首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to explore the possibility of producing wild buffalo embryos by interspecies somatic cell nuclear transfer (iSCNT) through handmade cloning using wild buffalo somatic cells and domestic buffalo (Bubalus bubalis) oocytes. Somatic cells derived from the ear skin of wild buffalo were found to express vimentin but not keratin and cytokeratin‐18, indicating that they were of fibroblast origin. The population doubling time of skin fibroblasts from wild buffalo was significantly (p < 0.05) higher, and the cell proliferation rate was significantly (p < 0.05) lower compared with that of skin fibroblasts from domestic buffalo. Neither the cleavage (92.6 ± 2.0% vs 92.8 ± 2.0%) nor the blastocyst rate (42.4 ± 2.4% vs 38.7 ± 2.8%) was significantly different between the intraspecies cloned embryos produced using skin fibroblasts from domestic buffalo and interspecies cloned embryos produced using skin fibroblasts from wild buffalo. However, the total cell number (TCN) was significantly (p < 0.05) lower (192.0 ± 25.6 vs 345.7 ± 42.2), and the apoptotic index was significantly (p < 0.05) higher (15.1 ± 3.1 vs 8.0 ± 1.4) for interspecies than that for intraspecies cloned embryos. Following vitrification in open‐pulled straws (OPS) and warming, although the cryosurvival rate of both types of cloned embryos, as indicated by their re‐expansion rate, was not significantly different (34.8 ± 1.5% vs 47.8 ± 7.8), the apoptotic index was significantly (p < 0.05) higher for vitrified–warmed interspecies than that for corresponding intraspecies cloned embryos (48.9 ± 7.2 vs 23.9 ± 2.8). The global level of H3K18ac was significantly (p < 0.05) lower in interspecies cloned embryos than that in intraspecies cloned embryos. The expression level of HDAC1, DNMT3a and CASPASE3 was significantly (p < 0.05) higher, that of P53 was significantly (p < 0.05) lower in interspecies than in intraspecies embryos, whereas that of DNMT1 was similar between the two types of embryos. In conclusion, these results demonstrate that wild buffalo embryos can be produced by iSCNT.  相似文献   

2.
Incomplete or aberrant reprogramming of nuclear genome is one of the major problems in somatic cell nuclear transfer. In this study, we studied the effect of histone deacetylase inhibitor m‐carboxycinnamic acid bishydroxamide (CBHA) on in vitro development of buffalo embryos produced by Hand‐made cloning. Cloned embryos were treated with CBHA (0, 5, 10, 20 or 50 μM) for 10 hr from the start of reconstruction till activation. At 10 μM, but not at other concentrations examined, CBHA increased (p < .05) the blastocyst rate (63.77 ± 3.97% vs 48.63 ± 3.55%) and reduced (p < .05) the apoptotic index of the cloned blastocysts (8.91 ± 1.94 vs 4.36 ± 1.08) compared to untreated controls, to levels similar to those in IVF blastocysts (4.78 ± 0.74). CBHA treatment, at all the concentrations examined, increased (p < .05) the global level of H3K9ac in cloned blastocysts than in untreated controls to that observed in IVF blastocysts. Treatment with CBHA (10 μM) decreased (p < .05) the global level of H3K27me3 in cloned blastocysts than in untreated controls but it was still higher (p < .05) than in IVF blastocysts. CBHA (10 μM) treatment increased (p < .05) the relative expression level of pluripotency‐related genes OCT‐4 and NANOG, and anti‐apoptotic gene BCL‐XL, and decreased (p < .05) that of pro‐apoptotic gene BAX than in untreated controls but did not affect the relative expression level of apoptosis‐related genes p53 and CASPASE3 and epigenetics‐related genes DNMT1, DNMT3a and HDAC1. These results suggest that treatment of cloned embryos with 10 μM CBHA improves the blastocyst rate, reduces the level of apoptosis and alters the epigenetic status and gene expression pattern.  相似文献   

