首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
旨在探讨影响马胚胎移植效率的几种关键因素。本研究统计了国内北京马场、河北马场和山东马场2013-2018年胚胎移植数据,3个马场供体马数量分别为15、21和25匹,受体母马数量分别为56、50和75匹。所有母马年龄为3~12岁。统计供体马冲胚时间对胚胎回收率的影响;胚胎日龄对移植后受体马妊娠率的影响;供、受体母马排卵同期化程度对移植后妊娠率的影响;受体母马居住移植基地时间对移植后妊娠率的影响。结果显示,母马在配种季节注射前列腺素(PG)+GnRH类似物或PG+hCG诱发排卵,发情周期分别为(14.5±0.8)和(14.3±1.1)d,显著低于对照组的((20.5±2.6)d,P<0.05);排卵后第8天冲洗子宫的胚胎回收率均高于第7天,但差异不显著;8日龄胚胎移植后受体马的妊娠率均高于7日龄,差异不显著;供体母马排卵比受体母马早1 d时,胚胎移植后的妊娠率最高;受体母马在移植基地居住时间大于1年时,移植后妊娠率高于居住时间小于0.5年的受体马。根据以上结果,本研究得出如下结论,PG与hCG或GnRH类似物联合使用可缩短母马发情周期,母马排卵后第8天的胚胎回收率和移植后妊娠率较高,胚胎移植时选择居住时间大于1年且排卵时间比供体晚1 d的母马作受体。  相似文献   

2.
Mares are seasonally polyoestrous breeders. Therefore, the first ovulation of the season, following winter anoestrus, is the only cycle in which mares ovulate without the presence of an old CL from the previous cycle. The objective of this study was to compare the length of oestrous behaviour, and plasma progesterone concentrations during the early post-ovulatory period between mares after the first and second ovulation of the breeding season. Overall, 38 mares and 167 oestrous periods were used in the study. From those, 11 mares were used during the first and subsequent oestrous period to measure and compare the post-ovulatory rise in progesterone concentration, whereas all the mares were used to compare the length of the post-ovulatory oestrous behaviour between the first and subsequent cycles of the breeding season. The persistence of the post-ovulatory oestrus was longer (p < .001) following the first ovulation of the year (median of 52 h) compared with the subsequent ovulations (median of 36 h for second and later ovulations groups; n = 38 mares). The progesterone concentration at any of the four 8 h-intervals analysed (28, 36, 76 and 84 h post-ovulation) was lower (p < .01) following the first versus the second ovulation of the year. By 36 h post-ovulation the progesterone concentration of mares at the second ovulation of the year had passed the threshold of 2 ng/ml (2.1 ± 0.33 ng/ml), whereas in the first cycle it was 1.2 ± 0.13 ng/ml. In conclusion, mares had lower progesterone concentrations in their peripheral circulation and longer persistence of oestrous behaviour following the first ovulation of the year compared with the second and subsequent ovulatory periods of the breeding season.  相似文献   

3.
In mares, repeated embryo collection in successive oestrous cycles is necessary if a greater number of foals should be produced. We investigated effects of repeated embryo collection in fertile donor mares on embryo recovery rates. In addition, an influence of the individual mare and season on embryo recovery rates was studied. In nine mares, a total of 153 embryo collections were performed during 30 months (17 ± 2.2 embryo collections per mare). The overall embryo recovery rate was 64% and did not differ among mares. Between successive embryo collection procedures, recovery rate varied significantly; however, no increase or decrease in the embryo recovery rate with increasing number of successive embryo collections was seen. In three mares, ovulation ceased from November to February. In the remaining six mares, embryo production was successfully continued throughout winter and no influence of the month on embryo recovery rates was detected.  相似文献   

4.
Multiple ovulation and embryo transfer (MOET) is an important tool in the sheep industry for increasing numbers of genetically superior individuals. The objective of this study was to evaluate the effect of semen source (frozen or fresh), the number of embryo collection procedures for each donor (NECP), the season in which embryo transfer and collection was performed, and the age and breed of the donor, on the number of recovered embryos and pregnancy rates after embryo transfer. The Alamos Genetics’ flushing station database was used. This consisted of 140 embryo collection procedures, from 53 Dorper and White Dorper sheep donors, aged between one and eight years, totalling 1,200 collected embryos. Neither the number of retrieved embryos nor the pregnancy rate was affected by the semen preservation method (fresh or frozen), NECP or the age and breed of donor. The season did not affect the number of collected embryos but had a significant effect (p < 0.05) on the recipient pregnancy rate, with higher pregnancy rates reported in the winter (65.57% ± 25.33%) compared with spring (37.11% ± 33.27%), summer (29.95% ± 28.33%) or autumn (35.03% ± 31.66%). There is an estimated increase of 98.4% and 71.5% of embryos recovered in the spring and summer seasons, respectively, when winter is used as reference. The survival of embryos is significantly higher when implanted during the breeding season, more specifically in winter. Embryo collection can be carried out throughout the year in sheep, but there may be a marginal advantage in the use of superovulation and fresh embryo transfer programmes in the autumn and winter.  相似文献   

