首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptors for the Fc fragment of IgG (FcγRs) constitute one of the main effector mechanisms through which IgG immune complexes exert their action. Four FcγRs, FcγRI (CD64) with high affinity, FcγRI with intermediate affinity, FcγRII (CD32) and FcγRIII (CD16) with low affinity, have been identified. There are three FcγRII isoforms (activating FcγRIIa and FcγRIIc, and inhibiting FcγRIIb) existing in humans, one isoform in mice (inhibiting FcγRIIb), and two isoforms in cattle (inhibiting FcγRIIb, activating FcγRIIc). Two splice sub-isoforms of FcγRIIb, FcγRIIb1(b1) and FcγRIIb2(b2), have been identified in humans, mice and cattle, however, few of FcγRIIb sub-isoforms have been investigated in pig. In this study, we describe the molecular cloning, sequencing and characterization of a porcine FcγRIIb sub-isoform, FcγRIIb1. The cDNA encoding porcine FcγRIIb1 was isolated from peripheral blood leucocytes RNA with RT-PCR. The porcine FcγRIIb1 cDNA contains a 951bp open-reading frame, encoding a 316 amino acid transmembrane glycoprotein composed of two immunoglobulin (Ig)-like extracellular domains, a transmembrane region and a cytoplasmic tail with an immunoreceptor tyrosine-based inhibiting motif (ITIM). The porcine FcγRIIb1 shares 98.3% homology and has a 19 amino acid in-frame insertion in cytoplasmic tail when compared with amino acid sequence of DQ026064. Immunofluorescence analysis showed that the glycoprotein encoded by the porcine FcγRIIb1 cDNA was expressed in the stable transfected COS-7 cells, and an immunoglobulin-binding assay showed that it had binding activity for IgG immune complexes. Identification of the porcine FcγRIIb1 will help our understanding of the molecular basis of IgG-FcγR interaction in the porcine immune response.  相似文献   

2.
Immunoglobulin G (IgG) Fc receptors (FcγRs) bind to immune complexes through interactions with the Fc region of IgG to initiate or inhibit the defense mechanism of the leukocytes on which they are expressed. In this study, we describe the cloning, sequencing and characterization of ovine FcγRII. By screening a translated expression sequence tag (EST) database with the protein sequence of bovine IgG Fc receptor II, we identified a putative ovine homologue. Using rapid amplification of cDNA ends (RACE), we isolated the cDNA encoding ovine FcγRII from peripheral blood leucocyte RNA. The ovine FcγRII cDNA contains an 894 bp open-reading frame, encoding a 297 amino acid transmembrane glycoprotein composed of two immunoglobulin-like extracellular domains, a transmembrane region and a cytoplasmic tail with an immunoreceptor tyrosine-based inhibitory motif (ITIM). The glycoprotein encoded by the cloned cDNA was then expressed on the surface of COS-7 cells and immunoglobulin-binding assays show that it binds ovine IgG1, but not IgG2. Identification of the ovine FcγRII will aid in the understanding of the molecular basis of IgG–FcγR interaction.  相似文献   

3.
The IgG receptors CD16 and CD32 (FcγRIII and FcγRII) link the humoral immune response to effector cell immune responses by binding immune complexes. Human intravenous immunoglobulin (hIVIG) consisting of immunoglobulin from pooled donors is reported to block FcγRs and has been used to treat a variety of canine autoimmune disorders. FcγRs have been poorly described for canine monocytes; therefore, the objectives of this study were to: (1) identify canine monocyte/macrophage FcγR (CD16 and CD32) expression and (2) demonstrate in vitro hIVIG binding to these receptors. The canine monocyte/macrophage-like cell line (DH82) and monocytes isolated from peripheral blood of healthy dogs were evaluated by flow cytometry (FACS) for CD16 and CD32 expression using commercially available anti-CD16 and anti-CD32 antibodies directed against the human isoforms. The mean percentage of cells expressing CD16 was 55% of DH82 cells and 13% of blood monocytes and the mean percentage of cells expressing CD32 was 85% of DH82 cells and 73% of blood monocytes. Immunoprecipitation of canine DH82 cells lysate using the same anti-CD16 or anti-CD32 antibodies suggested that these anti-human antibodies recognize the canine homologues. To demonstrate FcγR blockade, cells were incubated with increasing concentrations of hIVIG and then incubated with anti-CD16 or anti-CD32 antibodies. The percentage of CD32 expression decreased in a concentration dependent fashion in DH82 cells and blood monocytes after incubation with increasing concentrations of IVIG, suggesting that hIVIG was binding to CD32 and inhibiting anti-CD32 antibody binding. The same results were not demonstrated with anti-CD16 antibody. We believe this is the first report to demonstrate Fcγ receptors CD16 and CD32 expression on canine monocytes and in vitro CD32 binding by human IgG, which may represent one of the immunomodulatory mechanisms of hIVIG.  相似文献   