3.
Conventional somatic cell nuclear transfer (SCNT) technique of in vitro production of cloned embryos involves use of costly and complicated micromanipulators. Handmade cloning (HMC) technique has been applied as efficient and cost‐effective alternative in many livestock species. The aim of the present study was to compare the efficiency of in vitro production and in vitro development of cloned sheep embryos by the two techniques. Cloned embryos were produced by conventional SCNT using micromanipulator apparatus and by HMC technique. Enucleation efficiency and efficiency of fusion with somatic cell (nucleus donor) were compared. Cleavage percentage was observed on day 2 of in vitro culture (IVC), and morula and blastocyst percentages were calculated on day 7 of IVC. Higher enucleation efficiency (96.98 ± 1.01 vs. 93.62 ± 1.03; p > .05) as well as fusion efficiency was obtained with HMC technique than with conventional SCNT (96.26 ± 1.34 vs. 92.63 ± 0.70, p < .05); 181 cloned sheep embryos were produced in vitro by conventional SCNT and 92 by HMC. Cleavage percentage observed on day 2 of in vitro culture was higher in HMC than SCNT (66.92 ± 3.72 vs. 55.97 ± 2.5, respectively, p < .05). Morula percentage obtained was higher in SCNT than HMC (44.12 ± 2.93 vs. 30.43 ± 6.79, respectively, p < .05), whereas blastocyst percentage obtained by HMC was higher (12.46 ± 4.96) than SCNT (5.31 ± 2.25; p > .05). It was inferred that HMC technique provides a cost‐effective and efficient method of in vitro production of cloned sheep embryos with a comparatively simpler technique with a possibility of automation. Efficiency of cloned embryo production could be improved further by propagating and standardizing this technique.  相似文献   

4.
This study was carried out to compare the post‐thaw cryosurvival rate and the level of apoptosis in vitro produced zona‐free cloned buffalo blastocysts subjected to slow freezing or vitrification in open‐pulled straws (OPS). Zona‐free cloned embryos produced by handmade cloning were divided into two groups and were cryopreserved either by slow freezing or by vitrification in OPS. Cryosurvival of blastocysts was determined by their re‐expansion rate following post‐thaw culture for 22–24 h. The post‐thaw re‐expansion rate was significantly (p < 0.05) higher following vitrification in OPS (71.2 ± 2.3%) compared with that after slow freezing (41.6 ± 4.8%). For examining embryo quality, the level of apoptosis in day 8 frozen‐thawed blastocysts was determined by TUNEL staining. The total cell number was not significantly different among the control non‐cryopreserved cloned embryos (422.6 ± 67.8) and those cryopreserved by slow freezing (376.4 ± 29.3) or vitrification in OPS (422.8 ± 36.2). However, the apoptotic index, which was similar for embryos subjected to slow freezing (14.8 ± 2.0) or OPS vitrification (13.3 ± 1.8), was significantly (p < 0.05) higher than that for the control non‐cryopreserved cloned embryos (3.4 ± 0.6). In conclusion, the results of this study demonstrate that vitrification in OPS is better than slow freezing for the cryopreservation of zona‐free cloned buffalo blastocysts because it offers a much higher cryosurvival rate.  相似文献   

5.
Inhibition of ERK/MAPK pathway has been shown to decrease DNA methylation via down‐regulation of DNA methyltransferases (DNMTs) in several studies suggesting that this pathway plays an important role in regulation of DNA methylation. We examined the relative expression level of seven important genes related to ERK/MAPK pathway and DNMTs (DNMT1, DNMT3a and DNMT3b) by quantitative real‐time PCR in buffalo blastocysts produced by Hand‐made cloning and compared it with that in blastocyst‐stage embryos produced by in vitro fertilization (IVF). The expression level of six of seven genes related to ERK/MAPK pathway examined i.e., p21RAS, RAF1, AKT1, ERK2, PIK3R2 and c‐Myc was significantly higher (p < 0.05) in cloned than in IVF embryos. However, the expression level of FOS was lower (p < 0.005) in cloned than in IVF embryos. The relative expression level of DNMT3a and DNMT3b but not that of DNMT1 was significantly higher (p < 0.05) in cloned than in IVF embryos. These results indicate that the cloned embryos exhibit an abnormal expression of several important genes related to ERK/MAPK pathway and DNMTs. Although a direct link between ERK/MAPK pathway and DNMTs was not examined in the present study, it can be speculated that ERK/MAPK pathway may have a role in regulating the expression of DNMTs in embryos, as also observed in other tissues.  相似文献   

