首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study evaluated the effect of Ovarian Tissue Cryosystem (OTC) on follicular morphology and density, as well as on stromal cell density of vitrified canine ovarian tissue. Canine ovarian fragments collected from adult female dogs in stages of the random oestrous cycle were fixed (FC, fresh control) or vitrified (VIT) with an OTC device. After vitrification and warming, the fragments were fixed for histological analysis. Overall, the mean percentage of normal pre-antral follicles decreased after vitrification procedure (FC: 74.5% ± 1.6% vs. VIT: 52.05% ± 1.5%). Although the rates of normal primordial (71.1% ± 1.8%) and secondary (0.7% ± 0.4%) follicles vitrified showed a reduction (p < .05), vitrification using OTC showed considerable preservation of follicles, when compared to the fresh control (81.1% ± 1.5% and 2.3% ± 0.6%, respectively). The mean follicular density was maintained after vitrification (FC: 199.65 ± 12.8 vs. VIT: 199.68 ± 10.8), whereas the stromal cell density decreased in the VIT group. Based on the results, we recommend the use of OTC for vitrification of canine ovarian tissue.  相似文献   

2.
The aim of this study was to assess a vitrification protocol for asinine ovarian tissue, to preserve preantral follicles using different cryoprotectant solutions, composed of various concentrations (EG 3 M or 6 M) of dimethyl sulfoxide or ethylene glycol isolate, or as a combination (DMSO 3 M + EG 3 M). Ten pairs of ovaries from Brazilian north‐eastern breed jennies were obtained through videolaparoscopy, and cortical fragments were submitted to a solid‐surface vitrification (SSV) using each cryoprotectant solution. The ovarian tissue was evaluated for follicular morphology and viability, DNA integrity (TUNEL technique) and the presence of nucleolar organizing regions in granulosa cells (AgNOR technique). After thawing, the percentage of normal preantral follicles was significantly reduced in the vitrified ovarian tissue fragments compared to the fresh control (p < 0.05). When comparing treatments, the use of DMSO 3 M (81.7 ± 37.5%), EG 3 M (83.7 ± 27.4%) and the combination of both DMSO 3 M + EG 3 M (81.8 ± 46.8%) allowed a greater percentage of follicular survival in contrast to DMSO 6 M (69.8 ± 16.5%) and EG 6 M (72.3 ± 18.0%; p < 0.05). When vitrified using the DMSO + EG combination, a higher percentage (62.5 ± 29.1%) of viable follicles (trypan blue) was observed in relation to the other vitrification treatments (p < 0.05). The TUNEL technique identified that all treatments tested showed DNA fragmentation in the follicular cells, except in the case of the DMSO 3 M + EG 3 M treatment. When evaluating the presence of NORs, no significant differences were observed in the amount of NORs between the fresh and vitrified groups using DMSO 3 M + EG 3 M (p > 0.05). We concluded that the combination DMSO 3 M + EG was more efficient for the vitrification of ovarian tissue taken from Equus asinus, allowing adequate preservation of PAFs morphology, viability, DNA integrity and cell proliferative capacity.  相似文献   

3.
In this study, we analysed the effect on morphology and viability of ovine primordial follicles, when ascorbic acid (AA) was added to vitrification and in vitro culture (IVC) media. For morphological analysis, ovarian tissue was vitrified using DMSO or ethylene glycol (EG), to which AA was added or omitted. After warming, the tissue was fixed for histology or 1-day cultured in the presence or absence of AA. Isolated primordial follicles from ovine ovarian tissue vitrified with DMSO or EG, both supplemented with AA were stained with trypan blue for viability analysis, or 5-day cultured with or without AA followed by a viability analysis. In this study, we report on the successful vitrification protocol developed for ovine ovarian tissue using EG. Vitrification using DMSO reduced the percentage of morphological normal primordial follicles, whereas addition of AA to the vitrification and culture media did enhance these results (p < 0.05). However, vitrification in a DMSO + AA medium followed by 5-day IVC resulted in a significant decrease in the follicular viability, independently of the presence of AA in the IVC medium.  相似文献   