4.
为了研究蓝耳病不同毒株疫苗在ADE效应下的表现,将疫苗血清复合物(用105.0TCID50的HP-PRRSV田间分离株ZJ-2014,与不同弱毒疫苗CH-1R、R98、TJM-F92的免疫血清在不同的稀释梯度下混合作用24 h,获得血清复合物)接种于PAM细胞,进行蓝耳病病毒增殖试验,检测病毒RNA拷贝数。以兔抗猪FcγRIIb血清进行封闭构建对照组,而后接种PAM细胞。通过比较封闭前后PRRS病毒增殖数量的差异,确定不同疫苗血清兔抗猪FcγRIIb多抗对ADE的阻断作用。试验结果表明:TJM-F92株疫苗的血清抗原复合物对ADE效应的阻断效果最为明显,提示在未来蓝耳病疫苗研制及临床应用中,TJMF92株可以成为优选毒株。  相似文献   

5.
6.
Receptors for the Fc regions of immunoglobin G (IgG) play a critical role in immunoregulation and immune defenses against pathogens. In this study, we describe the cloning, eukaryotic expression and IgG subclass specificity of ovine Fc gamma receptor III (FcγRIII). The newly cloned ovine FcγRIII cDNA contains a 940 bp open-reading frame (ORF), and is predicted to encode a 250 amino acid transmembrane glycoprotein composed of two immunoglobulin-like extracellular domains, a transmembrane region and a short cytoplasmic tail. The overall identity of the ovine FcγRIII amino acid sequence to its cattle, pig and human counterparts was 83.2%, 62.0%, 60.7%, respectively. Overlapping PCR was performed with the extracellular domain of ovine FcγRIII and the transmembrane and intracellular region of ovine Fc gamma chain to construct a chimeric receptor. Rosetting analysis showed that transfected COS-7 cells required Fc receptor gamma chain for the expression of FcγRIII on the surface. COS-7 cells expressing FcγRIII were able to bind chicken erythrocytes sensitized with ovine IgG1, but not IgG2. Identification of ovine FcγRIII will further our understanding of the ovine immune system.  相似文献   

7.
8.
为研究猪肺巨噬细胞FcγR Ⅲ的生物学功能,本研究应用RT-PCR技术从猪肺巨噬细胞总RNA中克隆出猪FcγR Ⅲ的cDNA序列,并对其进行了分析。结果表明,克隆到的序列长820 bp,包含有1个771 bp完整开放阅读框(ORF),与GenBank中登录的猪FcγR Ⅲ序列(AF237453)的核苷酸同源性为99.9%;与人、牛、马、绵羊、猕猴、狗、猫、小鼠氨基酸同源性分别为61.6%、62.9%、55.3%、62.2%、63.0%、59.0%、61.8%和53.2%;蛋白质分子结构预测结果表明,该分子由信号肽(20个氨基酸)、胞外区(185个氨基酸)、跨膜区(23个氨基酸)和胞内区(28个氨基酸)组成,在胞外区存在2个Ig样结构域。猪肺巨噬细胞FcγR Ⅲ基因的成功克隆,为进一步研究其结构与功能奠定基础。  相似文献   

9.
将PRRSV Hn-1/06株阳性血清(中和效价为1∶2)做2~8倍倍比稀释后,分别与等体积含100TCID50/100μL的PRRSV Hn-1/06株病毒液混合,制备感染性免疫复合物。取纯化的猪IgG和兔抗猪IgG制备非感染性免疫复合物。用鼠抗FcγRⅡB阳性血清封闭猪肺泡巨噬细胞(PAM细胞)表面的FcγRⅡB,然后分别将感染性免疫复合物和非感染性免疫复合物与PRRSV的混合物感染封闭后的PAM细胞,培养48h后收获样品,采用荧光定量RT-PCR检测收获样品中PRRSV的含量。结果表明,选择性封闭PAM细胞的FcγRⅡB能增强PRRSV的抗体依赖性增强作用。  相似文献   