6.
This study evaluated the effects of co‐culture of immature cumulus oocyte complexes (COCs) with denuded immature oocytes (DO) during in vitro maturation on the developmental competence and quality of cloned bovine embryos. We demonstrated that developmental competence, judged by the blastocyst formation rate, was significantly higher in the co‐cultured somatic cell nuclear transfer (SCNT+DO, 37.1 ± 1.1%) group than that in the non‐co‐cultured somatic cell nuclear transfer (SCNT‐DO, 25.1 ± 0.9%) group and was very similar to that in the control IVF (IVF, 38.8 ± 2.8%) group. Moreover, the total cell number per blastocyst in the SCNT+DO group (101.7 ± 6.2) was higher than that in the SCNT‐DO group (81.7 ± 4.3), while still less than that in the IVF group (133.3 ± 6.0). Furthermore, our data showed that mRNA levels of the methylation‐related genes DNMT1 and DNMT3a in the SCNT+DO group were similar to that in the IVF group, while they were significantly higher in the SCNT‐DO group. Similarly, while the mRNA levels of the deacetylation‐related genes HDAC2 and HDAC3 were significantly higher in the SCNT‐DO group, they were comparable between the IVF and SCNT+DO groups. However, the mRNA levels of HDAC1 and DNMT3B were significantly higher in the SCNT+DO group than in the other groups. In conclusion, the present study demonstrated that co‐culture of COCs with DO improves the in vitro developmental competence and quality of cloned embryos, as evidenced by increased total cell number.  相似文献   

7.
For investigating the effects of physiologically relevant heat shock, buffalo oocytes/embryos were cultured at 38.5°C (control) or were exposed to 39.5°C (Group II) or 40.5°C (Group III) for 2 h once every day throughout in vitro maturation (IVM), fertilization (IVF) and culture (IVC). Percentage of oocytes that developed to 8‐cell, 16‐cell or blastocyst stage was lower (p < 0.05) and the number of apoptotic nuclei was higher (p < 0.05) for Group III > Group II > controls. At both 8–16‐cell and blastocyst stages, relative mRNA abundance of stress‐related genes HSP 70.1 and HSP 70.2 and pro‐apoptotic genes CASPASE‐3, BID and BAX was higher (p < 0.05) in Groups III and II than that in controls with the exception of stress‐related gene HSF1. Expression level of anti‐apoptotic genes BCL‐XL and MCL‐1 was also higher (p < 0.05) in Groups III and II than that in controls at both 8–16‐cell and blastocyst stages. Among the genes related to embryonic development, at 8–16‐cell stage, the expression level of GDF9 was higher (p < 0.05) in Group III than that in controls, whereas that of GLUT1, ZAR1 and BMP15 was not significantly different among the three groups. At the blastocyst stage, relative mRNA abundance of GLUT1 and GDF9 was higher (p < 0.05) in Group II than that in controls, whereas that of ZAR‐1 and BMP15 was not affected. The results of this study demonstrate that exposure of buffalo oocytes and embryos to elevated temperatures for duration of time that is physiologically relevant severely compromises their developmental competence, increases apoptosis and affects stress‐, apoptosis‐ and development‐related genes.  相似文献   

8.
9.
The aim of this study was to assess the effects of different antioxidants on the levels of reactive oxygen species (ROS) and glutathione (GSH) in oocytes during in vitro maturation (IVM), as well as on the production of embryos. Oocyte of slaughterhouse‐derived cattle ovaries were placed in IVM with different antioxidants: quercetin (2 μM), cysteamine (100 μM), carnitine (0.5 mg/ml), vitamin C (50 μg/ml) or resveratrol (2 μM). Oocytes matured without any antioxidant supplementation were used as control. The oocytes were assessed for maturation rates and for ROS and GSH levels by fluorescence staining in 2′,7′‐dichlorodihydrofluorescein diacetate and Cell Tracker Blue, respectively. Embryo production was assessed in terms of cleavage, blastocysts and hatching rates and embryo cell numbers. The results expressed in arbitrary fluorescence units showed ROS reduction (< .05) in the groups with quercetin (27.5 ± 3.4), vitamin C (27.1 ± 3.0) or resveratrol (28.1 ± 4.7), in comparison with those with cysteamine (34.9 ± 4.5), carnitine (34.6 ± 3.8) or to the control group (36.5 ± 5.2). GSH levels increased (< .05) in cysteamine (63.5 ± 5.5) or carnitine (60.8 ± 4.4) groups in comparison with quercetin (52.7 ± 5.1), vitamin C (53.0 ± 3.8), resveratrol (53.1 ± 4.4) or to the control (49.6 ± 4.5). Nuclear maturation cleavage and hatched blastocysts rates did not differ (> .05) between groups. However, blastocyst rates after in vitro fertilization in quercetin (53.5 ± 3.9%), vitamin C (52.1 ± 3.1%) resveratrol (54.2 ± 4.0%), cysteamine (52.4 ± 2.7%) or carnitine (54.2 ± 3.1%) groups were higher (< .05) than in the control (47.2 ± 2.7%). Total cell numbers in embryos from the vitamin C, resveratrol, cysteamine or carnitine groups were higher than in quercetin and control groups, which were similar to each other. The results suggest that using antioxidants during IVM may reduce oxidative stress either by decreasing ROS levels directly or by increasing GSH levels in oocytes, depending on the type of antioxidant used. Overall, oxidative stress control during IVM with the antioxidants examined here improved blastocyst development with similar efficacy.  相似文献   