5.
The aim of this study was to evaluate whether the RI and PI values would help in choosing the best embryo recipient, and observe whether CL vascularization would influence P4 production. During the breeding season 2018/2019, the study was conducted using 35 mares, which is used for reference to collect data for the project on the day of embryo transfer. The utilized mares were divided into five groups followed by the day after ovulation, with D0 being the day of ovulation. Therefore, the five groups are as follows: D4—mares that were on the 4th post-ovulation day; D5—mares that were on the 5th post-ovulation day; and doing so successively for D6, D7 and D8. On the day of embryo transfer, the CL of the mares that selected as recipients was evaluated by B-mode and power flow mode ultrasonography and the right and left dorsal branches of the uterine arteries by spectral Doppler ultrasonography. Blood samples were taken on the day of the embryo transfer for a dosage of P4 concentration by radioimmunoassay. No statistical difference was found between the variables when the mares were separated into pregnant and non-pregnant mares, or when they were separated by age groups. When the groups of mares were compared by the day of embryo transfer, the statistical difference was found between the groups D5 × D6 (p = .0053) and D6 × D8 (p = .0036) in RI variable. In PI variable, the statistical difference was found between the groups D4 × D8 (p = .049), D5 × D6 (p = .0446) and D6 × D8 (p = .0024). We conclude that the mares with RI measurement of uterine arteries near 1.0 are correlated to mares with high CL vascularization and elevated P4 concentration.  相似文献   

6.
The effects of a low dose of equine purified FSH (eFSH) on incidence of multiple ovulations and embryo recovery rate in mares were studied. During the physiological breeding season in Brazil (19°45′45′S), 14 Mangalarga Marchador donor mares were used in a crossover study and another 25 mares of the same breed, between 3 years and 12 years of age were used as recipients for the embryo transfers. Donors were monitored during two consecutive oestrus cycles, an untreated control cycle followed by a treated cycle, when eFSH was administered. In both cycles, after an embryo collection attempt on day 8 post‐ovulation all mares received 7.5 mg dinoprost and had their two largest follicles tracked daily by ultrasonography until the period of ovulation. Mares were inseminated every 48 h with extended fresh semen from a single stallion after the identification of a 35‐mm follicle until the period of ovulation. Ovulations were induced by intravenous administration of 2.500 IU of human chorionic gonadotropin, upon detection of a 35‐ to 40‐mm follicle. In the treated cycle, 5 mg eFSH was given intramuscularly once a day, from day 8 post previous ovulation until at least one follicle reached 35 mm in diameter. Embryo flushes were performed on day 8 of dioestrus (day 0 = ovulation). Treatment with eFSH resulted in higher (p < 0.05) ovulation rate and incidence of multiple ovulations compared to the control (1.6 vs 1.0 and 50% vs 0%, respectively – one mare had triple ovulation). However, embryo recovery rates in the control and treated cycles were similar (0.8 and 1.0, respectively; p > 0.05). Pregnancy rates in the recipient mares following embryo transfer were similar for the control and eFSH cycles (11/11 and 10/14, respectively). Additional studies are necessary in order to develop a low‐dose protocol for the use of eFSH that brings a more consistent contribution to the efficiency of commercial equine embryo transfer programs.  相似文献   

7.
A reference horse‐breeding programme with 13 500 foals each year was modelled with ZPLAN+. This new software for the optimization of the structures in breeding programmes is based on ZPLAN. In two scenarios, the implementation of a rigorous selection of mares was implemented. In scenario I, the mare performance test was the point of selection, while in scenario II, further information on 20 competitions in two more years is available. These selected mares were used for embryo transfer (ET), partly in combination with multiple ovulation (MOET). The selection intensity and the number of foals out of (MO)ET were varied in both scenarios. It was expected that 250, 500 and 1000 mares are available for selecting 20, 50, 100 or 200 donor mares each year. The number of foals out of (MO)ET was varied between one and six foals per donor mare and year. Donor mares were used for ET for 4 years. It became clear that with high selection intensities of donor mares and high reproduction rates of them, the yearly genetic gain in a horse‐breeding programme could increase over a large range. In scenario II, the additional information on 20 competitions increased the accuracy of the selection index to 0.85. With 200 selected donor mares of 1000 available mares and six foals per year, the genetic gain could almost be doubled compared to the reference scenario. The implementation of ET and a related higher usage of few selected mares entails rising costs and a reduction in the genetic variance. In the most extreme MOET scenario, the effective population size was reduced by 19% relative to the reference scenario. Only if the increase in genetic gain can be converted into higher return for the breeders, the implementation of (MO)ET schemes is a realistic and sensible option for horse‐breeding programmes.  相似文献   

