technology may prevent loss of nutrients due to burning and mulch decomposition may serve as a slow-release source of nutrients. This study in Pará, Brazil, in a 7-year-old secondary forest following slashing and mulching of the vegetation, involved two main plot treatments (with and without P and K fertilizers) and two sub-plot treatments (with or without a N2-fixer Inga edulis). A mixed-culture of trees and manioc was planted in all plots. P and K fertilizer increased tree mortality due to weed competition but growth of surviving trees in four of the five tree species tested also increased as did biomass production of manioc. In the N2-fixer treatment trends of greater growth and survival of four of five tree species and manioc biomass were also observed. Fertilization increased the biomass of competing vegetation, but there was a fertilizer by N2-fixer interaction as I. edulis caused a reduction in competing biomass in the fertilized treatment. After one year, fertilization increased decomposition of the mulch such that Ca, Mg, and N contents within the mulch all decreased. In contrast, P and K contents of mulch increased in all treatments. No influence of the N2-fixer on 0–10 cm soil N contents was observed. Two years after establishment, this agroforestry system succeeded in growing a manioc crop and leaving a well-maintained tree fallow after the crop harvest.  相似文献   

11.
Coffee (Coffea canephora var robusta) is grown in Southwestern Togo under shade of native Albizia adianthifolia as a low input cropping system. However, there is no information on carbon and nutrient cycling in these shaded coffee systems. Hence, a study was conducted in a mature coffee plantation in Southwestern Togo to determine carbon and nutrient stocks in shaded versus open-grown coffee systems. Biomass of Albizia trees was predicted by allometry, whereas biomass of coffee bushes was estimated through destructive sampling. Above- and belowground biomass estimates were respectively, 140 Mg ha−1 and 32 Mg ha−1 in the coffee–Albizia association, and 29.7 Mg ha−1 and 18.7 Mg ha−1 in the open-grown system. Albizia trees contributed 87% of total aboveground biomass and 55% of total root biomass in the shaded coffee system. Individual coffee bushes consistently had higher biomass in the open-grown than in the shaded coffee system. Total C stock was 81 Mg ha−1 in the shaded coffee system and only 22.9 Mg ha−1 for coffee grown in the open. Apart from P and Mg, considerable amounts of major nutrients were stored in the shade tree biomass in non-easily recyclable fractions. Plant tissues in the shaded coffee system had higher N concentration, suggesting possible N fixation. Given the potential for competition between the shade trees and coffee for nutrients, particularly in low soil fertility conditions, it is suggested that the shade trees be periodically pruned in order to increase organic matter addition and nutrient return to the soil. An erratum to this article can be found at  相似文献   

12.
Land-use changes and land cover strongly influence carbon stock and distribution within ecosystems. Changing the land-use from natural forest to other land-uses has been more rapid in the past few decades than at any time in Iran’s history. In this study, we investigated the effects of changing the land-use from natural forest to other land-uses on carbon stocks in northern Iran. We selected five sites for this study: (I) a natural forest, (II) an agricultural field and (III) plantations of three different species (Alnus subcordata. L, Acer velutinum.Boiss and Cupressus sempervirens). We examined the effects of land-use changes on: (I) soil carbon stock (0–50 cm depth), (II) biomass and carbon content of grassy vegetation and litter and (III) above- and below-ground biomass C in trees. Soil C stock was higher under A. velutinum and C. sempervirens whereas it was lower under A. subcordata and agricultural sites. Biomass and C content of grassy vegetation were significantly higher at A. velutinum and C. sempervirens plantations. However, litter biomass and C content were significantly higher at the natural forest site. Natural forest had the highest amount of C content in above- and below-ground biomass. Total ecosystem C stocks declined following land-use changes.  相似文献   

13.
Despite widespread use of intensive vegetation control (VC) in forest management, the effects of VC on allocation of biomass and nutrients between young trees and competing vegetation are not well understood. On three Pacific Northwest sites differing in productivity, soil parent material, and understory vegetation community, we evaluated year-5 effects of presence/absence of 5 years of VC on allocation of aboveground biomass and nitrogen (N) between planted Douglas-fir (Pseudotsuga menziesii var. menziesii) and competing vegetation. Equations for predicting bole, branch, foliar, and total dry weights based on stem diameter at a height of 15 cm and total tree height did not differ significantly among sites or by presence or absence of VC. This contrasts with previous research, using diameter at breast height rather than at 15 cm, which found that separate equations were warranted for trees with and without competing vegetation. Estimated whole-tree biomass among the six site/VC combinations ranged from 0.8 to 7.5 Mg ha−1, and increases in tree biomass associated with VC ranged from 62% to 173% among sites. Among the three sites, there were positive, linear relationships between soil total N content to a depth of 60 cm and both N content of aboveground vegetation (trees plus competing vegetation) and Douglas-fir foliar N concentration. Tree N content increased by 8.4, 8.2, and 40.0 kg N ha−1 with VC at the three sites, whereas competing vegetation N content decreased with VC by 0.9, 18.8, and 32.0 kg N ha−1, respectively, at the same sites. Thus, VC did not lead to a direct compensatory tradeoff between aboveground N content of trees and other vegetation. However, soil N content was linearly related to N accumulation and plant growth across the three sites. In addition to differences in N availability among sites, the effect of VC on the redistribution of resources among trees and competing vegetation also was influenced by vegetation community composition and efficacy of VC treatments.  相似文献   