10.
The aim of this study was to examine whether a morphological approach is efficient for selecting high‐quality porcine embryos produced by in vitro fertilization (IVF) under high polyspermy conditions. Frozen‐thawed Meishan epididymal spermatozoa showing moderate and high polyspermy were subjected to IVF (1 × 105 sperms/ml). Under conditions of moderate polyspermy, 4‐cell embryos selected at 48 hr after IVF (single selection) and 8‐cell embryos selected at 79 hr after IVF from the collected 4‐cell embryos (double selection) showed high developmental competence. Likewise, 4‐ and 8‐cell embryos produced by IVF under high polyspermy conditions also showed high competence for development to blastocysts. However, blastocysts derived from high polyspermy conditions had significantly fewer cells than those produced under moderate polyspermy conditions. Furthermore, the frequency of nuclear and chromosomal abnormalities in 4‐ and 8‐cell embryos produced under conditions of high polyspermy was significantly (p < .05) higher in comparison to moderate polyspermy conditions. These findings suggest that although high polyspermy affects the frequency of nuclear and chromosomal anomalies in porcine IVF embryos, subsequent selection based on morphological features of 4‐ and 8‐cell embryos even under high polyspermy conditions, could be an alternative option for selecting porcine IVF embryos with high development ability.  相似文献   

11.
Melatonin has been reported to improve the in vitro development of embryos in some species. This study was conducted to investigate the effect of melatonin supplementation during in vitro maturation (IVM) and development culture on the development and quality of porcine embryos. In the first experiment, when the in vitro fertilized embryos were cultured with different concentrations of melatonin (0, 10, 25 and 50 ng/ml) for 8 days, the blastocyst formation rate of embryos cultured with 25 ng/ml melatonin (10.7%) was significantly increased (p < 0.05) compared to the control embryos cultured without melatonin (4.2%). The proportion of DNA‐fragmented nuclei in blastocysts derived from embryos cultured with 50 ng/ml melatonin was significantly lower (p < 0.05) than that of embryos cultured without melatonin (2.1% vs 7.2%). In the second experiment, when oocytes were cultured in the maturation medium supplemented with different concentrations of melatonin (0, 10, 25 and 50 ng/ml), fertilized and then cultured with 25 ng/ml melatonin for 8 days, there were no significant differences in the rates of cleavage and blastocyst formation among the groups. However, the proportions (2.7–5.4%) of DNA‐fragmented nuclei in blastocysts derived from oocytes matured with melatonin were significantly decreased (p < 0.05) compared to those (8.9%) from oocytes matured without melatonin, irrespective of the concentration of melatonin. Our results suggest that supplementation of the culture media with melatonin (25 ng/ml) during IVM and development has beneficial effects on the developmental competence and quality of porcine embryos.  相似文献   