4.
In contributing to the conservation of wild rodents, the aim of this study was to evaluate the use of distinct cryoprotectants, separately or in combination, for solid surface vitrification (SSV) of red-rumped agouti ovarian tissue. Ovarian cortex from nine females was recovered and fragmented. Fresh fragments (control) were used to analyse the pre-antral follicle (PF) morphology using a histologic procedure, viability using the Trypan blue test, cell proliferation by counting the argyrophilic nucleolar organizing regions (Ag-NORs technique) and DNA integrity using the TUNEL assay. The remaining fragments were vitrified using SSV method with 3 M or 6 M ethylene glycol (EG) or dimethyl sulfoxide (DMSO), or in combination (3 M EG/3 M DMSO), and further evaluated as reported for the fresh samples. All cryoprotectants were effective at preserving PFs morphology compared to the control group (80.7 ± 5.21%), except 6 M EG and 3 M DMSO that provoked a significant (p < .05) decrease on the values of morphologically normal primary (60.0 ± 19.0%) and primordial (44 ± 4.5%) follicles, respectively. Regarding viability, all cryoprotectants provided values similar to that verified for the control group (79.0%), but a significant decrease (p < .05) was observed with EG/DMSO combination (59%). Using Ag-NORs technique, the highest (p < .05) cell proliferative capacity was detected when using EG at each tested concentration. The TUNEL proved the preservation of DNA integrity regardless of the cryoprotectant. In summary, we suggest the use of 3 M EG for the solid surface vitrification of red-rumped agouti ovarian tissue.  相似文献   

5.
Cryopreservation of ovarian cortex has important implications in the preservation of fertility and biodiversity in animal species. Slow freezing of cat ovarian tissue resulted in the preservation of follicular morphology and in the follicular development after xenografting. Vitrification has been recently applied to ovarian tissues of different species, but no information is available on the effect of this method on feline ovarian cortex. Moreover, meiotic competence of fully grown oocytes isolated from cryopreserved tissue has not been reported. The aim of this study was to evaluate the effect of vitrification of feline ovarian cortex on follicular morphology and oocyte integrity, as well as meiotic competence. A total of 352 fragments (1.5-2 mm(3) ) were obtained from ovarian cortical tissues: 176 were vitrified and 176 were used fresh as control. Histological evaluation of fresh and vitrified fragments showed intact follicles after cryopreservation procedures with no statistically significant destructive effect from primordial to antral follicles. After IVM, oocytes collected from vitrified ovarian fragment showed a higher proportion of gametes arrested at germinal vesicle (GV) stage compared to those isolated from fresh control tissue (33.8% vs 2.9%; p < 0.001). However, oocytes isolated from vitrified tissues were able to resume meiosis, albeit at lower rate than those collected from fresh tissues (39.8% vs 85.9%; p < 0.00001). Vitrification induced changes in the organization of cytoskeletal elements (actin microfilaments and microtubules) of oocytes, but significantly only for actin network (p < 0.001). Finally, chromatin configuration within the GV was not affected by the cryopreservation procedure. Our study demonstrated that vitrification preserves the integrity of ovarian follicles and that oocytes retrieved from cryopreserved tissue maintain the capability of resuming meiosis. To our knowledge, this has not previously been reported in the cat.  相似文献   

6.
This study was performed to evaluate the structural preservation of antral follicles after bovine ovarian tissue vitrification using histological analysis. Ovaries (n = 30) of slaughtered cows were cut into small fragments using a scalpel blade, and the ovarian tissues were randomly assigned to vitrification using 15% dimethyl sulphoxide (DMSO) and 15% ethylene glycol (EG) and fresh tissues (control) groups. For histological evaluations, fresh and post‐thawing ovarian tissues were immediately fixed, serially sectioned into 5‐μm sections and stained with haematoxylin and eosin (H&E). Nine serial sections per fragment were subjected for morphological assessment. The diameter of the antral follicles was determined and classified into four groups: 1 (≤1 mm), 2 (>1–2 mm), 3 (>2–3 mm) and 4 (>3–4 mm). Then, follicular morphology was evaluated in relation to atresia and categorized into seven grades: Grade A (healthy follicle); Grades B, C and D (early atresia); Grades E and F (moderate atresia); and Grade G (advanced atresia). The results revealed that small diameters of antral follicles (1 and 2 mm) were more susceptible for cryoinjury. The normal follicular morphology (Grade A) was not affected by vitrification throughout follicle diameters. Nevertheless, some damage features were monitored after vitrification. In conclusion, the morphological structure of bovine antral follicles could be successfully preserved by ovarian tissue vitrification.  相似文献   