8.
Breeding records of 48 Thoroughbred and Standardbred mares treated with native GnRH (500μg im, bid) during February—April, 1999 or 2000, on 7 farms in central Kentucky were retrospectively examined. Treated mares were classified as being in anestrus or early transition (n=42; if no signs of estrus occurred within 31/2 weeks and the largest follicle remained ≤25 mm in diameter or the first larger follicle(s) of the season regressed without ovulating), or were classified as being in late transition (n=6; if follicular growth achieved 30-40 mm diameter but ovulation had not yet occurred during the breeding season). Thirty-eight mares (38/48; 79%) ovulated in 13.7 ± 7.4 days. Interval to ovulation was negatively associated with size of follicles at onset of native GnRH therapy (P < 0.01). Per cycle pregnancy rate was 53% (19/36 mares bred). Ovulation inducing drugs were administered to 32 of the native GnRH treated mares (2500 units hCG intravenously, n = 20; deslorelin implant [Ovuplant™] subcutaneously, n=12), while 6 mares were not administered any additional drugs to induce ovulation. Per cycle pregnancy rate did not differ among mares treated only with native GnRH (2/5 mares bred; 40% PR), mares treated with native GnRH plus hCG (12/19 mares bred; 63% PR), or mares treated with native GnRH plus Ovuplant™ (5/12 mares bred; 42% PR) (P > 0.10). Additional treatment with either hCG or Ovuplant™ did not alter mean follicle size at ovulation or interovulatory interval (P > 0.10). The proportion of interovulatory intervals > 25 days was not different between mares receiving no additional treatment to induce ovulation (0/4; 0%) compared to mares receiving hCG to induce ovulation (3/8; 38%) (P > 0.10), but the proportion of interovulatory intervals > 25 days was greater for mares receiving Ovuplant™ to induce ovulation (5/7; 71%) compared to mares receiving no additional treatment to induce ovulation (P < 0.05). The proportion of mares with extended interovulatory intervals (i.e., > 25 days) did not differ between mares with follicles < 15 mm diameter (4/8, 50%) and those with follicles > 15 mm diameter (3/11, 27%) at onset of native GnRH treatment (P > 0.10). While concurrent untreated controls were not used in this study, the 79% response rate to twice daily administration of native GnRH is in agreement with other reports using pulsatile or constant infusion as methods of administration, confirming therapy can hasten follicular development and first ovulation of the breeding season. As with previous reports, follicle size at onset of treatment is an important determinant of interval from onset of native GnRH therapy to ovulation. Use of hCG or Ovuplant™ did not enhance ovulatory response in native GnRH treated mares. Use of Ovuplant™ during native GnRH therapy may increase the incidence of post-treatment anestrus in mares not becoming pregnant.  相似文献   

9.
Horse owners want to have their mares bred as early as possible in the breeding season after February 1. Numerous medical treatments, such as progesterone, dopamine antagonists, and gonadotropin-releasing hormone have been administered to anestrous or transitional mares in an attempt to induce follicular development. Some of these treatments are ineffective or impractical, so there is a need in the horse industry to develop alternative techniques to stimulate follicular development and ovulation early in the breeding season. Twenty transitional mares were assigned to one of two treatment groups. Mares in group 1 (n = 10) served as untreated controls, and mares in group 2 (n = 10) were administered 12.5 mg of purified equine follicle-stimulating hormone (eFSH) (Bioniche Animal Health USA, Inc., Athens, Ga) intramuscularly twice daily for a maximum of 15 consecutive days. Mares were considered to be in transition when the diameter of the largest follicle was ≥25 mm. Once one or more follicles >35 mm were detected, eFSH treatment was discontinued and human chorionic gonadotropin was administered intravenously. The percentage of mares ovulating during the 15-day observation period was compared by means of chi-square analysis. The interval to ovulation and the number of ovulations per mare were compared between the two groups by Student t test. In 8 of 10 mares treated with eFSH follicles developed and ovulation occurred during the 15-day observation period, compared with 0 of 10 control mares. Interval from onset of treatment to ovulation was 7.6 ± 2.4 days for these eight mares. The eight mares were treated for an average of 5.2 ± 1.3 days with eFSH. Thus, the eFSH treatment was effective in advancing the first ovulation of the year in transitional mares.  相似文献   