10.
11.
根据GenBank中发表的猪的IgG Fc段基因及鸡传染性支气管炎病毒(IBV)S1基因序列,设计并合成引物.以猪肝组织总RNA为模板扩增出猪IgG Fc基因,以舍全长IBV M41 S基因的质粒为模板扩增出IBV S1基因,分别克隆至T裁体.DNA测序表明,所获得的IBV S1基因大小为1.5 kb,lgG Fc大小为1 kb,序列正确.将IBVS1与IgG Fc基因串连,插入舍有人组织型纤维蛋白溶酶原激活物分泌信号肽序列(tPA)的真核表达载体pcDNA3.1-tPA上,在HeLa细胞上进行瞬时融合表迭.经免疫光和斑点杂交检测,表达产物同时具有IBV S1蛋白和IgG Fe活性.  相似文献   

12.
13.
14.
We studied the influence of Imipenem and Cefmetazol (50 mg/l) on lymphocyte receptors CD2, Fc and C3b of complement. The lymphocytes were obtained from human blood and mice axillary ganglions. Cefmetazol significantly increases the binding capacity of human lymphocyte receptors CD2 to sheep red blood cells while Imipenem does not alter this binding. The number of Fc lymphocyte receptors for the constant fraction of IgG is found to be significantly increased when the lymphocytes are incubated in vitro with Imipenem and Cefmetazol. When the lymphocytes are treated with these antibiotics there is an increase in the receptors capable of binding to fraction C3b of the complement.  相似文献   

15.
16.
旨在研究猪C1QTNF3基因可变剪接体的特性及miR-101通过C1QTNF3基因促进猪脂肪SV细胞成脂分化的机制。本研究采集3头30日龄健康马身猪仔公猪心、肝、脾、肺、肾、胃、股二头肌、腰大肌、皮下脂肪和背部脂肪组织样品,首先利用RT-PCR技术和生物信息学方法对C1QTNF3基因的不同转录本进行扩增和生物学特性分析,采用qRT-PCR技术检测C1QTNF3基因不同转录本在猪组织中的表达变化。随后,利用生物信息学预测发现,C1QTNF3上游的调控因子是miR-101,采用双荧光素酶报告试验验证miR-101对C1QTNF3的调控作用。最后,利用油红O染色和qRT-PCR技术检测过表达miR-101对猪脂肪SV细胞成脂分化的影响。基因克隆得到猪C1QTNF3存在两个转录本C1QTNF3和C1QTNF3-1,其中C1QTNF3-1为新鉴定的转录本;测序分析显示,与C1QTNF3相比,C1QTNF3-1的第1外显子区域缺失了219个碱基,少编码73个氨基酸。进化树分析显示,猪C1QTNF3和C1QTNF3-1蛋白序列与人和马来亚穿山甲等物种的亲缘关系较近。C1QTNF3和C1QTNF3-1在猪各组织中均有表达,且在各组织中C1QTNF3-1的表达量均极显著高于C1QTNF3(P<0.01)。过表达miR-101极显著下调C1QTNF3 3'UTR区域的荧光素酶活性(P<0.01)和C1QTNF3 mRNA的表达(P<0.01),同时增加了脂肪细胞成脂分化关键基因PPARγC/EBPβSREBP-1c和FABP4的mRNA表达量(P<0.01)。本试验成功克隆了猪C1QTNF3基因的两个可变剪接体,其中C1QTNF3-1在猪不同组织中均高表达,推测该转录本为基因发挥功能的主要亚型。并深入研究了C1QTNF3基因的上游调控因子,揭示了miR-101靶向C1QTNF3促进成脂分化的机制,丰富了C1QTNF3的生物学作用和调控网络。  相似文献   

