首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

High browsing pressure may reduce or halt regeneration of browsing-prone tree species. In this study, exclosures were used to quantify the effects of browsing on vital demographic parameters in European aspen (Populus tremula L.) stands. The experiment focused on stands located in managed forest landscape with densities of 0.85 moose (Alces alces L.)km?2. Other herbivores such as mountain hare (Lepus timidus L.) were present at densities common for this region and roe deer (Capreolus capreolus L.) at low densities. Recruitment and mortality of aspen ramets were recorded before and after the growing season, and over four consecutive years. Seven to 19% of the ramets within browsing reach were browsed annually. No differences were found in recruitment or mortality attributable to browsing per se. Instead, there were large among-stand variability in vital population parameters unrelated to browsing incidence. In general, aspen stands with high ramet density showed higher recruitment rates than stands with low ramet density. There was substantial variability in self-replacement capability unrelated to ecological factors. The results suggest that more attention should be given to finding and managing stands with high capacity for suckering, as these stands may have a disproportionate impact on aspen recruitment at the landscape scale.  相似文献   

2.
Abstract

Knowledge of the canopy lichen flora of managed forests is poor, but needs more focus since, for example, slash (tops, branches and twigs) harvest for biofuel may pose a threat to epiphytic lichen diversity. This study compared lichen species richness, density and composition between stems, tops, branches and twigs of mature Norway spruce (Picea abies) and aspen (Populus tremula) in managed boreonemoral forests in south–central Sweden. The stems were also compared with the slash fractions pooled together. All comparisons were made separately for each tree species. In total, 30 lichen species were found on Norway spruce and 46 on aspen. No significant differences in species richness or species density between fractions were found for Norway spruce, whereas aspen tops were significantly less species rich and species dense than the other fractions. Moreover, aspen slash was significantly more species dense than the stem. The lichen species composition of the stems clearly differed from that of the tops, branches and twigs in both tree species. Thus, lichen communities other than those removed with stems by conventional forestry are removed from the stands owing to slash harvest. However, these species are rather common and widespread in Sweden. The impact of slash harvest on the epiphytic lichen flora may therefore be of minor importance in forests established after clear-cutting or on former arable land.  相似文献   

3.
The tree structure and regeneration was studied in the buffer zone area comprising lowland evergreen and semi-evergreen forests in the Namdapha National Park, one of the largest remaining tract of pristine rainforests in the Eastern Himalayan biodiversity hotspot in India. The investigations were conducted in the three forest stands, viz. Altingia-mixed species, Shorea-Dipterocarp, and Albizia forests that are most dominant forest types in the lowland areas of the park. A total of 98, 54 and 20 species have been recorded at tree stratrum, while 87, 44 and 15 species at regeneration stratum for three stands, respectively. The cumulative regenerating density (seedlings + saplings) was estimated 17,648, 16,110 and 768 individual ha−1 for respective stands. It was interesting to note that of the total regenerating species, 44–47% species were new to different stands, which mainly comprised middle storey species. Low-dominant and rare species also contributed significantly in the regeneration of the forest stands. The expanding population structure of forest stands indicated higher survival of the mid- and the low-canopy species than the top-canopy species. The data revealed that the future composition of these stands will highly depended on the potential regenerative status of species in each of the stand and such information would be crucial for forest management. Since the park contributed significantly to the regional biodiversity by depicting species assemblages for both wet evergreen and semi-evergreen biomes, such last remnants of rainforest should be integrally protected from anthropogenic disturbances.  相似文献   

4.
Abstract

This study pertains to the density-diameter (d-d) curves, diameter class distribution of dominant species and protective value of temperate forests between 2000 and 3300 m amsl in Pinder catchment of the Central Himalaya. The identified forests were mixed deciduous-evergreen, alder (Alnus nepalensis), mixed evergreen-deciduous, maple (Acer cappadocium), burans (Rhododendron arboreum), silver-fir (Abies pindrow), kharsu oak (Quercus semecarpifolia)and birch (Betula utilis).The d-d curve was inverse curvilinear for all species in the entire study area. The curve assumed an inverse curvilinear slope for the stands of smaller mean diameter, linear for the stands of intermediate mean diameter and bell shaped for the stands of larger mean diameter. The curves for burans, kharsu oak and alder, mixed and silver-fir, and birch forests were slightly convex, bell shaped, curvilinear, straight line and linear, respectively. Two light demanding species, Q. semecarpifoliaand Aesculus indicahave been experiencing regeneration problem, whereas the other two light demanding species, A. nepaiensisand B. utilisexhibited moderate regeneration. Shade tolerant A. pindrow, A. cappado-ciumand R. arboreumexhibited satisfactory regeneration, but conversion of seedlings into trees was not satisfactory for A. pindrow.The relative protective value of 5 different forests was in the order: silver fir > kharsu oak > mixed deciduous-evergreen > mixed evergreen-deciduous > birch.  相似文献   