10.
The aim of this study was to evaluate the effect of equine chorionic gonadotropin (eCG) at the end of progesterone (P4) treatment on follicular and luteal characteristics during transition period (TP) and reproductive breeding season (RP). A total of 13 crossbred mares were distributed in two experimental groups in the spring and summer (n = 26). The animals received intravaginal P4 (1.9 g) releasing device from D0 to D10. On removal of P4 device, the mares received 400 IU of eCG (eCG group) or saline solution (control group). Human chorionic gonadotropin (hCG; 1.750 IU) was administered (DhCG) as soon as ovulatory follicle (OF) ≥35 mm was detected. Ovarian ultrasonography was performed from D0 until 15 days after ovulation. Blood samples were collected on D0, D5, D10, DhCG, 9 days after ovulation (CL9D), and 13 days after ovulation (CL13D). P4 and estradiol concentrations were assessed by chemiluminescence. Data were compared by Tukey test at P < .05. Ovulation rate was similar (P = .096) between seasons (RP = 100%; TP = 70%) but occurred earlier (P = .015) in RP (34.8 ± 10.1 hours) compared with TP (42.0 ± 10.4 hours). Interactions between season and treatment were observed for OF diameter (mm) (RP/control = 36.2 ± 1.8ab; RP/eCG = 32.9 ± 2.8 b; TP/control = 32.2 ± 1.2 b; TP/eCG = 37.2 ± 1.9a; P = .004) and for corpus luteum (CL) diameter (mm) on CL13D (RP/control = 25.4 ± 3.5a; RP/eCG = 22.5 ± 1.8ab; TP/control = 21.6 ± 4.9 b; TP/eCG = 27.4 ± 4.3a; P = .023), although no differences were observed for serum P4 on CL13D (RP/control = 6.0 ± 3.1 ng/mL; RP/eCG = 5.8 ± 0.9 ng/mL; TP/control = 3.6 ± 2.7 ng/mL; TP/eCG = 5.1 ± 2.3 ng/mL; P = .429) or for day of structural CL regression (RP/control = 12.8 ± 1.9; RP/eCG = 12.1 ± 1.1; TP/control = 11.0 ± 1.7; TP/eCG = 13.2 ± 2.0; P = .102). The application of eCG at the moment of P4 implant removal seemed to increase the capacity of luteal maintenance during spring TP. However, eCG treatment was worthless during the breeding season.  相似文献   

11.
Two cloned mares, produced from the same sample of skin fibroblasts, were bred during four breeding seasons from their second year of age, as embryo donors, in exactly the same conditions, using the same stallions for both cloned mares. The aim of this study was to test the embryo donor potential of cloned mares and to compare the results obtained from two cloned mares of the same mare with other embryo donor mares (n = 31–39 per breeding season) at the same stud. For both cloned mares, 19 embryos were recovered by 43 collection attempts (44%) (7/22 for one; 12/21 for the other), 16 (84%) pregnancies (5/7 for one, 11/12 for the other) were obtained at day 14 post-ovulation (D14), and 12 (3/7 for one; 9/12 for the other) foals were born. One cloned mare was a less efficient donor mare than the other (p < .05), In control donor mares, 623 embryo collections were performed, with a recovery rate (80%—496/623) significantly higher than for cloned mares. The recovery rate in the subpopulation of 2–5-year-old control donor mares (same age of cloned mares) (89%—127/143) and The recovery rate in the subpopulation of 12 control mares bred with the seven same stallions as clones (55%—17/31), were both higher than for cloned mare (p < .05). The success rate of transfer was not different between embryos produced by cloned mares (84%—16/19) and those produced by control donor mares (79%—392/496). However, the foaling rate per embryo collection was significantly lower for cloned mares (28%—12/43) than for control donor mares (52% - 325/623) (p < .05).  相似文献   

12.
Equine clinicians rely on ovulation induction agents to provide a timed ovulation in mares for optimal breeding management. Numerous studies have been performed on the efficacy of human chorionic gonadotropin (hCG) to induce ovulation in the mare, but limited clinical data are available for the new deslorelin acetate product SucroMate. This study was designed to evaluate the efficacy of SucroMate (deslorelin) in comparison with hCG to induce ovulation. American Quarter horse mares (n = 256) presented to Colorado State University for breeding management were used in this study. Mares received either deslorelin or hCG when a follicle ≥35 mm was detected by transrectal ultrasound in the presence of uterine edema. Ultrasonographic examinations were subsequently performed once daily until ovulation was detected. Deslorelin was administered to 138 mares during168 estrous cycles, and hCG was given to 118 mares during 136 estrous cycles. Mares administered deslorelin had a similar (P < .05) higher ovulation rate (89.9%) within 48 hours following drug administration than mares administered hCG (82.8%). There are no effects of season or age on ovulation rates in either treatment group. Twenty-one mares administered deslorelin and 11 mares administered hCG were monitored by transrectal ultrasound every 6 hours to detect ovulation as part of a frozen semen management program. Average intervals from deslorelin or hCG administration to ovulation were 41.4 ± 9.4 and 44.4 ± 16.5 hours, respectively. Results of this study indicate that SucroMate is effective at inducing a timed ovulation in the mare.  相似文献   

