首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The operation of the Federal Columbia River Power System (FCRPS) has negatively affected threatened and endangered salmonid populations in the Pacific Northwest. Barging Snake River spring Chinook salmon Oncorhynchus tshawytscha through the FCRPS is one effort to mitigate the effect of the hydrosystem on juvenile salmon out-migration. However, little is known about the occurrence and transmission of infectious agents in barged juvenile salmon relative to juvenile salmon that remain in-river to navigate to the ocean. We conducted a survey of hatchery-reared spring Chinook salmon at various points along their out-migration path as they left their natal hatcheries and either migrated in-river or were barged through the FCRPS. Salmon kidneys were screened by polymerase chain reaction for nine pathogens and one family of water molds. Eight pathogens were detected; the most prevalent were Renibacterium salmoninarum and infectious hematopoietic necrosis virus. Species in the family Saprolegniaceae were also commonly detected. Pathogen prevalence was significantly greater in fish that were barged through the FCRPS than in fish left to out-migrate in-river. These results suggest that the transmission of infectious agents to susceptible juvenile salmon occurs during the barging process. Therefore, management activities that reduce pathogen exposure during barging may increase the survival of juvenile Chinook salmon after they are released.  相似文献   

2.
Various methods have been developed to mitigate the adverse effects of the Federal Columbia River Power System on juvenile Pacific salmon out-migrating through the Columbia River basin. In this study, we found that hatchery-reared spring Chinook salmon Oncorhynchus tshawytscha in the river are in varying degrees of health, which may affect delayed mortality and the assessment of the effectiveness of management actions to recover listed stocks (e.g., barging fish downstream versus leaving fish in the river). A laboratory disease challenge with Listonella anguillarum was completed on fish from Rapid River Hatchery and Dworshak National Fish Hatchery (NFH) with different out-migration histories: (1) transported by barge, (2) removed from the river before barging, or (3) left to travel in-river. Barged fish from Rapid River Hatchery experienced less mortality than fish from Dworshak NFH. No statistical differences were found between the hatcheries with fish that had in-river out-migration histories. We suggest that the stressors and low survival associated with out-migration through the hydropower system eliminated any differences that could have been present. However, 18-25% of the fish that were barged or collected before barging died in the laboratory before the disease challenge, compared with less than 2% of those that traveled in-river. Owing to disproportionate prechallenge mortality, the disease-challenged populations may have been biased; thus, they were also considered together with the prechallenge mortalities. The synthesis of prechallenge and disease-challenged mortalities and health characteristics evaluated during out-migration indicated that the benefit of barging was not consistent between the hatcheries. This finding agrees with adult survival and delayed mortality estimates for the individual hatcheries determined from adult returns. The results suggest that the health status of fish and their history before entering the hydropower system (hatchery of origin and out-migration path) are critical variables affecting the conclusions drawn from studies that evaluate mitigation strategies.  相似文献   

3.
Abstract

Various methods have been developed to mitigate the adverse effects of the Federal Columbia River Power System on juvenile Pacific salmon out-migrating through the Columbia River basin. In this study, we found that hatchery-reared spring Chinook salmon Oncorhynchus tshawytscha in the river are in varying degrees of health, which may affect delayed mortality and the assessment of the effectiveness of management actions to recover listed stocks (e.g., barging fish downstream versus leaving fish in the river). A laboratory disease challenge with Listonella anguillarum was completed on fish from Rapid River Hatchery and Dworshak National Fish Hatchery (NFH) with different out-migration histories: (1) transported by barge, (2) removed from the river before barging, or (3) left to travel in-river. Barged fish from Rapid River Hatchery experienced less mortality than fish from Dworshak NFH. No statistical differences were found between the hatcheries with fish that had in-river out-migration histories. We suggest that the stressors and low survival associated with out-migration through the hydropower system eliminated any differences that could have been present. However, 18–25% of the fish that were barged or collected before barging died in the laboratory before the disease challenge, compared with less than 2% of those that traveled in-river. Owing to disproportionate prechallenge mortality, the disease-challenged populations may have been biased; thus, they were also considered together with the prechallenge mortalities. The synthesis of prechallenge and disease-challenged mortalities and health characteristics evaluated during out-migration indicated that the benefit of barging was not consistent between the hatcheries. This finding agrees with adult survival and delayed mortality estimates for the individual hatcheries determined from adult returns. The results suggest that the health status of fish and their history before entering the hydropower system (hatchery of origin and out-migration path) are critical variables affecting the conclusions drawn from studies that evaluate mitigation strategies.