14.
The increasing demand for forest biomass for energy generation could be partially met by growing denser stands and use of fertilizer. Before this is done at large scale, more knowledge of the effects of stand density and fertilization on aboveground allocation patterns and stem form is needed. Therefore, effects of pre-commercial thinning (PCT) to 3000 stems ha?1, an unthinned dense control (C), and PCT combined with two levels of fertilization (100 kg ha?1 of nitrogen applied either during the establishment of the field experiment (F1) or annually (F2)) were examined in 23- to 26-year-old Scots pine (Pinus sylvestris L.) stands six years after the establishment of the field experiment. In total, 114 sample trees were harvested using destructive biomass sampling. The growth allocation and stem form of trees with diameter at breast height (DBH; 1.3 m height) >5.0 cm were not affected by either the PCT or fertilization. Small trees (DBH < 5 cm) in denser, unthinned control plots had more slender stems (lower DBH/height ratios) and allocated less growth to branches and foliage than trees in PCT plots. Fertilization had little effect on the stem form and growth allocation of the smallest trees. Therefore, effects of stem density and fertilization on stem form and growth allocation to foliage were only found for small suppressed trees, and the treatments had very little influence on dominant and codominant trees.  相似文献   

15.
The short-term impacts of prescribed burning were determined for the physical and chemical properties of a forest soil on a clear-cut in western Newfoundland, Canada. The experimental site was predominantly covered by black spruce trees (Picea mariana Mill.) that were harvested in 1996. In August 1998, prescribed burning removed most of the logging residues left on the site after harvesting, all above-ground surface vegetation, and parts of the upper humus layer. In October 1998, field samples were taken from four replicated burned plots and four replicated unburned plots. In each study plot, soil samples were taken from the organic layer (F+H) and from the top 10 cm of the mineral soil. In the burned treatments, mass of the humus layer (F+H) was reduced by 24% and, because of the accretion of basic ash materials, acidity of the humus layer was also reduced by up to 1 unit. In the organic layer and the mineral soil, total contents of Mg, Ca, and P, extractable Mg and Ca, available P, sum of NH4Cl-extractable cations, and C/N ratios were increased by burning, while total C and N as well as total and extractable K remained unaffected by burning.  相似文献   

16.
The effect of six plantation species in comparison to natural forest (NF) on soil organic carbon (SOC) and total nitrogen (TN) stocks, depth-wise distribution, biomass carbon (C), and N was investigated on plantations and cultivated lands on an Andic paleudalf soil in Southern Ethiopia. The SOC, N, and bulk density were determined from samples taken in 4 replicates from 10-, 20-, 40-, 60-, and 100-cm depth under each site. Similarly, the biomass C and N of the plantation species and understory vegetation were also determined. The SOC and N were concentrated in the 0- to 10-cm depth and decreased progressively to the 1-m depth. Next to the NF, Juniperous procera accrued higher SOC and N in all depths than the corresponding plantations. No evidence of significant difference on SOC and N distribution among plantations was observed below the 10-cm depth with minor exceptions. The plantations accrue from 133.62 to 213.73 Mg ha–1 or 59.1 to 94.5% SOC, 230.4 to 497.3 Mg ha–1 or 6.9 to 14.9% TBC and 420.37 to 672.80 Mg ha–1 or 12.5 to 20% total C-pool of that under the NF. The N stock under Juniperous procera was the highest, while the lowest was under Eucalyptus globulus and Cupressus lusitanica. We suggest that SOC and N sequestration can be enhanced through mixed cropping and because the performance of the native species Juniperous procera is encouraging, it should be planted to restock its habitat.  相似文献   