12.
The aim of this study was to quantify the content of lipid droplets in bovine oocytes and embryos from Bos indicus (Bi), Bos taurus (Bt) and Bos indicus × Bos taurus (Bi × Bt). Oocytes were aspirated post‐mortem and subjected to in vitro maturation, in vitro fertilization and in vitro development; the medium employed at each stage (TCM‐199, TALP, SOF) was supplemented with (i) serum replacement (SR), (ii) foetal calf serum (FCS) or (iii) oestrous cow serum (ECS). The structure and distribution of the lipid droplets were established using electron microscopy, but were quantified using an optical microscope on semi‐fine toluidine blue‐stained sections. The highest percentage of embryos corresponded to those produced with FCS and ECS, which differed from embryos generated with SR (p < 0.05). The highest percentage of morulae and the lowest percentage of blastocysts were obtained with the SR supplement (p < 0.05). The oocytes cultured in FCS demonstrated a higher number of lipid droplets compared to those cultured in SR and ECS (p < 0.05). Less accumulation of lipids was observed in embryos supplemented with SR. The lowest and highest numbers of lipid droplets in oocytes corresponded to the Bi and Bt strain, respectively. The lowest amount of lipid droplets in embryos was observed in Bi (p < 0.05). In conclusion, supplementation of the in vitro development culture medium (synthetic oviduct fluid) with a synthetic substitute serum produced similar results in terms of embryo development compared to those obtained with FCS, but a decreased degree of lipid droplet accumulation was observed in the in vitro‐cultured embryos.  相似文献   

13.
The purpose of this study was to determine goat milk physicochemical parameters during the feed scarcity season. An evaluation was made for 398 milk samples from 80 multiparous goats belonging to three different production systems: (S1) mechanized milking grazing pasture and harvested residue (alfalfa) and grain supplemented; (S2) system grazing native pasture; and (S3) system grazing native pasture and grain supplemented. The general averages were: fat (FT) 4.0 ± 0.20%, protein (PR) 3.3 ± 0.05%, lactose (LC) 4.9 ± 0.09%, nonfat solids (NFS) 8.9 ± 0.13%, total solids (TS) 14.5 ± 0.20%, temperature (TM) 24.6 ± 1.06°C, and acidity (pH) 6.7 ± 0.049. Most of the physicochemical components of milk were affected (p < 0.0001) by the production system × month interaction and production system × group × month interaction. The FT content was higher (< 0.05) in S2 (4.56 ± 0.18) than in S1 (3.64 ± 0.20) and S3 (3.50 ± 0.20). LC differed (< 0.05) in S2 (5.07 ± 0.08) than in S1 (4.77 ± 0.09) and S3 (4.70 ± 0.09). No differences were observed for the rest of the variables (< 0.05) among the production systems. The study unveiled a higher content of FT, LC, NFS, PR, and TS for S2 than for S1 and S3. This higher content may be explained because S2 only grazed on herbs and shrubs, in contrast to S1 and S3 which were additionally supplemented with grain concentrates.  相似文献   

14.
15.
The aim of this study was to determine whether vitrification is an effective method when used for Japanese Black Cattle (Wagyu) in vivo‐derived embryos, collected following a superovulation treatment and embryo transfer (MOET) programme. In vivo‐derived morula and blastocysts collected on day 7 after artificial insemination, were vitrified using a modified droplet vitrification (MDV) procedure and subsequently warmed for transfer (ET) into synchronized recipients. Fresh embryos, and embryos cryopreserved using a standardized slow freezing procedure (direct thaw/direct transfer, DT) served as ET controls. Two different follicle‐stimulating hormone (FSH) sources, Folltropin® Canada (FSH BAH, 24 donors) and a brand prepared by the Chinese Academy of Science (FSH CAS, 16 donors), were compared in a series of superovulation outcomes following well‐established FSH administration protocols. Following data analysis, the total number of ovulations recorded at the time of embryo flushing (10.5 vs 8.5; p = 0.28) and the total number of transferable embryos (6.2 vs 5.1; p = 0.52) were similar between the two FSH sources. ET for MDV (39.7%, n = 78), DT (35.2%, n = 71) and fresh controls (47.1%, n = 34) resulted in similar pregnancy rates (p > 0.05). When MDV was used, a higher pregnancy rate (42.6%) resulted from the transfer of vitrified morulae, when compared to the DT counterparts (24.3%), (p = 0.05). Transfer of vitrified morulae resulted also in higher pregnancy rate, when compared to the transfer of vitrified blastocysts (42.6% vs. 29.4%; p < 0.05). Transfer of DT blastocysts resulted in higher pregnancy rate than morulae, similarly cryopreserved (47.1% vs. 24.3%, p < 0.05). In conclusion, MDV is an effective alternative methodology for cryopreservation of in vivo‐derived embryos. This study gives also indication that, compared to vitrified blastocysts, MDV of morula stage embryos results in higher pregnancy rates following warming and transfer into synchronized recipients.  相似文献   