17.
Porcine AIDA-I positive Escherichia coli causes diarrhea in neonatal piglets and AIDA-I adhesin is an important virulence factor involved in intestinal colonization with biofilm formation. This biofilm consists of AIDA-I(+)E. coli bacteria stratified within mucus layers covering the intestinal mucosa. Based on the intimate interaction between AIDA-I(+)E. coli and mucus within the intestinal biofilm, we hypothesized that porcine intestinal mucus contains receptor(s) for AIDA-I adhesin. Since porcine AIDA-I receptors have not been identified, we employed affinity chromatography and in vitro adhesion assays to investigate AIDA-I binding proteins in porcine intestinal mucus that might serve as receptors for attachment of AIDA-I positive E. coli. We demonstrated that porcine mucus contains 65 and 120kDa proteins (p65 and p120) that bind with high affinity to purified AIDA-I adhesin and that AIDA-I positive E. coli binds to these proteins with higher affinity than do AIDA-I negative mutant. The identity of p65 was not determined based on LC-MS/MS data, whereas p120 was matched to two nuclear proteins (namely, DNA damage binding protein and splicing factor 3b) and one cytoplasmic protein, which is an IgG Fc binding protein. Based on similar amino acid homology, molecular weight, structural similarity to mucin and reported evidence of being secreted by goblet cells into the intestinal lumen, we think that the IgG Fc binding protein is most likely candidate to serve as a potential receptor in intestinal mucus for AIDA-I adhesin.  相似文献   

18.
旨在探讨新疆野生荒漠肉苁蓉醇提物(ethanol extracts of wild Cistanche deserticola,EEWCD)调节Th1/Th2免疫反应的特点及初步的作用机制.采用卵清白蛋白(ovalbumin,OVA)为抗原,研究EEWCD对小鼠体液免疫,细胞免疫,细胞因子分泌,树突状细胞(dendri...  相似文献   

19.
This study was conducted to investigate whether the co-delivery of DNA encoding porcine cytokines would enhance a protective immune response in pigs to a Pseudorabies virus (PRV; or Aujeszky’s disease virus) DNA vaccine. Aujeszky’s disease in pigs results in respiratory and nervous symptoms with important economic losses. To evaluate cytokine effects, eukaryotic expression vectors were constructed for porcine GM-CSF, IL-2 and IFN-γ. cDNA for each of these cytokines was inserted under the control of a CMV promoter in the pcDNA3 plasmid and cytokine expression was confirmed after DNA transfection in various mammalian cell cultures by bioassays (GM-CSF and IL2) and ELISA (IFN-γ). Pigs were vaccinated by single intramuscular injection with plasmid DNA encoding PRV gB and gD along with various combinations of cytokine plasmid constructs. Pig serum was tested for the production of antibody by isotype specific anti-PRV ELISA. Pigs were then challenged with the highly virulent PRV strain NIA3 on day 21 after vaccination. The survival and growth rate of pigs were monitored for seven days after the viral challenge. The co-administration of GM-CSF plasmid increased the immune response induced by gB and gD PRV DNA vaccine. This immune response was characterized by an earlier appearance of anti-PRV IgG2, a significantly enhanced anti-PRV IgG1 and IgG2 antibody response, a significantly decreased and shortened viral excretion in nasal swabs and an improved protection to the viral challenge. In contrast, the co-administration of porcine IL-2 or IFN-γ had no adjuvant effects. Our results thus demonstrate for the first time that the application of porcine GM-CSF gene in a DNA vaccine formulation can exert immuno-adjuvant and protective effects with single vaccination in the natural host pig against Aujeszky’s disease.  相似文献   

20.
Fc receptors in livestock species   总被引:7,自引:0,他引:7  
Many of the receptors for the Fc domain of immunoglobulins in cattle, sheep, pigs and horses have been cloned and characterized recently. This review summarises recent developments and relates them to the current understanding of the primary structure, cellular specificity and binding properties of Fc receptors (FcRs). Although there is an obvious overall similarity to their human and mouse counterparts, some Fc receptors in domestic animals are unusual, perhaps most notably the bovine Fcgamma2R, which although related to other mammalian FcgammaRs, belongs to a novel gene family and the porcine FcgammaRIIIA, which associates with a molecule that contains significant homology to the cathelin family of antimicrobial proteins. Accumulating data suggest the possibility of a different role for the FcRn in ruminants, which may secrete IgG onto the mucosal surfaces, rather than absorbing it, as was suggested by mouse studies. These differences may be linked to the diversity of immunoglobulin classes in different mammalian species, and may contribute to different immune functions. The observations made so far emphasize the importance of elucidating and analyzing the roles of these molecules within the immune system of each host animal, rather than inferring roles from conclusions made in human and mouse studies. A better understanding of Fc receptor expression on immune effector cells should help in developing new immunization protocols, while knowledge of the Fc receptors involved in immunoglobulin transport, especially in the mammary gland, may help to develop new products which could be used not only for veterinary purposes but perhaps also for human therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号