13.
The use of equine FSH (eFSH) for inducing follicular development and ovulation in transitional mares was evaluated. Twenty-seven mares, from 3 to 15 years of age, were examined during the months of August and September 2004, in Brazil. Ultrasound evaluations were performed during 2 weeks before the start of the experiment to confirm transitional characteristics (no follicles larger than 25 mm and no corpus luteum [CL] present). After this period, as the mares obtained a follicle of at least 25 mm, they were assigned to one of two groups: (1) control group, untreated; (2) treated with 12.5 mg eFSH, 2 times per day, until at least half of all follicles larger than 30 mm had reached 35 mm. Follicular activity of all mares was monitored. When most of the follicles from treated mares and a single follicle from control mares acquired a preovulatory size (≥35 mm), 2,500 IU human chorionic gonadotropin (hCG) was administered IV to induce ovulation. After hCG administration, the mares were inseminated with fresh semen every other day until ovulation. Ultrasound examinations continued until detection of the last ovulation, and embryo recovery was performed 7 to 8 days after ovulation. The mares of the treated group reached the first preovulatory follicle (4.1 ± 1.0 vs 14.9 ± 10.8 days) and ovulated before untreated mares (6.6 ± 1.2 vs 18.0 ± 11.1 days; P < .05). All mares were treated with prostaglandin F (PGF), on the day of embryo flushing. Three superovulated mares did not cycle immediately after PGF treatment, and consequently had a longer interovulatory interval (22.4 vs 10.9 days, P < 0.05). The mean period of treatment was 4.79 ± 1.07 days and 85.71% of mares had multiple ovulations. The number of ovulations (5.6 vs 1.0) and embryos (2.0 vs 0.7) per mare were higher (P < 0.05) for treated mares than control mares. In conclusion, treatment with eFSH was effective in hastening the onset of the breeding season, inducing multiple ovulations, and increasing embryo production in transitional mares. This is the first report showing the use of FSH treatment to recover embryos from the first cycle of the year.  相似文献   

14.
The aim of this study was to evaluate the effects of different treatments for induction and synchronization of oestrus and ovulation in seasonally anovulatory mares. Fifteen mares formed the control group (C), while 26 mares were randomly assigned to three treatment groups. Group T1 (n = 11) were treated with oral altrenogest (0.044 mg/kg; Regumate®) during 11 days. Group T2 (n = 7) was intravaginally treated with 1.38 g of progesterone (CIDR®) for 11 days. In group T3 (n = 8), mares were also treated with CIDR®, but only for 8 days. All mares received PGF2α 1 day after finishing the treatment. Sonographic evaluation of follicles, pre‐ovulatory follicle size and ovulation time was recorded. Progesterone and leptin levels were analysed. Results show that pre‐ovulatory follicles were developed after the treatment in 88.5% of mares. However, the pre‐ovulatory follicle growth was dispersal, and sometimes it was detected when treatment was not finished. While in mares treated with intravaginal device, the follicle was soon detected (1.5 ± 1.2 days and 2.3 ± 2.0 days in T2 and T3 groups, respectively), in T1 group, the pre‐ovulatory follicle was detected slightly later (3.9 ± 1.6 days). The interval from the end of treatment to ovulation did not show significant differences between groups (T1 = 13.1 ± 2.5 days; T2 = 11.0 ± 3.6 days; T3 = 13.8 ± 4.3 days). The pregnancy rate was 47.4%, similar to the rate observed in group C (46.7%; p > 0.05). Initial leptin concentrations were significantly higher in mares, which restart their ovarian activity after treatments, suggesting a role in the reproduction mechanisms in mares. It could be concluded that the used treatments may be effective for oestrous induction in mares during the late phase of the seasonally anovulatory period. Furthermore, they cannot synchronize oestrus, and then, it is necessary to know the reproductive status of mares when these treatments are used for oestrous synchronization.  相似文献   