16.
The developmental kinetics of pig embryos produced by parthenogenetic activation without (PAZF) or with (PAZI) zona pellucida or by handmade cloning (HMC) was compared by time‐lapse videography. After cumulus cell removal, the matured oocytes were either left zona intact (PAZI) or were made zona free by pronase digestion (PAZF) before they were activated (PA). Other matured oocytes were used for HMC based on foetal fibroblast cells. On Day 0 (day of PA or reconstruction), the embryos were cultured for 7 days in vitro in our time‐lapse system. Pictures were taken every 30 min, and afterwards, each cell cycle was identified for each embryo to be analysed. Results showed that the PA embryos (both PAZF and PAZI) had shorter first cell cycle compared with HMC (17.4. 17.8 vs 23.6 h), but had a longer time length from four cell to morula stages (57.9, 53.8 vs 44.9 h). However, at the second cell cycle, PAZF embryos needed shorter time, while PAZI embryos had similar time length as HMC embryos, and both were longer than PAZF (23.4, 24.8 vs 14.6 h). Both PAZF and PAZI embryos used similar time to reach the blastocyst stage, and this was later than HMC embryos. In addition, when all of these embryos were grouped into viable (developed to blastocysts) and non‐viable (not developed to blastocysts), the only difference in the time length was observed on the first cell cycle (18.6 vs 24.5 h), but not on the later cell cycles. In conclusion, our results not only give detailed information regarding the time schedule of in vitro‐handled pig embryos, but also indicate that the first cell cycle could be used as a selecting marker for embryo viability. However, to evaluate the effect of the produced techniques, the whole time schedule of the pre‐implantation developmental kinetics should be observed.  相似文献   

17.
Three experiments were designed to test a solid‐surface vitrification system for bovine in vitro‐produced embryos and to develop a simple method of in‐straw dilution after warming, which can be potentially used for direct transfer in the field. Experiment 1 evaluated embryo survival rates (i.e. re‐expansion and hatching) after vitrification and warming in three different solutions: VS1 (20% ethylene glycol (EG) + 20% propanediol (PROH) + 0.25 m trehalose (Tr)), VS2 (20% EG + 1M Tr) or VS3 (30% EG + 0.75 m Tr). Re‐expansion and hatching rates were higher (p < 0.05) for embryos vitrified in VS3 (72.2 ± 1.9 and 58.2 ± 0.8) than VS1 (64.4 ± 0.9 and 37.2 ± 2.5) or VS2 (68.5 ± 1.5 and 49.6 ± 1.0; p < 0.05). Experiment 2 was designed to compare two methods of vitrification: glass micropipettes or solid surface, using the VS1 or VS3 solutions. No significant differences were detected between the two methods; but re‐expansion and hatching rates were higher (p < 0.05) with VS3 (73.5 ± 3.1 and 47.1 ± 2.1) than VS1 (63.3 ± 3.3 and 39.7 ± 2.8). In experiment 3, embryos were vitrified by solid surface in VS1 or VS3 solutions and cryoprotectants were diluted in‐straw after warming in a TCM 199, 0.25 m sucrose solution or holding media. Survival rates of embryos vitrified in VS3 did not differ between those exposed to 0.25 m sucrose (74.7 ± 1.3 and 57.2 ± 2.2) or holding (77.3 ± 1.4 and 58.0 ± 2.5) medium after warming; however, survival rates of embryos vitrified in VS1 were higher (p < 0.05) in those exposed to 0.25 m sucrose (67.7 ± 2.3 and 47.0 ± 1.7) than holding medium (54.5 ± 1.0 and 27.7 ± 3.1). In conclusion, solid‐surface vitrification using simplified EG‐based solutions and in‐straw dilution with holding media may be a practical alternative for cryopreservation and direct transfer of in vitro‐produced bovine embryos.  相似文献   