5.
Cylindrocarpon‐like fungi are globally distributed plant pathogens and have a wide range of host species. However, very little is known about the species that live in the topsoil of forests and their potential role in reducing the natural regeneration of tree species, particularly of forest trees that produce abundant fruit only once every few years. To enhance our understanding of the species that inhabit the topsoil, we studied the diversity and pathogenicity of Cylindrocarpon‐like fungi inhabiting the litter in old‐growth mixed‐beech forests in the Carpathians (Poland) and in the Alps (Austria), and in a managed beech stand in the Krakowsko‐Cz?stochowska Highland (Poland). The fungi inhabiting the beech litter were investigated using beechnuts and pine seedlings as bait. Isolates were identified based on morphology and DNA sequencing. The pathogenicity of the most common species was investigated by inoculating beech germinants. A wide range of Cylindrocarpon‐like fungi were associated with the beech litter: 718 cultures representing 12 species were isolated. Five taxa were identified down to species level: namely Ilyonectria crassa, I. pseudodestructans, I. rufa, Neonectria candida and N. obtusispora, and seven species were identified to genus level (Neonectria or Ilyonectria species). Ilyonectria destructans, which is considered to be the sexual morph of ‘Cylindrocarpon destructans’, was not found. There were qualitative and quantitative differences between the different forest sites in terms of Neonectria and Ilyonectria species composition in beech litter. The isolation frequency and species richness of Cylindrocarpon‐like fungi were greatest in beech litter taken from old‐growth mixed‐beech forests. Neonectria and Ilyonectria species were capable of killing beech germinants, suggesting that they may play a negative role in natural beech regeneration.  相似文献   

6.
Natural regeneration in Mongolian pine, Pinus sylvesttis var. mongolica, forest at Honghuaerji of China (the original of the natural Mongolian pine, forest on sandy land) was studied in 2004. The total mean values of regeneration indexes were higher in mature stands (more than 80% individual stems were older than 50 years), the maximum of regeneration index reached 29 seedlings, m^ 2, with lowest values in the younger stand, e.g., in 32-year old and 43-year old stands. The stand age was an important factor determining the natural regeneration, which was the best in the older stands in this investigation (e.g. about 80-year old). The regeneration index seemed not to be closely in relation to canopy openness although Mongolian pine is a photophilic tree species. In each type of gaps, natural regeneration was very well. Regeneration indexes were satisfactory at the south and east edges in the circle gaps; and at the east edge of the narrow-square gaps. Results indicated that Mongolian pine, seedlings could endure shading understory, but it would not enter the canopy layer without gap or large disturbance, e.g., fire, wind/snow damage or clear cutting etc. These results may provide potentially references to the management and afforestation of Mongolian pine, plantations on sandy land in arid and semi-arid areas. Researches such as the comprehensive comparisons on regeneration, structure and ecological conditions and so on between natural Mongolian pine, forests and plantations should be conducted in the future.  相似文献   

7.
Managed forest stands are typically younger and structurally less diverse than natural forests. Introduction of non-native tree species might increase the structural changes to managed forest stands, but detailed analyses of tree- and stand-structures of native and non-native managed forests are often lacking. Improved knowledge of non-native forest structure could help clarify their multiple values (e.g. habitat for native biodiversity, bioenergy opportunities). We studied the structural differences between the introduced, non-native Pinus contorta and the native Pinus sylvestris and Picea abies over young forest stand ages (13–34 years old) in managed forests in northern Sweden. We found that P. contorta stands had greater mean basal areas, tree heights, diameters at breast height, and surface area of living branches than the two native species in young stands. The surface area of dead attached branches was also greater in P. contorta than P. abies. Although this indicates greater habitat availability for branch-living organisms, it also contributes to the overall more shaded conditions in stands of P. contorta. Only one older 87 years old P. contorta stand was available, and future studies will tell how structural differences between P. contorta and native tree species develop over the full forestry cycle.  相似文献   