17.
Estimates of biomass and leaf area index (LAI) are important variables in ecological and climate models. However, very little is known about the biomass and LAI of the vegetation in the Scandinavian mountain area. In this study, extensive field data consisting of diameter at breast height for 13?000 trees and height for 550 trees were collected. Furthermore, biomass and leaf area (LA) measurements for 46 mountain birch trees [Betula pubescens ssp. czerepanovii (Orlowa) Hämet-Ahti] and biomass and LA measurements for shrubs (e.g. Salix spp., Betula nana) at 36 sample plots were carried out. Multiplicative linear models for trees were fitted to tree biomass and LA measurements using basal area at breast height, height, crown diameter and diameter at stump height as explanatory variables. Additive linear models were fitted to shrub biomass and LAI measurements using coverage of shrubs, topographic variables and soil type as explanatory variables. The functions were then used to predict the biomass and LAI for trees and shrubs for the entire test area, which covers an area of 84 km2 and is located at latitude 68° N. The mean total biomass estimates were 27?493 kg ha?1 for the forest and 7650 kg ha?1 for snow-protected heath and meadow vegetation. The LAIs were 2.06 and 0.52, respectively. For monitoring biomass and LAI in the Scandinavian mountain area, the functions could also be applied to data from traditional field-based inventories and the estimates might further be improved by combining the estimates from the test area with auxiliary information such as remote sensing images.  相似文献   

18.
In Alaska, an outbreak of spruce beetles (Dendroctonus rufipennis) recently infested over one million hectares of spruce (Picea spp.) forest. As a result, land management agencies have applied different treatments to infested forests to minimize fire hazard and economic loss and facilitate forest regeneration. In this study we investigated the effects of high-intensity burning, whole-tree harvest, whole-tree harvest with nitrogen (N) fertilization, and conventional harvest of beetle-killed stands 4 years after treatment, as well as clear-cut salvage harvest 6 years after treatment. We measured available soil ammonium and nitrate and estimated N loss from leaching using in situ cation and anion resin exchange capsules. We also assessed spruce regeneration and responses of understory plant species. Availability and losses of N did not differ among any of the management treatments. Even a substantial application of N fertilizer had no effect on N availability. Spruce regeneration significantly increased after high-intensity prescribed burning, with the number of seedlings averaging 8.9 m−2 in burn plots, as compared to 0.1 m−2 in plots that did not receive treatment. Biomass of the pervasive grass bluejoint (Calamagrostis canadensis) was significantly reduced by burning, with burn plots having 9.5% of the C. canadensis biomass of plots that did not receive treatment. N fertilization doubled C. canadensis biomass, suggesting that N fertilization without accompanying measures to control C. canadensis is the least viable method for promoting rapid spruce regeneration.  相似文献   

19.
This study examined effects of different levels of applied grazing pressures on herbaceous vegetation (standing crop, basal area, size and spacing of grass tussocks) and soil properties (total soil C, total N, total P, and soil-borne plant material [roots and surface litter] in the A horizon) around grass tussocks of a dry eucalypt woodland (dominant woody components; Eucalyptus xanthoclada and Corymbia erythrophloia of northern Australia. Grass tussocks influenced total soil C and N at small (<20 cm) spatial scales, and applied grazing pressures significantly (p<0.05) affected all soil properties except total P. Concentrations of N and C were highest at locations close to plants, and levels in proximity to plants declined under sustained heavy grazing. Paddocks receiving heavier grazing pressures also produced less standing crop and tussocks were smaller and more widely dispersed. Further, areas with high amounts of soil C, N and soil-borne plant materials were smaller and more widely dispersed under heavy grazing. Alternatively, conservative grazing pressure in combination with wet season grazing deferments allowed conservation of landscape condition. Eucalypt woodlands in northern Australia have low resistance to disturbance, and limited resilience to recover following disturbance. As such, the effects of disturbance on these areas should be monitored by combinations of plant (basal area, plant spacing) and soil (soil-borne plant material, total N) characteristics capable of detecting degradation at the earliest stages possible.  相似文献   

20.
At present, our understanding of the dynamics of microbial biomass and soil N in silvopastoral systems is very limited. In this paper, the effects of understorey management on soil microbial C and N, net N mineralization, and net nitrification were studied in two seven-year-old radiata pine (Pinus radiata D. Don) – pasture systems, consisting of plots with and without ryegrass (Lolium perenne) as an understorey. Mini-plots (1 × 1 m) with animals excluded and herbage repeatedly clipped and removed were used for soil sampling. Three mini-plots formed a transect at each of two positions: 0.9 and 3.5 m north of the tree rows. Measurements were taken from July 1997 to June 1998 about once every 40 days. One composite sample was collected from each of two sampling depths (0–10 and 10–20 cm) at each transect position on each sampling date. Temporal and spatial variability of N mineralization rates and microbial biomass C and N was large. Net mineralization and nitrification rates were higher in the bare ground than in the ryegrass plots for a major part of the year, particularly from late spring to early fall. Net N mineralization and nitrification rates were higher in the 0–10 than in the 10–20 cm soil layers in both the ryegrass and bare ground treatments; however, the depth effect on microbial biomass C and N was only significant in the ryegrass treatment. In the surface soil layer, microbial biomass C and N were substantially greater in the ryegrass than in the bare ground plots. Soil microbial properties and activities were closely linked to pasture root activities, soil depth, and site biophysical conditions. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号