18.
Assisted reproduction procedures, such as embryo transfer (ET) and artificial insemination (AI), in cattle could induce the secretion of prostaglandin F2‐alpha (PGF2α) from uterine horns which may in turn interrupt embryo development and implantation. This study investigated the effect of flunixin meglumine (FM), prostaglandin F2 alpha (PGF2α) and FM combined with PGF2α supplementation in culture medium (IVC‐II) on the development and quality of in vitro produced bovine embryos. The development rate of embryos was significantly higher in the FM group (33.3%) than in control (24.3%), PGF2α (23.9%) and FM + PGF2α groups (24.5%). The percentage of hatched blastocysts was also higher (p < 0.05) in the FM group (41.2%) than in the control (27.8%) and PGF2α groups (19.8%). While, there was no significant difference in total cell number in all experimental groups, the number of apoptotic cells was significantly higher in the PGF2α group (8.2 ± 6.6) than in the control (4.7 ± 3.2), FM (4.7 ± 2.5) and FM + PGF2α (4.9 ± 3.4) groups. Detected by real‐time PCR, secreted vesicle seminal protein 1 (SSLP1) and prostaglandin G/H synthase 2 (PTGS2) gene expression decreased (p < 0.05) in the PGF2α group. However, SSLP1 and PTGS2 gene expression in the FM + PGF2α group returned to their baseline levels, similar to the control and FM groups. Caspase 3 (CAPS3) gene expression increased in the PGF2α group compared with other groups (p < 0.05). In conclusion, addition of FM in vitro culture significantly improved embryo development as well as alleviated the negative impact of PGF2α.  相似文献   

19.
The objective of this study was to compare the effect of two culture media: modified synthetic oviductal fluid (mSOF) and G1.2/G2.2, on the developmental competence of bovine somatic cell–cloned embryos. Cloned embryos were produced by transferring adult skin fibroblasts into enucleated MII oocytes. After activation, the reconstructed embryos were randomly allotted to either mSOF or G1.2/G2.2 for culture (the embryos were transferred from G1.2 to G2.2 on days 3 of culture). The development competence of cloned embryos in these two culture systems was compared in terms of cleavage rate, blastocyst formation rate and apoptosis cell number in day 7 blastocyts. To investigate the in vivo developmental competence of cloned embryos in the two culture systems, a total of 87 and 104 blastocysts derived from mSOF and G1.2/G2.2 medium groups were transferred individually to recipient Angus cows, respectively. No differences were observed in terms of cleavage rate, day 7 blastocyst rate and blastocyst cell number between these two culture systems. However, the day 6 blastocyst formation rate was significantly higher in G1.2/G2.2 than that in mSOF. In addition, blastocysts cultured in mSOF have a higher percentage of apoptotic blastomeres compared to those in G1.2/G2.2 (8.5 ± 1.2 vs 16.8 ± 1.5, p < 0.05). Although difference in pregnancy rate was not observed 40 days after embryo transfer, significantly higher pregnancy rate was observed in G1.2/G2.2 group after 90 days of embryo transfer (12.4% vs 37.5%, p < 0.05). Moreover, calving rate was significantly improved in G1.2/G2.2 group compared to mSOF group (27.9% vs 6.7%, p < 0.05). In conclusion, our results indicate that G1.2/G2.2 can improve developmental competence of bovine SCNT embryos both in vitro and in vivo, which is more suitable for culture of bovine SCNT embryos than mSOF medium.  相似文献   

20.
This study aimed to investigate the effect of nerve growth factor (NGF) on the development of preimplantation rabbit embryos in vitro. Zygotes were collected from superovulated New Zealand rabbits 19 h after injection of hCG and immediately mating and cultured in TCM-199 plus fatty-acid free BSA with different concentrations of NGF. Zygotes not treated with NGF served as control. At 24 h, 48 h, 72 h and 96 h of the culture, the numbers of the early cleavage stage, morulae, blastocysts and hatching blastocysts were determined. The intrazonal diameter of the blastocyst and the total cell numbers per blastocyst were measured after 96 h of culture. The results showed: (1) NGF at 100 ng/mL and 1000 ng/mL could improve the numbers of the hatching blastocysts which developed compared to the control treatment (p < 0.05); (2) All concentrations of NGF increased the total cell numbers in the blastocysts compared to the control treatment (p < 0.05); (3) NGF had no significant effect on the blastocyst intrazonal diameter of the blastocysts at 96 h of culture (p = 0.493); (4) The proportion in the early cleavage stage at 24 h of culture (p = 0.635), of morulae at 48 h of culture (p = 0.812) and of blastocysts at 72 h of culture (p = 0.812) in all treatments were not significantly different.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号