8.
Abstract

Autumn storms felled about 7 million m3 of forest in southern Finland in 2001. Windthrow area and timber characteristics, as well as numbers of standing spruce trees attacked and killed by Ips typographus, were recorded in 61 Norway spruce [Picea abies (L.) Karst.]-dominated windthrow areas. Generalized linear models were used to identify significant variables predicting the risk for consequential tree mortality by I. typographus. None of the windthrow areas with fewer than 20 wind-felled spruce trees (WFS) (n=28) and only half of the areas with 20 or more WFS (n=33) harboured trees killed by I. typographus during the years 2003–2005. The quantity and diameter of WFS and the basal area of recently dead standing spruce trees correlated positively with the risk of tree deaths. This study indicates that in Finland, at endemic I. typographus population levels, it is safe to leave fewer than 20 WFS in managed forests. Retention of even larger quantities of trees does not seem to evoke significant numbers of consequential tree deaths by I. typographus in managed forests. However, in stands where the natural mortality of spruce trees is high, the risks of consequential tree deaths after wind disturbance will also be higher.  相似文献   

9.
Phellinus tremulae is an important fungal decay agent common to aspen and a critical component to the cavity-nesting bird complex found in western aspen stands. Little information exists on the conditions that facilitate infection and spread of P. tremulae in aspen forests. I used Forest Inventory and Analysis (FIA) data to explore the relationships of several tree and stand characteristics to the presence and frequency of P. tremulae in aspen measured across several western states of the United States. Results suggest a strong relationship between tree age, tree diameter, and compacted crown ratio with infection frequency in trees while stand purity, canopy cover and stand age had a positive relationship with the occurrence of P. tremulae in forest stands containing aspen. Logistic regression modeling identified stand age as the only variable that increased the odds of predicting infection at the stand-level while all tree-level variables were included in the tree model. Data also show that infection rates in the study area were lower than in other parts of aspen's range, and that average size of infected trees was smaller in the study area than those reported elsewhere. These results have important implications to management of aspen for wildlife, especially for birds that use decayed aspen for nesting.  相似文献   

10.
To restore non-wooded stands dominated by dwarf bamboo species (Sasa kurilensis or S. senanensis) into forests, mechanical soil scarification has been applied in northern Japan since the 1960s. The treatment is followed both by natural regeneration and artificial planting. In this study, we quantified the total carbon stock (plants plus 0.3 m depth of soil) of these stands over 35-year age-sequences. The natural regeneration stands were gradually dominated by Betula ermanii. The carbon stock increased linearly to 215.1 ± 35.2 Mg C ha−1 for a 37-year-old stand formerly dominated by S. kurilensis, and 181.1 ± 29.8 Mg C ha−1 for a 34-year-old stand formerly dominated by S. senanensis. The latter was similar to that of a Picea glehnii plantation, formerly dominated by S. senanensis, with comparable stand age (160.3 ± 6.7 Mg C ha−1 for 35-year-old stands). Although the carbon stock in plants quickly offset the untreated level, that in the soil remained depressed even in the older stands. This resulted in small differences in carbon stock of these stands with untreated dwarf bamboo stands. We conclude that natural regeneration following scarification could be a prime option for carbon sink management in the region. However, we should take a long rotation period (i.e., >50 years) to ensure a carbon sink state. A potential of further improvements of the practice, including that reduce intensity of soil disturbance, was presented.  相似文献   

11.
Fire suppression over the last century has increased conifer expansion and dominance in aspen-conifer forests, which appears to be a driving force behind aspen decline in some areas. The primary objective of this study was to examine how increasing conifer dominance affects aspen regeneration vigor following the return of fire. The influence of physiographic features and herbivory on aspen regeneration vigor were also examined. The study was conducted in the Sanford fire complex located in the Dixie National Forest in southern Utah, USA, where more than 31,000 hectares burned in the summer of 2002. Seven years after the burn (at 66 locations) we measured aspen regeneration density and height as response variables and former stand composition and density (the burned trees were still standing), soil characteristics, slope, aspect and presence or absence of herbivory as independent variables. Aspen regeneration (root suckering) densities ranged from <500 to 228,000 stems/hectare with an average of 37,000 stems/hectare. Post-fire aspen regeneration density was most strongly correlated with pre-fire stand successional status (as measured by stand composition and species abundance), with percent conifer abundance (R2 = −0.55) and overstory aspen density (R2 = + 0.50) being the most important. Average aspen suckering densities ranged from approximately 60,000 stems/hectare in what were relatively pure aspen stands (>90% aspen) to less than 5000 stems/hectare in stands where conifer abundance was greater than 90%. Soil C, N, and P showed positive correlations (R2 = 0.07 to 0.17) with aspen regeneration vigor, while soil texture had a relatively weak influence on sucker regeneration. Aspen regeneration densities were 15% lower on north facing aspects compared to east, west and south facing aspects with slope steepness showing no correlation with regeneration vigor. Regeneration density was significantly lower (8%) at sites with evidence of herbivory versus sites where herbivory was absent. Overall, the aspen regeneration response in the Sanford fire complex was strong despite high wildlife densities, which may be related to disturbance size. Where the maintenance of aspen is desired in the landscape we recommend promoting fire when the percentage of overstory conifer stems is greater than 80% or overstory aspen density is less than 200 overstory stems/hectare.  相似文献   