Received November 18, 2009; accepted January 6, 2011  相似文献   

4.
Abstract

Various methods have been developed to mitigate the effects of dams on juvenile Pacific salmon Oncorhynchus spp. migrating to the Pacific Ocean through the Columbia River basin. In this study, we examined the health of hatchery Snake River spring and summer Chinook salmon relative to two mitigating strategies: dam bypass and transportation (e.g., barging). The health of out-migrants was assessed in terms of the difference in the incidence of mortality among fish, categorically grouped into no-bypass, bypass, and transportation life histories, in response to challenge with the marine pathogen Listonella anguillarum during seawater holding. These three life histories were defined as follows: (1) fish that were not detected at any of the juvenile bypass systems above Bonneville Dam were classified as having a no-bypass life history; (2) fish that were detected at one or more juvenile bypass systems above Bonneville Dam were classified as having a bypass life history; and (3) fish that were barged were classified as having the transportation life history. Barged fish were found to be less susceptible to L. anguillarum than in-river fish—whether bypassed or not—which suggests that transportation may help mitigate the adverse health effects of the hydropower system of the Columbia River basin on Snake River spring–summer Chinook salmon. The findings of this study are not necessarily transferable to other out-migrant stocks in the Columbia River basin, given that only one evolutionarily significant unit, that is, Snake River spring–summer Chinook salmon, was used in this study.  相似文献   

5.
Abstract

Although the adverse impact of pathogens on salmon populations in the Pacific Northwest is often discussed and recognized, little is currently known regarding the incidence and corresponding significance of delayed disease-induced mortalities. In the study reported herein, we surveyed the presence and prevalence of selected micro- and macroparasites in out-migrant juvenile coho salmon Oncorhynchus kisutch and Chinook salmon O. tshawytscha from 12 coastal estuaries in the Pacific Northwest over a 6-year period (1996–2001). The major finding of this study was the widespread occurrence of pathogens in wild salmon from Pacific Northwest estuaries. The six most prevalent pathogens infecting both juvenile Chinook and coho salmon were Renibacterium salmoninarum, Nanophyetus salmincola, an erythrocytic cytoplasmic virus (erythrocytic inclusion body syndrome or erythrocytic necrosis virus), and three gram-negative bacteria (Listonella anguillarum, Yersinia ruckeri, and Aeromonas salmonicida). The most prevalent pathogen in both Chinook and coho salmon was N. salmincola, followed by the pathogens R. salmoninarum and the erythrocytic cytoplasmic virus. Statistically significant differences in the prevalence of R. salmoninarum and N. salmincola were observed between Chinook and coho salmon. Based on the prevalence of pathogens observed in this study, disease appears to be a potentially significant factor governing the population numbers of salmon in the Pacific Northwest. Development of a detailed understanding of the principal components influencing the ecology of infectious disease will aid in the development of management and control strategies to mitigate disease in and hence further the recovery of salmon stocks listed under the Endangered Species Act.  相似文献   