15.
Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates. Other potential clinical applications include improving pregnancy rates from frozen semen, treatment of subfertility in stallions and mares, and induction of ovulation in transitional mares. The objective of this study was to evaluate the efficacy of purified equine follicle stimulating hormone (eFSH; Bioniche Animal Health USA, Inc., Athens, GA) in inducing superovulation in cycling mares. In the first experiment, 49 normal, cycling mares were used in a study at Colorado State University. Mares were assigned to 1 of 3 groups: group 1, controls (n = 29) and groups 2 and 3, eFSH-treated (n = 10/group). Treated mares were administered 25 mg of eFSH twice daily beginning 5 or 6 days after ovulation (group 2). Mares received 250 (of cloprostenol on the second day of eFSH treatment. Administration of eFSH continued until the majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting on day 5 or 6. The treatment regimen was identical to that of group 2. Mares in all 3 groups were bred with semen from 1 of 4 stallions. Pregnancy status was determined at 14 to 16 days after ovulation.In experiment 2, 16 light-horse mares were used during the physiologic breeding season in Brazil. On the first cycle, mares served as controls, and on the second cycle, mares were administered 12 mg of eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time human chorionic gonadotropin (hCG) was administered. Mares were inseminated on both cycles, and embryo collection attempts were performed 7 or 8 days after ovulation.Mares treated with 25 mg of eFSH developed a greater number of follicles (35 mm) and ovulated a greater number of follicles than control mares. However, the number of pregnancies obtained per mare was not different between control mares and those receiving 25 mg of eFSH twice daily. Mares treated with 12 mg of eFSH and administered either hCG or deslorelin also developed more follicles than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles than control mares, whereas the number of ovulations from mares receiving eFSH followed by deslorelin was similar to that of control mares. Pregnancy rate for mares induced to ovulate with hCG was higher than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of the controls. Overall, 80% of mares administered eFSH had multiple ovulations compared with 10.3% of the control mares.In experiment 2, the number of large follicles was greater in the eFSH-treated cycle than the previous untreated cycle. In addition, the number of ovulations during the cycle in which mares were treated with eFSH was greater (3.6) than for the control cycle (1.0). The average number of embryos recovered per mare for the eFSH cycle (1.9 ± 0.3) was greater than the embryo recovery rate for the control cycle (0.5 ± 0.3).In summary, the highest ovulation and the highest pregnancy and embryo recovery rates were obtained after administration of 12 mg of eFSH twice daily followed by 2500 IU of hCG. Superovulation with eFSH increased pregnancy rate and embryo recovery rate and, thus, the efficiency of the embryo transfer program.

Introduction

Induction of multiple ovulations or superovulation has been an elusive goal in the mare. Superovulation would potentially increase the efficiency and decrease the cost of embryo transfer by increasing embryo collection rates.[1 and 2] Superovulation also has been suggested as a critical requirement for other types of assisted reproductive technology in the horse, including oocyte transfer and gamete intrafallopian transfer. [2 and 3] Unfortunately, techniques used successfully to superovulate ruminants, such as administration of porcine follicle stimulating hormone and equine chorionic gonadotropin have little effect in the mare. [4 and 5]The most consistent therapy used to induce multiple ovulations in mares has been administration of purified equine pituitary gonadotropins. Equine pituitary extract (EPE) is a purified gonadotropin preparation containing approximately 6% to 10% LH and 2% to 4% FSH.[6] EPE has been used for many years to induce multiple ovulations in mares [7, 8 and 9] and increase the embryo recovery rate from embryo transfer donor mares. [10] Recently, a highly purified equine FSH product has become available commercially.The objectives of this study were to evaluate the efficacy of purified eFSH in inducing superovulation in cycling mares and to determine the relationship between ovulation rate and pregnancy rate or embryo collection rate in superovulated mares.

Materials and methods

Experiment 1

Forty-nine normally cycling mares, ranging in age from 3 to 12 years, were used in a study at Colorado State University. Group 1 (control) mares (n = 29) were examined daily when in estrus by transrectal ultrasonography. Mares were administered an implant containing 2.1 mg deslorelin (Ovuplant, Ft. Dodge Animal Health, Ft. Dodge, IA) subcutaneously in the vulva when a follicle 35 mm in diameter was detected. Mares were bred with frozen semen (800 million spermatozoa; minimum of 30% progressive motility) from 1 of 4 stallions 33 and 48 hours after deslorelin administration. The deslorelin implants were removed after detection of ovulation.[11] Pregnancy status was determined at 14 and 16 days after ovulation.Group 2 mares (n = 10) were administered 25 mg of eFSH (Bioniche Animal Health USA, Inc., Athens, GA) intramuscularly twice daily beginning 5 or 6 days after ovulation was detected. Mares received 250 g cloprostenol (Estrumate, Schering-Plough Animal Health, Omaha, NE) intramuscularly on the second day of eFSH treatment. Administration of eFSH continued until a majority of follicles reached a diameter of 35 mm, at which time a deslorelin implant was administered. Mares were subsequently bred with the same frozen semen used for control mares, and pregnancy examinations were performed as described above.Group 3 mares (n = 10) received 12 mg of eFSH twice daily starting 5 or 6 days after ovulation and were administered 250 μg cloprostenol on the second day of treatment. Mares were randomly selected to receive either a deslorelin implant (n = 5) or 2500 IU of human chorionic gonadotropin (hCG) intravenously (n = 5) to induce ovulation when a majority of follicles reached a diameter of 35 mm. Mares were bred with frozen semen and examined for pregnancy as described above.