7.
The aim of this study was to evaluate the effects of the two types of media, namely minimum essential medium (αMEM) and Ham'sF10, supplemented with foetal bovine serum (FBS) or bovine serum albumin (BSA) in vitrification/warming solution on the quality and viability of sheep ovarian follicles. Vitrification method was applied for cryopreservation of sheep ovarian cortex using Ham'sF10 and αMEM supplemented with either BSA or FBS. There were five groups: Fresh, Ham'sF10+ BSA, Ham'sF10+ FBS, αMEM + BSA and αMEM + FBS. Samples were cultured for two weeks after warming. Viability and morphology of follicles and DNA fragmentation in follicles and in tissue stroma cells were analysed before vitrification/warming and following one and two weeks of culture. The Ham'sF10+ FBS and Ham'sF10+ BSA groups showed a significant decrease in follicular viability after one week of culture (p < .05 vs. Fresh). Following two weeks of culture, all groups revealed a considerable fall in the number of viable follicles (p < .05 vs. Fresh). There was an increase in DNA fragmentation of connective tissue cells but not in the follicles (p < .05). Our results showed the better application of αMEM supplemented with BSA as a vitrification solution in improvement of cryopreservation effects and maintenance of follicular survival.  相似文献   

8.
The present study evaluated the effect of supplementation of retinol in the vitrification solution on the viability, apoptosis and development-related gene expression in vitrified buffalo preantral follicles. Preantral follicles isolated from cortical slices of ovaries were randomly assigned into three groups: Group1—Control fresh preantral follicles; Group 2—Vitrification treatment (Vitrification solution 1 (VS1) –TCM-199 + 25 mM HEPES + Foetal bovine serum (FBS) 10%, Ethylene glycol (EG): 10%, Dimethyl sulphoxide (DMSO): 10%, Sucrose-0.3 M for 4 min; VS2- TCM-199 + 25 mM HEPES + FBS10%, EG:25%, DMSO: 25%, Sucrose:0.3 M for 45 s); Group3—vitrification treatment +5 μM of Retinol. Preantral follicles were placed in corresponding vitrification medium and plunged into liquid nitrogen (−196°C). After a week, the follicles were thawed and analysed for follicular viability and gene expression. There was no significant difference in the viability rates among the Group 1(Fresh preantral follicles) (91.46 ± 2.39%), Group 2 (89.59 ± 2.46%) and Group 3 (87.19 ± 4.05%). There was a significantly (p < .05) higher mRNA expression of BCL2L1, GDF-9 and BMP-15 in the vitrification + retinol group compared with the control group. There was a significantly (p < .05) higher expression of Caspase-3 and Annexin-5 in the vitrification group and Vitrification + retinol group compared with control group of follicles. It is concluded that the supplementation of 5 μM of Retinol in Vitrification solution was an efficient vitrification procedure for the vitrification of buffalo preantral follicles.  相似文献   

9.
The aim of this study was to verify whether the addition of catalase (20 IU/mL) at different steps of goat ovarian tissue vitrification affects ROS levels, follicular morphology and viability, stromal cell density, apoptosis and the expression of proteins related to DNA–damage signaling (γH2AX) and repair (53BP1). Goat ovarian tissues were analyzed fresh (control) or after vitrification: without catalase (VS–/WS–), with catalase in vitrification solutions (VS+/WS–), with catalase in washing solutions (VS–/WS+) or with catalase in both solutions (VS+/WS+). The vitrification without catalase had higher ROS levels than the control. The catalase, regardless the step of addition, maintained ROS levels similar to the control. There were no difference between treatments regarding follicular viability, stromal cell density and detection of γH2AX and 53BP1. There was no difference in follicular morphology and DNA fragmentation between groups vitrified. In conclusion, catalase addition to vitrification solutions prevents ROS formation in cryopreserved goat ovarian tissues.  相似文献   