12.
[目的]研究桂西南岩溶区不同恢复模式群落的生物量及其林下植物多样性的特点,为该区域的生物多样性保护、生态功能恢复效果评价积累基础数据。[方法]以桂西南岩溶区4种不同恢复模式为研究对象,采用样方法对林下植物多样性进行研究;采用收获法研究灌木层与草本层的地上、地下生物量及凋落物层现存量;采用异速生长模型来估算乔木层的地上生物量,并参考IPCC根茎比来量化乔木的地下生物量。[结果]表明:共调查记录林下植物85种,隶属于46科,81属,其中,灌木植物25科,46属,50种;草本植物21科,35属,35种;不同恢复模式群落生物量的变化趋势为自然恢复林(166.66 t·hm-2)任豆林(48.61 t·hm-2)吊丝竹林(36.54 t·hm-2)灌草坡(0.96 t·hm-2)。[结论]不同恢复模式灌木层物种丰富度差异不显著,最高的为灌草坡(16种),其次为任豆林(15种),最低为自然恢复林(12种);草本层物种丰富度最高的为任豆林(12种),其次为灌草坡(10种),最低为自然恢复林(4种)。自然恢复林乔木不同组分生物量与任豆林、吊丝竹林之间差异显著(P0.05);灌草坡的灌木、草本地上生物量与吊丝竹林、任豆林、自然恢复林之间差异显著(P0.05)。吊丝竹林、任豆林的灌草生物量表现为草本层灌木层,而灌草坡与自然恢复林的灌草生物量则表现为灌木层草本层。  相似文献   

13.
To preserve biodiversity in managed forest landscapes dead and living trees are retained at final cuttings. In the present study we evaluated the effect of these practices for saproxylic (wood-dependent) beetles inhabiting dead aspen trees (Populus tremulae). For saproxylic beetles, tree retention at final cuttings can be expected to be especially valuable for species adapted to sun-exposed dead wood, a substrate that only rarely occurs in well managed forest stands. Therefore, the current evaluation was conducted as a comparison of species richness, species density (number of species per sample), assemblage composition and occurrence of individual species between clear-cuts, where aspen trees were retained, and closed forest stands with aspen trees. The study was conducted in central Sweden and the beetles were sampled by sieving of bark from CWD (coarse woody debris) of aspen. There was no significant difference in rarefied species richness between forest and clear-cut sites. Species composition differed significantly between the two stand types. Generalized linear mixed-effects models predicted the species density to be 34% lower in CWD objects in forest sites than on clear-cuts. This pattern could partly be explained by differences in CWD diameter, decay class and bark types between the two stand types (clear-cut/forest). Stand type was a significant predictor of occurrence in individual CWD objects for 30% of analysed individual beetle species. For all species except one, the variable stand type predicted higher occurrence on clear-cuts than in forest stands. To conclude, our results demonstrate that retention of aspen on clear-cuts contributes to population recruitment of a different assemblage of species than CWD within stands.  相似文献   

14.
Aspen and balsam poplar regeneration from root suckers were assessed in boreal mixedwood forests nine years after logging in a variable retention experiment (EMEND Project—Ecosystem Management Emulating Natural Disturbance) located north of Peace River, Alberta, Canada. Five levels of retention of mature trees (2%, 10%, 20%, 50% or 75% of the original basal area) were applied in stands dominated by aspen, white spruce or mixtures of the two species. Basal area of aspen (or that of aspen plus balsam poplar combined) prior to logging strongly influenced sucker density of aspen (or aspen + balsam poplar combined) and in some cases their growth. Nine years after harvest there was a decline in sucker density and volume ha−1 with increasing retention levels of aspen (or both poplars combined); sucker density declined by 50% when only 20% of the original basal area was left in the stand. Retaining mature spruce trees in the stand had little influence on the number of suckers but did affect their total volume ha−1. Thus, we suggest that by knowing stand aspen and balsam poplar density prior to logging and varying levels of retention of aspen and balsam poplar or conifers at harvest, the density of Populus regeneration can be predicted by managers, thereby allowing them to create a range of mixedwood conditions.  相似文献   