Experiment 2

Sixteen cycling light-horse mares were used during the physiologic breeding season in Brazil. Reproductive activity was monitored by transrectal palpation and ultrasonography every 3 days during diestrus and daily during estrus. On the first cycle, mares were administered 2500 IU hCG intravenously once a follicle 35 mm was detected. Mares were subsequently inseminated with pooled fresh semen from 2 stallions (1 billion motile sperm) daily until ovulation was detected. An embryo collection procedure was performed 7 days after ovulation. Mares were subsequently administered cloprostenol, and eFSH treatment was initiated. Mares received 12 mg eFSH twice daily until a majority of follicles were 35 mm in diameter, at which time hCG was administered. Mares were inseminated and embryo collection attempts were performed as described previously.

Statistical analysis

In experiment 1, 1-way analysis of variance with F protected LSD was used to analyze quantitative data. Pregnancies per ovulation were analyzed by x2 analysis. In experiment 2, number of large follicles, ovulation rate, and embryo recovery rate were compared by Student,'s t-test. Data are presented as the mean S.E.M. Differences were considered to be statistically significant at p < .05, unless otherwise indicated.

Results

In experiment 1, mares treated with 25 mg eFSH twice daily developed a greater number of follicles 35 mm in diameter (p = .001) and ovulated a greater number of follicles (p = .003) than control mares (Table 1). However, the number of pregnancies obtained per mare was not significantly different between the control group and the group receiving 25 mg eFSH (p = .9518). Mares treated with 12 mg eFSH and administered either hCG or deslorelin to induce ovulation also developed more follicles 35 mm (p = .0016 and .0003, respectively) than untreated controls. Mares receiving eFSH followed by hCG ovulated a greater number of follicles (p = .003) than control mares, whereas the number of ovulations for mares receiving eFSH followed by deslorelin was similar to that of control mares (p = .3463). Pregnancy rate for mares induced to ovulate with hCG was higher (p = .0119) than that of control mares, whereas the pregnancy rate for eFSH-treated mares induced to ovulate with deslorelin did not differ from that of controls (p = .692). Pregnancy rate per ovulation was not significantly different between control mares (54.5%) and mares treated with eFSH followed by hCG (52.9%). The lowest pregnancy rate per ovulation was for mares stimulated with 25 mg eFSH and induced to ovulate with deslorelin. The mean number of days mares were treated with 25 mg or 12 mg of eFSH was 7.8 ± 0.4 and 7.5 ± 0.5 days, respectively. Overall, 80.0% of mares administered eFSH had multiple ovulations compared with 10.3% of control mares.  相似文献   

16.
This study aims to characterize the reproductive patterns in Asinina de Miranda jennies during the non‐breeding season. Reproductive activity was surveyed in 12 females, aged between 3 and 18 years old, using ultrasound and teasing with a jack. The animals were monitored from September to April, six in each consecutive year. Of these 12 females, nine showed disruption to the normal pattern of ovarian activity during the non‐breeding season. Loss of normal cyclicity included anoestrus (41.7%), silent ovulatory oestrus (25%), and persistence of corpus luteum (8.3%). Only three females maintained a regular cyclic pattern with oestrous behaviour during the non‐breeding season. Anoestrus began in early November and lasted for an average of 147 ± 28 days (113–191 days), ending near to the spring equinox. Onset of silent oestrous cycles began more erratically, between October and February. In both groups the first behavioural ovulation of the year occurred around the time of the spring equinox. Disrupted reproductive activity was preceded by a shorter oestrous cycle only in females entering anoestrus. The mean follicle size in the first ovulation of the year was larger than in the reproductive season (44.7 ± 2.45 mm vs 39.2 ± 3.60 mm) in anoestrous jennies with protracted oestrus. Though age and body condition score (BCS) were associated, changes in BCS below a threshold of four points (for anoestrus) and five points (for silent oestrus) contributed greatly to disruption of reproductive cycles. BCS in females with regular oestrous cycles during the winter season remained unchanged or exceeded five points prior to the winter solstice.  相似文献   

17.
AIM: To determine the effect of hCG dose on ovulation and pregnancy rate in Thoroughbred mares experiencing their first ovulation of the breeding season. METHODS: Over 3 successive breeding seasons, a total of 101 mares were randomly assigned to 1 of 4 treatment groups (intravenous injection of either saline, 1500, 3000, or 6000 IU hCG), as they approached their first ovulation of the breeding season. Mares were bred 1 day post-injection to 1 of 11 stallions, and every other day until ovulation occurred. Data were analysed using multivariable logistic regression with correction for over-dispersion due to clustering. RESULTS: Mares treated with hCG were more likely to ovulate within 72 h of treatment than mares treated with saline (p<0.001); there was no significant difference between doses of hCG on risk of ovulation (p>0.15). Farm also had a significant impact on the risk of ovulation (p=0.027). Mares treated with hCG were more likely to be diagnosed pregnant 14 days post ovulation than saline-treated mares (p=0.081, p=0.029 and p=0.026 for the 1500, 3000 and 6000 IU doses, respectively); there was no significant difference between doses of hCG on risk of pregnancy (p>0.45). CONCLUSIONS: A single injection of hCG (1500-6000 IU) is effective at inducing ovulation in late transitional mares and increases the likelihood of pregnancy at 14 days post ovulation. This paper supports the use of hCG as an integral part of optimal broodmare management.  相似文献   