10.
The objective of this study was to determine whether preantral follicles cultured in vitro for 7 days within ovine ovarian cortical strips could be isolated at the secondary follicles (SF) and grown until antral stage during an additional 6 days period of in vitro culture in the presence of aqueous extract of Justicia insularis. Fresh ovarian fragments from 16 adult sheep were fixed for histological analysis (Control 1) or in vitro cultured individually in α‐MEM+ supplemented with 0.3 mg/ml J. insularis (Step 1) for 7 days. Part of the fragments then were fixed for histological analysis (in vitro culture group). Remaining fragments were exposed stepwise to increasing trehalose concentrations before immediate isolation of SF and viability assessment (Control 2) or after 6 days of culture in α‐MEM++ supplemented with 0.3 mg/ml J. insularis (Step 2). In Step 1, percentage of follicular activation was 80%. In Step 2, a significant increase (p < 0.05) in follicular diameter and antrum formation within 6 days in vitro culture of isolated follicles was achieved. The total antioxidant capacity from both steps significantly increase (p < 0.05) from day 2 to day 6. Confocal analysis of oocytes showed 57.14% oocytes with homogeneous distribution and 42.86% with peri‐cortical distribution. In conclusion, SF can be successfully isolated from sheep ovarian cortex after 7 days of culture and are capable of surviving and forming an antral cavity if cultured in vitro for an additional 6 days in the presence of 0.3 mg/ml J. insularis.  相似文献   

11.
This study aimed at assessing the effect of different concentrations of the growth factor similar to insulin 1 (IGF‐1) in the development, survival and ultrastructure of the bovine preantral follicles cultured in situ. Fragments of bovine ovarian cortical tissue were cultured during 1 and 7 days in 1 ml of α‐MEM+, supplemented with different concentrations of human recombinant IGF‐1 (0, 30, 70 and 100 ng/ml), in an incubator at 37°C and 5% of CO2 in 24‐well plates with total replacement of the medium every 2 days. Non‐cultured ovarian fragments (control) and ovarian fragments cultured during 1 and 7 days were processed for classic histology, mechanical isolation and electron transmission microscopy (ETM). Parameters such as normality, viability, activation, development, diameter and ultrastructure were evaluated. All statistical analyses were carried out using sas Version 9.2. The results showed that the percentage of follicles morphologically normal in the IGF‐1 30 ng/ml treatment was similar to the fresh control (p > 0.05) both on the day 1 and on the day 7 of in vitro culture. In the viability analysis, the cultured treatments maintained the percentage of viable follicles during the entire culture period (p > 0.05). After 7 days of culture, the IGF‐1 30 ng/ml treatment showed higher percentages of developing follicles (48.33%) than those of the fresh control (22.22%) and the cultured treatments (p < 0.05). Also, after 7 days of culture, IGF‐1 30 ng/ml presented a higher follicular diameter when compared to the control and other concentrations of IGF‐1 tested. Ultrastructurally, the non‐cultured control and IGF‐1 30 ng/ml, after 7 days of culture, showed conserved oocytes, nuclei and organelles. Hence, it is concluded that IGF‐1 30 ng/ml was the most efficient concentration for the development of bovine preantral follicles cultured in vitro.  相似文献   

12.
The aim of this study was to evaluate the caprine preantral follicles enclosed on vitrified/warmed ovarian cortex grafted to nude BALB/mice during 1 month. The ovarian cortex from goats was fragmented (3 × 3 × 0.5 mm) and divided into four groups: fresh control, vitrified control, fresh transplant and vitrified transplant. Follicular morphology, development and density, fibrosis as well as apoptosis, and tissue revascularization were evaluated. It was also observed a significant decrease in morphologically normal preantral (primordial, transition, primary and secondary) follicles in both vitrified control and vitrified transplant treatments when compared with both fresh control and fresh transplant. However, fresh control and fresh transplant exhibited a similar percentage of developing follicles. Additionally, Vitrified control showed a significant increase in developing follicles in comparison with both fresh control and fresh transplant. Follicular density significantly decreased in all treatments in comparison with fresh control. We observed high fibrosis in both fresh transplant and vitrified transplant. The mRNA expression of caspase 3 was lower in both fresh transplant and vitrified transplant in comparison with vitrified control. In conclusion, xenotransplantation is an excellent strategy to maintain normal preantral follicle morphology after vitrification/warming of goat ovarian tissue. Yet, in order to ensure the survival and development of these follicles, it is essential to improve the revascularization of the graft.  相似文献   