6.
Abstract

Before 1985, Ichthyophonus was unreported among Pacific salmon Oncorhynchus spp. from the Yukon River; now it infects more than 40% of returning adult Chinook salmon O. tshawytscha. Overall infection prevalence reached about 45% in the Yukon River and about 30% in the Tanana River between 1999 and 2003. Mean infection prevalence was greater in females than males in the main-stem Yukon River during each of the 5 years of the study, but the infection prevalence in males increased each year until the difference was no longer significant. Clinical signs of ichthyophoniasis (presence of visible punctate white lesions in internal organs) were least at the mouth of the Yukon River (~10%) but increased to 29% when fish reached the middle Yukon River and was 22% at the upper Tanana River. However, clinical signs increased each year from 7% in 1999 to 27% in 2003 at the mouth of the river. As fish approached the upper reaches of the Yukon River (Canada) and the spawning areas of the Chena and Salcha rivers (Alaska), infection prevalence dropped significantly to less than 15% in females on the Yukon River and less than 10% for both sexes in the Chena and Salcha rivers, presumably because of mortality among infected prespawn fish. Age was not a factor in infection prevalence, nor was the position of fish within the run. The source of infection was not determined, but Ichthyophonus was not found in 400 Pacific herring Clupea pallasi from the Bering Sea or in 120 outmigrating juvenile Chinook salmon from two drainages in Alaska and Canada. Freshwater burbot Lota lota from the middle Yukon River were subclinically infected with Ichthyophonus, but the origin and relationship of this agent to the Chinook salmon isolate is unknown.  相似文献   

7.
Abstract

Infectious hematopoietic necrosis virus (IHNV) causes important losses of chinook salmon Oncorhynchus tshawytscha, sockeye salmon Oncorhynchus nerka, and rainbow trout and steelhead Oncorhynchus mykiss on the west coast of North America. Although coho salmon Oncorhynchus kisutch are considered resistant to IHNV infection, the virus was detected in numerous adult coho salmon returning to Trinity River Hatchery, California, in 1985 and 1986. The virus was isolated from internal organs and ovarian fluids of these fish. Antigenic and structural polypeptides of the viruses were identical in adult coho and chinook salmon collected at the same location. Chinook salmon and rainbow trout alevins exhibited high degrees of susceptibility to IHNV obtained from adult coho and chinook salmon. Coho salmon alevins were resistant to both virus isolants.  相似文献   

8.
Abstract

The transmission of pathogens is a common consequence of animal food production. Marine salmon farms and their processing facilities can serve as sources of virulent fish pathogens; our study is the first to confirm the broadcast of a live fish pathogen from a farmed salmon processing facility into the marine waters of Canada's Pacific coast. We found live salmon lice Lepeophtheirus salmonis, mucus, and fish tissue in effluent from the processing facility. Sea lice transmitted from this source may pose a threat to wild salmon populations, and the release of untreated offal, including blood water, is of considerable concern. Further research is needed to quantify the extent to which processing facilities release sea lice and to determine whether more virulent fish pathogens are present in effluent. These data underscore the need for fish farming nations to develop mandatory biosecurity programs to ensure that farmed salmon processing facilities will prevent the broadcast of infectious fish pathogens into wild fish habitat.

Received April 26, 2012; accepted September 7, 2013  相似文献   

9.
Abstract

To assess the suitability of water reuse technology for raising Pacific salmon Oncorhynchus spp. for stocking purposes, fish health and welfare were compared between two groups of juvenile Chinook salmon O. tshawytscha from the same spawn: one group was reared in a pilot partial water reuse system (circular tanks), and the other group was reared in a flow-through raceway. This observational study was carried out over a 21-week period in Washington State. Reuse and raceway fish were sampled repeatedly for pathogen screening and histopathology; fin erosion and whole-blood characteristics were also evaluated. By the study's end, no listed pathogens were isolated from either cohort, and survival was 99.3% and 99.0% in the reuse and raceway groups, respectively. Condition factor was 1.28 in raceway fish and 1.14 in reuse fish; this difference may have been attributable to occasional differences in feeding rates between the cohorts. Fin indices (i.e., length of the longest dorsal or caudal fin ray, standardized by fork length) were lower in reuse fish than in raceway fish, but fin erosion was not grossly apparent in either cohort. The most consistent histological lesion was gill epithelial hypertrophy in reuse fish; however, blood analyses did not suggest any corresponding physiological imbalances. Overall, results suggest that water reuse technology can be employed in rearing juvenile anadromous salmonids for stocking purposes.