18.
Apart from functional abnormalities, genetic structural disorders and management problems endometritis is one of the major causes of infertility or subfertility in mares. However, the causes of postbreeding endometritis in foal heat have not been clearly resolved to date. The aim of this study was to search for the relationship between neutrophil activity, acute-phase proteins, and oxidative status to indicate the parameters, which can influence fertility in cold-blooded mares in foal heat. The blood for the experiment was collected from 16 cold-blooded mares at five time points: 6–8 days before parturition, 24 hours after parturition, at the first postpartum breeding on the ninth day, 24 hours after breeding, and 48 hours after ovulation. The obtained samples were assigned for hematological tests, assays of neutrophil activity, plasma malondialdehyde (MDA), and fibrinogen concentrations. We estimated that in susceptible mares during persistent postbreeding endometritis, neutrophil activity increased together with MDA and fibrinogen plasma level. Elastase release in resistant mares before parturition was 48.91 ± 1.75%, whereas in susceptible animals, the value reached 45.57 ± 1.9% of the maximal release. Myeloperoxidase release in resistant mares before parturition reached 13.95 ± 2.1%, then increased at three consecutive measurements, and returned to a value from before parturition at the last measurement. Myeloperoxidase level in susceptible mares was slightly lower than in resistant ones, then these values augmented at all measurements, reaching the maximum at the fourth one. The obtained results may help to indicate the predisposition to persistent postbreeding endometritis in cold-blooded mares bred at foal heat.  相似文献   

19.
Twelve horse mares were used to investigate the effect of phenylbutazone or progesterone administration on uterine tubal motility, as reflected by embryo recovery from the uterus on day 5 after ovulation. Four treatment groups were used: group A (controls), in which uterine flush was performed 7 to 11 days after ovulation; group B (5-day controls), in which uterine flush was performed 5 days after ovulation; group C, in which uterine flush was performed 5 days after ovulation following administration of phenylbutazone (2 g, IV) on day 3; and group D, in which uterine flush was performed 5 days after ovulation following administration of progesterone in oil (250 mg, IM) on days 0, 1, and 2. Each mare was randomly assigned to each group once. Embryo recovery for each group was: group A, 13 embryos from 12 mares; group B, 3 embryos from 12 mares; group C, 4 embryos from 11 mares; and group D, 1 embryo from 11 mares. Recovery of embryos on day 5 in 3 of 12 nontreated mares indicated that equine embryos may enter the uterus before day 6. Neither treatment increased embryo recovery from the uterus on day 5 over that from the uterus of the 5-day controls.  相似文献   

20.
Our aim was to compare Corpus luteum (CL) development and blood plasma concentration of progesterone ([P4]) in thoroughbred mares after spontaneous (Control: C) or human chorionic gonadotrophin (hCG)‐induced ovulation. Lactating mares (C = 12; hCG = 21) were daily teased and mated during second oestrus post‐partum. Treated mares received 2500 IU hCG i.v. at first day of behavioural oestrus when dominant follicular size was >35, ≤42 mm and mated 12–24 h after. Control mares in oestrus were mated with dominant follicular size ≥45 mm. Dominant follicle before ovulation, CL and gestational sac were measured by ultrasound and [P4] by radioimmunoassay (RIA). Blood sampling and ultrasound CL exams were done at days 1, 2, 3, 4, 8, 12, 16, 20, 25, 30, 35, 40, 45, 60 and 90 after ovulation and gestational sac from day 12 after ovulation in pregnant (P) mares; non‐pregnant (NP) were followed until oestrus returned. Data analyses considered four subgroups: hCG‐P, hCG‐NP, C‐P and C‐NP. Preovulatory follicular size was smaller in hCG mares than in C: 39.2 ± 2.7 mm vs 51.0 ± 1.8 mm (p < 0.0001). All hCG mares ovulated 24–48 h after treatment and presented similar oestrus duration as controls. C. luteum size in P mares showed the same pattern of development through days 4–35, presenting erratic differences during initial establishment. Thus, on days 1 and 3, CL was smaller in hCG‐P (p < 0.05); while in hCG‐NP, CL size was greater than in C‐NP on day three (p = 0.03). Corpus luteum size remained stable until day 90 in hCG‐P mares, while in C‐P a transient and apparently not functional increase was detected on days 40 and 45 (p < 0.05) and the decrease from day 60 onwards, made this difference to disappear. No differences were observed in [P4] pattern between P, or between NP subgroups, respectively. So, hCG‐induced ovulation does not affect CL development, neither [P4] during early pregnancy. One cycle pregnancy rate tended to be lower in hCG mares while season pregnancy rates were similar to controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号