13.
Oxygen concentration has been shown to influence in vitro viability and growth of ovarian follicles. The present study examined the effect of oxygen tension on in vitro development of dog follicles enclosed within the ovarian cortex. Ovaries were obtained from domestic dogs (age, 8 months to 2 years), and cortical fragments were recovered. The cortices were then incubated on 1.5% (w/v) agarose gel blocks within a 4‐well culture plate containing Eagle Minimum Essential Medium (MEM). Ovarian follicles within the tissues were processed for histology and assessed for follicle density, viability and diameter immediately after collection (Control) or after 2 or 5 days of in vitro incubation. Apoptotic cells were assessed using TUNEL assay. Comparisons of follicular viability and diameter were performed using analysis of variance followed by Tukey's test (p < 0.05). Comparisons of follicle density and apoptosis among treatments were conducted using Non‐parametric Kruskal–Wallis test followed by Friedman's test (p < 0.05). No difference (p > 0.05) in follicle density was observed among groups at Day 2 of in vitro culture. However, the density of follicles within cortices cultured in 20% oxygen for 5 days significantly reduced compared to the Control and those incubated in 5% concentration. The viability of cultured follicles in all treatments decreased (p < 0.05) compared to the Control after 2 days incubation, and this value further reduced (p < 0.05) in 20% oxygen group at Day 5. There were no differences in the percentages of apoptotic follicles between the two treatment groups (p > 0.05). Nevertheless, after 5 days of culture, the percentage of TUNEL‐positive follicles increased significantly (p < 0.05) in cortices incubated in 20% oxygen environment. In conclusion, our findings demonstrated that 5% oxygen level was superior to 20% concentration in sustaining in vitro viability of dog follicles enclosed within the ovarian cortex.  相似文献   

14.
The growth hormone (GH) and growth insulin‐like factor‐1 (IGF‐1) act directly upon the regulation and growth in the different phases of preantral follicles. Thus, it is necessary to define their sequentiality until the in vitro preovulatory development. Therefore, the study aimed to assess the effects of a sequential medium containing GH and/or IGF‐1 in the long‐duration in vitro culture of preantral ovarian follicles. Ovarian fragments were cultivated: first half (days 1–7), second half (days 7–14) or during 14 culture days. Treatments were identified as: αMEM+; GH → IGF‐1; IGF‐1 → GH and GH + IGF‐1. The culture was designed in 24‐well plates, in an incubator at 37°C and 5% CO2. The parameters of normality, viability, follicles (primordial/in developing) and follicle diameter were evaluated. In addition, the ultrastructure was confirmed with electron transmission microscopy. The results showed that the culture treated with GH → IGF‐1 kept the follicular normality and the viability until the 14th day of culture and increased both in the follicular development until 7th day and in the follicular diameter until 14th day, when compared to the control. The treatments IGF‐1 → GH and GH + IGF‐1 were not effective in the developing and follicular diameter after 7 days of culture, and also reduced the percentage of viability. It is concluded that the bovine preantral follicles cultured in the sequential medium treated with GH → IGF‐1 improved the follicular development until the first half of the culture and kept these parameters with normality, viability and ultrastructure until the second half of the in vitro culture.  相似文献   