Received December 3, 2009; accepted February 14, 2011  相似文献   

10.
11.
Abstract

Stability of the Lake Michigan fishery for chinook salmon Oncorhynchus tshawytscha at high levels became questionable after stocks declined dramatically following spring epizootics in which bacterial kidney disease (BKD) was a major factor. Initially stocked in 1967, favorable survival and growth of chinook salmon through the 1970s led to increases in abundance and in popularity with anglers. Returns of chinook salmon improved annually until the late–1980s, when, with little warning, spring epizootics reduced the abundance of adult salmon by 50% or more. Reduced abundance of alewives (Alosa pseudoharengus), coupled with an increase in chinook salmon density and heavy parasite infection rates were hypothesized to have reduced chinook salmon growth and fitness and to have increased their susceptibility to BKD. Evidence of slower growth exists and low food availability may be the stressor that triggered the epizootics. Chinook salmon were a major component of the economic development and subsequent hardship of the sportfishing industry on Lake Michigan. Sustaining the chinook salmon fishery at previous levels may require managing for high abundance of alewives, which may be inconsistent with overall fish community management goals. The future sustainability and role of chinook salmon needs to be reevaluated in the context of the entire Lake Michigan fish community.  相似文献   

12.
Abstract

Anthropogenic factors have contributed to the precipitous decline of wild Pacific salmon stocks, although the mechanisms and processes at work are largely unknown. Pollution may be one of these factors. Sediments in estuaries are known to act as repositories for contaminants, and estuaries are important habitats for ocean- and river-migrating salmon. We have shown that juvenile salmon Oncorhynchus spp. and their prey bioaccumulate chlorinated hydrocarbons and aromatic hydrocarbons—important classes of toxic xenobiotics. Furthermore, we have shown that exposure to these pollutants can lead to immunosuppression and increased disease susceptibility in juvenile salmon. Whether pollution influences natural disease outbreaks in host populations, including salmon, is currently unknown. It is postulated that the occurrence of disease depends on the interaction of the host, the environment, and the pathogen. Absence of pathogens would reduce the potential for adverse environments to influence disease outbreaks. However, a recent reconnaissance survey of juvenile chinook salmon Oncorhynchus tshawytscha from Oregon coastal rivers revealed that pathogens were an integral component in all systems studied, although the prevalence of the pathogens varied. Furthermore, recent studies of natural fish populations have demonstrated that infectious-disease-induced mortality can significantly reduce the size of the host population. By creating adverse environments (e.g., polluted estuaries) which alter the susceptibility of the host to pathogens that are integral and ubiquitous components of the habitat, pollution increases the probability of disease-related impacts on fish populations.  相似文献   

13.
Abstract

A series of dams on the Deschutes River, Oregon, act as migration barriers that segregate the river system into upper and lower basins. Proposed fish passage between basins would reunite populations of native potamodromous fish and allow anadromous fish of Deschutes River origin access to the upper basin. We assessed the potential redistribution of host-species-specific genotypes (O, I, II, III) of the myxozoan parasite Ceratomyxa shasta that could occur with fish passage and examined the influence of nonnative fish on genotype composition. To determine the present distribution of the parasite genotypes, we exposed eight salmonid species—three native and five stocked for sport fishing—in present and predicted anadromous salmonid habitats. We monitored fish for infection by C. shasta and sequenced a section of the parasite ribosomal DNA gene from fish and water samples to determine parasite genotype. Genotype O was present in both upper and lower basins and detected only in steelhead Oncorhynchus mykiss. Genotype I was spatially limited to the lower basin, isolated predominately from Chinook salmon O. tshawytscha, and lethal for this species only. Genotype II was detected in both basins and in multiple species, but only as a minor component of the infection. Genotype III was also present in both basins, had a wide host range, and caused mortality in native steelhead and multiple nonnative species. Atlantic salmon Salmo salar and kokanee O. nerka were the least susceptible to infection by any genotype of C. shasta. Our findings confirmed the host-specific patterns of C. shasta infections and indicated that passage of Chinook salmon would probably spread genotype I into the upper Deschutes River basin, but with little risk to native salmonid populations.