15.
Abstract

The present study was aimed to anticipate how forest composition, regeneration, biomass production, and carbon storage vary in the ridge top forests of the high mountains of Garhwal Himalaya. For this purpose five major forest types—(a) Pinus wallichiana, (b) Quercus semecarpifolia, (c) Cedrus deodara, (d) Abies spectabilis, and (e) Betula utilis mixed forests—were selected on different ridge tops in the Bhagirathi Catchment Area of the Uttarkashi District of Garhwal Himalaya. The highest species richness (10 species) and stand density (804 ± 184.5 stems ha?1) were recorded in Abies spectabilis forests, whereas lowest species richness (4 species) and species density (428 ± 144.7 stems ha?1) were found in Quercus semecarpifolia forests. The total basal cover (TBC) values were maximum (91.1 ± 24.4 m2 ha?1) in Cedrus deodara forests and minimum (26.5 ± 11.7 m2 ha?1) in Pinus wallichiana forests. The highest total biomass density (TBD) (464.2 ± 152.5 Mg ha?1) and total carbon density (TCD; 208.9 ± 68.6 Mg C ha?1) values were recorded for Cedrus deodara forests; however, lowest TBD (283.4 ± 74.8 Mg ha?1) and TCD (127.5 ± 33.7 Mg C ha?1) values for Quercus semecarpifolia forests. Our study suggests that Abies spectabilis-dominated forests should be encouraged for biodiversity enrichment and reducing carbon emissions on ridge top forests of high mountains.  相似文献   

16.
In the modern forestry paradigm, many factors influence the amount of coarse woody debris (CWD). The present paper analyzes the effects of both local (national) programs (special functions of forests) and European programs (Natura 2000 sites), as well as the individual characteristics of forest stands. The study was conducted on 2,752 sampling plots distributed over an area of about 17,500 ha and located in lowland stands having a species composition typical of large areas in central Europe. Natura 2000 areas contained significantly more CWD (8.4 m3/ha) than areas not covered by the program (4.8 m3/ha). However, this is due to the fact that Natura 2000 sites involve well-preserved forest areas, such as nature reserves (26.6 m3/ha). In the managed forests that have been covered by the Natura 2000 program over the past several years, the volume of CWD has not increased. Forests with ecological and social functions differed slightly in the amount of CWD. More CWD occurred in protected animal areas (8.7 m3/ha) than in stands damaged by industry (3.9 m3/ha). Intermediate CWD levels were found in water-protection forests and in forests located around cities and military facilities. In managed forests, the lowest CWD volume was observed in middle-aged stands. The species composition of the stand had little effect on the volume of CWD. Only stands with a predominance of ash and alder had higher CWD levels (13.5 m3/ha). More CWD was found in stands whose species composition did not represent the potential site quality (6.4 m3/ha) than in habitats with the optimum species composition (3.8 m3/ha). CWD volume should be systematically increased taking into consideration local natural conditions. Such efforts should be focused on particularly valuable regions, and especially on Natura 2000 sites, where the threshold values reported from other European forests should be reached. Leaving some trees to die naturally and retaining reasonable amounts of such trees ought to be incorporated into CWD management practice in Poland.  相似文献   

17.
In the southern Rocky Mountains, current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks and associated harvesting have set millions of hectares of lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forest onto new stand development trajectories. Information about immediate, post-disturbance tree regeneration will provide insight on dynamics of future stand composition and structure. We compared tree regeneration in eight paired harvested and untreated lodgepole pine stands in the Fraser Experimental Forest that experienced more than 70% overstory mortality due to beetles. New seedlings colonized both harvested and untreated stands in the first years after the beetle outbreak. In harvested areas the density of new seedlings, predominantly lodgepole pine and aspen, was four times higher than in untreated stands. Annual height growth of pine and fir advance regeneration (e.g., trees established prior to the onset of the outbreak) has doubled following overstory mortality in untreated stands. Growth simulations based on our regeneration data suggest that stand basal area and stem density will return to pre-beetle levels in untreated and harvested stands within 80-105 years. Furthermore, lodgepole pine will remain the dominant species in harvested stands over the next century, but subalpine fir will become the most abundant species in untreated areas. Owing to terrain, economic and administrative limitations, active management will treat a small fraction (<15%) of the forests killed by pine beetle. Our findings suggest that the long-term consequences of the outbreak will be most dramatic in untreated forests where the shift in tree species composition will influence timber and water production, wildfire behavior, wildlife habitat and other forest attributes.  相似文献   

