首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.

The paper gives a brief overview of the background, history and main results of forest fertilization experiments on mineral soils in Norway. Positive results of initial phosphorus (P) fertilization on survival and growth of Norway and Sitka spruce have only been achieved in the coastal districts of western Norway. Other elements have seldom given any significant effect. In young and old stands of Norway spruce and Scots pine nitrogen (N) fertilization with 150 kg N ha -1 usually gave increment increases in the range of 1-2 m 3 ha -1 yr -1 , for a period of 6-8 yrs after application. Given individually, no other element has proved stimulating to stem growth in a similar way. In young Norway spruce stands P has often given additional growth response when given together with N. Liming has been shown to have no or negative effects on tree growth. Fertilization experiments have changed from being management orientated towards addressing the problems of possible nutrient imbalances.  相似文献   

2.

Nitrogen (N) is the only nutrient that promotes forest growth when given individually. An extra stem growth of 15 m 3 ha -1 is obtained during a 10 yr period following an application of 150 kg N ha -1 . Larger growth increases have often been the result of more intensive N fertilization. Lime or wood ash give a minor growth stimulation on sites with a carbon (C) to N ratio below 30 in the humus layer, while the opposite effect prevails on N-poor sites. Nutrients given as soluble fertilizers are readily taken up by trees. Boron deficiency may be induced in northern Sweden after N fertilization or liming. The ground vegetation may be altered by single-shot N fertilization, but long-term effects occur only for intensive regimes. Lime or wood ash may modify the flora if soil pH is significantly altered: the change will be in response to N availability. Fruit-body production of mycorrhizal fungi is disfavoured by chronic N input, but also by lime or ash. However, the mycorrhizal structures on root tips are less affected. Faunistic studies are not common and those present are mostly devoted to soil fauna. A practical N dose of 150 kg N ha -1 has no clear effect, but higher doses may reduce the abundance in some groups. Hardened wood ash does not significantly affect the soil fauna. Lime favours snails and earthworms, while other groups are often disfavoured. The response of aquatic fauna to terrestrial treatments has hardly been studied. N fertilization generally results in insignificant effects on fish and benthic fauna. Lime and wood ash reduce the acidity of the topsoil, but practical doses (2-3 t ha -1 ) are too low to raise the alkalinity of runoff unless outflow areas are treated. N fertilizer use in forestry and N-free fertilizers lack effects on acidification. N fertilization may, however, be strongly acidifying if nitrification is induced and followed by nitrate leaching. N fertilization often results in increased long-term C retention in trees and soil, but does not promote significant N 2 O losses. N may temporarily reduce CH 4 oxidation in soil, but there are indications of a long-term opposite effect. Lime and poorly hardened wood ash may cause losses of C from N-rich soils. Only a few per cent of added N are leached to surface water following practical N fertilization, while N-free fertilizers do not induce N leaching. Soil incubations and soil-water studies suggest an increased risk for nitrate formation and leaching where lime or wood have been added to N-rich soils, but increased leaching to surface water has not been observed. Wood ash causes a temporal increase in bioavailability of cadmium (Cd). Other fertilizers may indirectly increase the availability of heavy metals. Wood ash may contain radioactive caesium 137Cs, but addition of such ash does not increase radioactivity in plants and soil.  相似文献   

3.
An investigation of phenological and growth traits was conducted in a lowland plantation, comprised of 23 Norway spruce (Picea abies (L.) Karst.) seed stands from the Istebna region in the Beskidy Mountains of Poland. Significant differences were found among population in growth initiation, growth termination and the length of shoot elongation period. The two latter traits were highly correlated and were attributed to the altitude of the maternal stand. The tested populations were grouped based on phenology. Progeny of lower-alttitude stands ceased growth later, had a longer duration of shoot growth and greater current leader length compared to progeny of higher-altitude stands. Individual populations, however, did not differ in current-year growth and total tree height, implying higher within-population variation in growth traits than in phenology. The similar growth capacity of all tested populations suggests considerable gene flow between maternal stands, although differences in phenology imply the adaptation of progenies to the altitudinal environment of seed origin. These results suggest that within tested populations, selection is possible based on phenology alone, without considerable reduction of early height growth; final decisions, however, should be based on the environmental conditions of the planting site.  相似文献   

4.

This paper summarizes results from fertilization research carried out in Scots pine ( Pinus sylvestris L.) and Norway spruce [ Picea abies (L.) Karst.] stands growing on mineral soil in Finland. The use of needle and soil analyses to indicate nutrient status and the need for fertilization are discussed along with the possibilities of increasing tree growth in various site types and stages of stand development. Doses, types of fertilizer, application time, growth increase, wood quality and the profitability of fertilization are also discussed. The stand response in terms of soil acidity, biological activity, soil fauna and resistance of trees to nutrient addition are all reviewed. The effects of fertilization on understorey vegetation, mushrooms and berries, and leaching loss of nutrients are also included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号