Received April 20, 2012; accepted July 19, 2012  相似文献   

14.
Abstract

Nucleospora salmonis is an intranuclear microsporidian that primarily infects lymphoblast cells and contributes to chronic lymphoblastosis and a leukemia-like condition in a range of salmonid species. The primary goal of this study was to evaluate the prevalence of N. salmonis in out-migrating juvenile hatchery and wild Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss from the Snake River in the U.S. Pacific Northwest. To achieve this goal, we first addressed the following concerns about current molecular diagnostic tests for N. salmonis: (1) nonspecific amplification patterns by the published nested polymerase chain reaction (nPCR) test, (2) incomplete validation of the published quantitative PCR (qPCR) test, and (3) whether N. salmonis can be detected reliably from nonlethal samples. Here, we present an optimized nPCR protocol that eliminates nonspecific amplification. During validation of the published qPCR test, our laboratory developed a second qPCR test that targeted a different gene sequence and used different probe chemistry for comparison purposes. We simultaneously evaluated the two different qPCR tests for N. salmonis and found that both assays were highly specific, sensitive, and repeatable. The nPCR and qPCR tests had good overall concordance when DNA samples derived from both apparently healthy and clinically diseased hatchery rainbow trout were tested. Finally, we demonstrated that gill snips were a suitable tissue for nonlethal detection of N. salmonis DNA in juvenile salmonids. Monitoring of juvenile salmonid fish in the Snake River over a 3-year period revealed low prevalence of N. salmonis in hatchery and wild Chinook salmon and wild steelhead but significantly higher prevalence in hatchery-derived steelhead. Routine monitoring of N. salmonis is not performed for all hatchery steelhead populations. At present, the possible contribution of this pathogen to delayed mortality of steelhead has not been determined.

Received September 14, 2010; accepted November 14, 2010  相似文献   

15.
To assess the suitability of water reuse technology for raising Pacific salmon Oncorhynchus spp. for stocking purposes, fish health and welfare were compared between two groups of juvenile Chinook salmon O. tshawytscha from the same spawn: one group was reared in a pilot partial water reuse system (circular tanks), and the other group was reared in a flow-through raceway. This observational study was carried out over a 21-week period in Washington State. Reuse and raceway fish were sampled repeatedly for pathogen screening and histopathology; fin erosion and whole-blood characteristics were also evaluated. By the study's end, no listed pathogens were isolated from either cohort, and survival was 99.3% and 99.0% in the reuse and raceway groups, respectively. Condition factor was 1.28 in raceway fish and 1.14 in reuse fish; this difference may have been attributable to occasional differences in feeding rates between the cohorts. Fin indices (i.e., length of the longest dorsal or caudal fin ray, standardized by fork length) were lower in reuse fish than in raceway fish, but fin erosion was not grossly apparent in either cohort. The most consistent histological lesion was gill epithelial hypertrophy in reuse fish; however, blood analyses did not suggest any corresponding physiological imbalances. Overall, results suggest that water reuse technology can be employed in rearing juvenile anadromous salmonids for stocking purposes.  相似文献   