15.
Nowadays, the efficiency of buffalo oocytes cryopreservation is still low. The purpose of this study was to evaluate effects of two combinations of cryoprotectant agents (CPAs) and two vitrification devices for vitrification of swamp buffalo oocytes on their survival after vitrification warming, and subsequent developmental ability after in vitro fertilization. In vitro matured (IVM) oocytes were vitrified by either Cryotop (CT) or solid surface vitrification (SSV) interacting with vitrification solution A (VA) or B (VB). In the VA or VB solution exposed test, the oocytes showed similar survival rates, but decreased blastocyst rates after in vitro fertilization compared with that of untreated oocytes. After vitrification, the CT method combined with VA solution yielded a higher survival rate (91.3 ± 5.84%) of vitrified oocytes than that combined with VB solution (69.8 ± 4.19%–75.8 ± 4.55%); however, all the vitrification treatments showed lower blastocyst rates (1.1 ± 0.07%–5.2 ± 0.24%) compared with that of untreated oocytes (18.0 ± 1.09%). Our results indicated that combined vitrification treatments in this study did not improve the decreased ability of vitrified oocytes developing to the blastocyst stage.  相似文献   

16.
The aim of the present study was to compare the efficiency of the solid surface (SSV), cryotop (CT) vitrification methods and cytochalasin B (CB) pretreatment for cryopreservation of immature buffalo oocytes. Cumulus‐oocyte complexes (COCs) were placed for 1 min in TCM199 containing 10% dimethylsulfoxide (DMSO), 10% ethylene glycol (EG), and 20% fetal bovine serum, and then transferred for 30 s to base medium containing 20% DMSO, 20% EG and 0.5 mol/L sucrose. CB pretreated ((+)CB) or non‐pretreated ((?)CB) COCs were vitrified either by SSV or CT. Surviving vitrified COCs were selected for in vitro maturation (IVM) and in vitro fertilization (IVF). The rate of viable oocytes after vitrification in CT groups (82%) was significantly lower (P < 0.05) than that in a fresh control group (100%), but significantly higher (P < 0.05) than those in SSV groups (71–72%). Among vitrified groups, the highest maturation rate was obtained in the CT (?)CB group (32%). After IVF, the cleavage and blastocyst formation rates were similar among vitrified groups but significantly lower than those of the control group. In conclusion, a higher survival rate of oocytes after vitrification and IVM was obtained in the CT group compared with that in the SSV group, indicating the superiority of the CT method. Pretreatment with CB did not increase the viability, maturation or embryo development of vitrified oocytes.  相似文献   

17.
The goal of this study was to determine the distribution of pre‐antral follicles in the ovarian parenchyma of mares. For Experiment 1, each ovary was cut longitudinally at the greater curvature, performing two hemiovaries. After that, six fragments from each hemiovary were obtained, resulting in 12 fragments, which were divided into the innermost region of the parenchyma, the middle region and the outermost region. All the three obtained sections were cut transversally to obtain two fragments from each one. For Experiment 2, each ovary also submitted to a longitudinal cut on the greater curvature, forming two hemiovaries. Each hemiovary was sectioned into four symmetrical fragments, resulting in eight fragments per ovary. The fragments were related as being near to or far from the ovulatory fossa. The fragments of both experiments were immediately fixed in Carnoy for 12 hr and kept in 70% ethanol for 24 hr. Follicles were classified according to the stages of development and for morphological integrity according to oocyte morphology and granulosa cells. After the histological assessment, a total of 1,130 follicles were visualized from Experiment 1, being 1,054 (93.3%) primordial follicles and 76 (4.7%) follicles in development. The innermost region had the highest percentage of pre‐antral follicles compared to the other regions (p < .05). The middle and outermost regions showed higher percentages of intact primordial and developing follicles than the innermost region (p < .05). Considering Experiment 2, 938 follicles were found, being 894 (95.3%) primordial and 44 (4.7%) follicles in development. The region near the ovulatory fossa presented higher (58.7%; 551 of 938) follicular concentration compared to the region far from the ovulatory fossa (41.3%; 387 of 938; p < .05). As a conclusion, distribution of pre‐antral follicles in the equine ovary has a specific pattern through the parenchyma. Also, the follicular integrity differed in the studied ovarian areas.  相似文献   