18.
Abstract

This paper characterizes spatial patterns in the occurrence of two congeneric wood-decaying fungi (Aphyllophorales: Polyporaceae) in an old-growth boreal forest in eastern Finland. The spatial patterns are used to evaluate indirectly the short-distance dispersal ability of the species. Fomitopsis rosea is a specialist on Picea abies occurring mainly in forests with large amounts of dead wood, whereas Fomitopsis pinicola is a substrate generalist and also abundant in managed forests. Within a forest reserve, a 25 ha study area was divided into 25 m×25 m grid (n=400), and all dead trees and fruiting bodies of the two polypore species were recorded. Spatial patterns were analysed with Spatial Analysis by Distance IndicEs methodology (SADIE). Downed spruce logs were highly aggregated within the study area. After this distribution was accounted for, the spatial pattern of F. pinicola and F. rosea on logs was random. The lack of spatial aggregation suggests that within old-growth forest stands dispersal of the two fungal species is not a limiting factor for their occurrence.  相似文献   

19.
Pinus sylvestris-dominated forests have been heavily utilized across all of boreal Fennoscandia and the remaining natural forests are generally highly fragmented. However, there are considerable local and regional differences in the intensity and duration of past forest utilization. We studied the impact of human forest use on the diversity of epiphytic and epixylic lichens in late-successional Pinus sylvestris-dominated forests by assessing species richness and composition along both local and regional gradients in forest utilization. The effects of local logging intensity were analysed by comparing three types of stands: (i) near-natural, (ii) selectively logged (in the early 20th century) and (iii) managed stands. The effects of regional differences in duration and intensity of past forest use were analysed by comparing stands in two contrasting regions (Häme and Kuhmo–Viena). The species richness of selectively logged stands was as high as that of near-natural stands and significantly higher in these two stand categories than in managed stands. Species richness increased with the density of small understorey Picea, which correlated strongly with decreasing intensity of local forest use and increasing structural complexity of selectively logged and near-natural stands. Stands in the Häme region hosted a lower number of species, and were less likely to host many old-growth indicator species than the Kuhmo–Viena region, suggesting that species have been lost from stands in the Häme region due to a longer history of intensive forest use. We conclude that selectively logged stands, along with near-natural stands, are valuable lichen habitats particularly for species confined to old-growth structures such as coarse trees and deadwood. In landscapes where natural forests have become fragmented, the management or restoration of the remaining late-successional Pinus-dominated forests, e.g. through the use of fire, should be carefully planned to avoid adverse effects on lichen species richness.  相似文献   

20.
The effect of forest management on biodiversity is a crucial issue for sustainable forestry and nature conservation. However, the ways in which management affects macrofungal and plant communities and diversity of mountain temperate forests still remain poorly understood. We performed a random sampling stratified by stand age and stand type on the sites of temperate montane fir–beech forests. Diversity of macrofungi and the vascular plant understorey in beech- and spruce-dominated managed stands was investigated and compared to primeval forests located in the Po?ana Biosphere Reserve, Western Carpathians. Both the vascular plant and the macrofungal communities were altered by management, and the response of the macrofungal species (especially wood-inhabiting fungi) was more pronounced in terms of species composition change. Species turnover evaluation seems to be an important tool of forest natural status assessment, because alpha diversity did not change as much as species composition. Certain species of Carpathian primeval forests were confirmed as good indicators for natural forest change; others were proposed. Species pool and mean number of species per plot were the highest in unmanaged fir–beech forests, and species diversity significantly decreased in spruce plantations. The number of species decreased significantly due to the change of canopy tree species composition only in the macrofungal communities. As an outcome for forest management, we recommend keeping mixed forests involving all natural tree species and providing at least a minimal amount of dead wood necessary for wood-inhabiting organisms and leaving some area of unmanaged natural forests within complexes of managed stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号