16.
Infectious hematopoietic necrosis virus (IHNV) is a significant pathogen of young salmonid fishes worldwide but particularly within the historical range of the Pacific Northwest and California. In the Sacramento and San Joaquin River drainages of California, IHNV outbreaks in juvenile Chinook salmon Oncorhynchus tshawytscha have been observed regularly at large production hatcheries, including Coleman National Fish Hatchery (established in 1941) and Feather River State Fish Hatchery (FRH; established in 1967), since facility operations began. Recent severe epidemics at the FRH in 1998 and 2000-2002 prompted investigations into the characteristics and potential sources of virus at this facility. Both phylogenetic analyses of a variable portion of the glycoprotein gene and serologic comparisons based on neutralization with three polyclonal rabbit sera were used to characterize 82 IHNV isolates from the Feather River watershed between 1969 and 2004. All isolates examined were in the L genogroup and belonged to one of three serologic groups typical of IHNV from California. The IHNV isolates from the Feather River area demonstrated a maximum nucleotide sequence divergence of 4.0%, and new isolates appeared to emerge from previous isolates rather than by the introduction of more diverse subgroups from exogenous sources. The earliest isolates examined from the watershed formed the subgroup LI, which disappeared coincidently with a temporal shift to new genetic and serologic types of the larger subgroup LII. Experimental challenges demonstrated no significant differences in the virulence for juvenile Chinook salmon and rainbow trout O. mykiss from selected isolates representing the principal types of IHNV found historically and from recent epidemics at FRH. While most isolates were equally virulent for both host species, one isolate was found to be more virulent for Chinook salmon than for rainbow trout.  相似文献   

17.
Severe infection by the endemic myxozoan parasite, Ceratonova (synonym, Ceratomyxa) shasta, has been associated with declines in and impaired recovery efforts of populations of fall-run Chinook Salmon Oncorhynchus tshawytscha in the Klamath River, California. The parasite has a complex life cycle involving a polychaete worm host as well as a salmon host. Myxospore transmission of this parasite, from salmon to polychaete, is a life cycle step during which there is a potential for applied disease management. A 3-year data set on prevalence, intensity, and spore characteristics of C. shasta myxospores was obtained from adult Chinook Salmon carcasses surveyed in the main stem of the Klamath River and three of its tributaries, Bogus Creek and the Shasta and Trinity rivers. Annual prevalence of myxospore detection in salmon intestines ranged from 22% to 52%, and spore concentration values per intestinal scraping ranged from 3.94 × 102 to 1.47 × 107 spores. A prevalence of 7.3% of all carcasses examined produced >5.0 × 105 spores, and these carcasses with “high” spore counts accounted for 76–95% of the total spores in a given spawning season. Molecular analysis of visually negative carcasses showed that 45–87% of these samples had parasite DNA, indicating they contained either low spore numbers or presporogonic stages of the parasite. Myxospores were rarely found in carcasses of freshly spawned adults but were common in decomposed carcasses of both sexes. The date of collection or age (based indirectly on FL) did not influence detection. The longer prespawn residence time for spring-run Chinook Salmon compared with that for fall-run Chinook Salmon in the Trinity River was associated with higher spore loads. The dye exclusion method for assessing spore viability in fresh smears indicated an inverse relationship in spore integrity and initial spore concentration. A carcass-removal pilot project in Bogus Creek for 6 weeks in the fall of 2008 (907 carcasses removed) and 2009 (1,799 carcasses removed) failed to measurably influence the DNA quantity of C. shasta in targeted waters. Combined with the high numbers of carcasses that contributed myxospores, we therefore deemed that this labor-intensive approach is not a viable management option to reduce the infectivity of C. shasta in Chinook Salmon in the Klamath River.

Received January 23, 2015; accepted September 28, 2015  相似文献   


18.
The freshwater trematode Nanophyetus salmincola has been demonstrated to impair salmonid immune function and resistance to the marine pathogen Vibrio anguillarum, potentially resulting in ocean mortality. We examined whether infection by the parasite N. salmincola similarly increases mortality of juvenile Chinook Salmon Oncorhynchus tshawytscha when they are exposed to the freshwater pathogens Flavobacterium columnare or Aeromonas salmonicida, two bacteria that juvenile salmonids might encounter during their migration to the marine environment. We used a two-part experimental design where juvenile Chinook Salmon were first infected with N. salmincola through cohabitation with infected freshwater snails, Juga spp., and then challenged with either F. columnare or A. salmonicida. Cumulative percent mortality from F. columnare infection was higher in N. salmincola-parasitized fish than in nonparasitized fish. In contrast, cumulative percent mortality from A. salmonicida infection did not differ between N. salmincola-parasitized and nonparasitized groups. No mortalities were observed in the N. salmincola-parasitized-only and control groups from either challenge. Our study demonstrates that a relatively high mean intensity (>200 metacercariae per posterior kidney) of encysted N. salmincola metacercariae can alter the outcomes of bacterial infection in juvenile Chinook Salmon, which might have implications for disease in wild fish populations.