18.
The aim of the present study was to investigate the effects of fibroblast growth factor-10 (FGF-10) on the survival, activation (transition from primordial to primary follicles), and growth of goat preantral follicles cultured in vitro. Pieces of ovarian cortex were cultured for 1 and 7 d in the absence or presence of FGF-10 (0, 1, 10, 50, 100, and 200 ng/mL). Noncultured and cultured tissues were processed and analyzed by histology, transmission electron microscopy, and viability testing. Results showed that after 7 d, a greater percentage (79.9%) of morphologically normal follicles (containing an oocyte with regular shape and uniform cytoplasm, and organized layers of granulosa cells without a pyknotic nucleus) was observed when cultured with 50 ng/mL of FGF-10 when compared with other concentrations of FGF-10 (0 ng/mL, 67.3%; 1 ng/mL, 68.2%; 10 ng/mL, 63.3%; 100 ng/mL, 64.4%; 200 ng/mL, 52.7%). Ultrastructural analyses and viability testing using fluorescent markers confirmed the follicular integrity of FGF-10 (50 ng/mL)-treated fragments after 7 d of culture. After 7 d, all FGF-10 concentrations reduced the percentage of primordial follicles and increased the percentage of developing follicles. In the presence of 50 ng/mL of FGF-10, follicles increased in diameter after 7 d of culture when compared with other concentrations tested. In conclusion, this study demonstrates that FGF-10 maintains the morphological integrity of goat preantral follicles and stimulates the growth of activated follicles in culture. The culture conditions identified here contribute to the understanding of the factors involved in goat early follicular development.  相似文献   

19.
The aim was to verify the effect of follicle‐stimulating hormone (FSH) supplementation to α‐MEM+ or TCM199+ media on the in vitro development of ovarian preantral follicles (PFs) derived from collared peccaries. Ovaries (n = 5 pairs) were collected and divided into fragments destined to control group (non‐cultured) or treatments that were cultured for 7 days. The PFs morphology, growth and activation were evaluated by classical histology. The immunohistochemistry markers Ag‐NOR and PCNA were used for nuclear proliferation analysis, and the picrosirius red labelling was used for ovarian extracellular matrix (ECM) evaluation. After 7‐day culture, only the TCM199+ treatment maintained the proportion of intact PFs similar to day 1 (63.2%), but no differences were found among treatments (p > .05). In addition, a significant increase in the growing follicles proportion was verified for all the treatments, indicating follicular activation (p > .05). By the Ag‐NOR analysis, only the TCM199+/FSH maintained the nuclear proliferation similar to the first day (p > .05). The picrosirius red staining revealed that the ECM remained intact in all the treatments (p > .05). We suggest the use of TCM199+ medium supplemented of FSH for the in vitro development of peccaries PFs under 7‐day culturing conditions.  相似文献   

20.
The objective of this study was to investigate the effects of beta‐mercaptoethanol (β‐ME) on post‐thaw embryo developmental competence and implantation rate of mouse pronuclear (PN) embryos that were cryopreserved after slow freezing, solid surface vitrification (SSV) or open‐pulled straw (OPS) vitrification methods. Mouse PN embryos were cryopreserved by using slow freezing, SSV and OPS methods. After cryopreservation, freeze–thawed PN embryos were cultured up to blastocyst stage in a defined medium supplemented without or with 50 μm β‐ME. The blastocyst formation rate of embryos that were cryopreserved by slow freezing method (40.0%) or vitrified by OPS method (18.3%) were lower than those vitrified by SSV method (55.6%) and fresh embryos (61.9%) in the absence of 50 β‐ME in the culture media (p < 0.05). The blastocyst formation rate of embryos that were cryopreserved by slow freezing method (53.1%) or by OPS method (41.9%) were lower than those vitrified by SSV method (79.5%) and that of fresh (85.7%) in the presence of β‐ME in the culture media (p < 0.05). The embryos transfer results revealed that the implantation rate of blastocyst derived from mouse PN embryos vitrified by SSV method (31.9% vs 51.2%) was similar to that of the control (39.0% vs 52.5%), but higher than those cryopreserved by slow freezing (28.2% vs 52.0%) and by OPS method (0.0% vs 51.2%) (p < 0.05). In conclusion, supplementation of β‐ME in an in vitro culture medium was shown to increase survival of embryo development and implantation rate of frozen–thawed mouse PN embryos after different cryopreservation protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号