Received February 24, 2015; accepted September 7, 2015  相似文献   


19.
Infectious Ceratomyxa shasta and Parvicapsula minibicornis actinospores were present in Klamath River samples collected in April, May, and June 2005. Juvenile Chinook salmon Oncorhynchus tshawytscha exposed to river water maintained at the ambient Klamath River temperature for 0, 4, 24, 72, and 168 h (7 d) developed asymptomatic infections from both parasites. Elevated water temperature (18 degrees C) in June may have reduced actinospore viability, as both C. shasta and P. minibicornis infection markedly declined in fish exposed for over 72 h. As judged by the prevalence of infection for both parasites, the number of infectious actinospores tended to increase or remain steady through the spring. Ceratomyxa shasta infections were characterized by the presence of a few trophozoites within granulomatous foci in mesentery adipose tissue and were consistently observed outside of the intestine. Similarly, low numbers of P. minibicornis were observed in kidney glomeruli and tubules but were not associated with inflammation. Parvicapsula minibicornis DNA was consistently detected by quantitative real-time polymerase chain reaction in filtered water samples collected each month and from each time posttransfer. These data and the high prevalence of infection observed in the exposed fish indicate that P. minibicornis actinospores were at a relatively high concentration in the river during the spring. In contrast, C. shasta DNA was only detected in half of the water sample sets and its detection did not correspond well to C. shasta infectivity. An approximately threefold increase in river flow from the April to the May water collection was not associated with a decline in either the detection of actinospores (particularly for P. minibicornis) or the prevalence of infection for both parasites. Actinospores of these myxosporean parasites have the potential to infect salmonids for at least 7 d after release from the alternate polychaete host.  相似文献   

20.
Nucleospora salmonis is an intranuclear microsporidian that primarily infects lymphoblast cells and contributes to chronic lymphoblastosis and a leukemia-like condition in a range of salmonid species. The primary goal of this study was to evaluate the prevalence of N. salmonis in out-migrating juvenile hatchery and wild Chinook salmon Oncorhynchus tshawytscha and steelhead O. mykiss from the Snake River in the U.S. Pacific Northwest. To achieve this goal, we first addressed the following concerns about current molecular diagnostic tests for N. salmonis: (1) nonspecific amplification patterns by the published nested polymerase chain reaction (nPCR) test, (2) incomplete validation of the published quantitative PCR (qPCR) test, and (3) whether N. salmonis can be detected reliably from nonlethal samples. Here, we present an optimized nPCR protocol that eliminates nonspecific amplification. During validation of the published qPCR test, our laboratory developed a second qPCR test that targeted a different gene sequence and used different probe chemistry for comparison purposes. We simultaneously evaluated the two different qPCR tests for N. salmonis and foundthat both assays were highly specific, sensitive, and repeatable. The nPCR and qPCR tests had good overall concordance when DNA samples derived from both apparently healthy and clinically diseased hatchery rainbow trout were tested. Finally, we demonstrated that gill snips were a suitable tissue for nonlethal detection of N. salmonis DNA in juvenile salmonids. Monitoring of juvenile salmonid fish in the Snake River over a 3-year period revealed low prevalence of N. salmonis in hatchery and wild Chinook salmon and wild steelhead but significantly higher prevalence in hatchery-derived steelhead. Routine monitoring of N. salmonis is not performed for all hatchery steelhead populations. At present, the possible contribution of this pathogen to delayed mortality of steelhead has not been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号