首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many large earthquakes are preceded by one or more foreshocks, but it is unclear how these foreshocks relate to the nucleation process of the mainshock. On the basis of an earthquake catalog created using a waveform correlation technique, we identified two distinct sequences of foreshocks migrating at rates of 2 to 10 kilometers per day along the trench axis toward the epicenter of the 2011 moment magnitude (M(w)) 9.0 Tohoku-Oki earthquake in Japan. The time history of quasi-static slip along the plate interface, based on small repeating earthquakes that were part of the migrating seismicity, suggests that two sequences involved slow-slip transients propagating toward the initial rupture point. The second sequence, which involved large slip rates, may have caused substantial stress loading, prompting the unstable dynamic rupture of the mainshock.  相似文献   

2.
Devastating earthquakes occur on a megathrust fault that underlies the Tokyo metropolitan region. We identify this fault with use of deep seismic reflection profiling to be the upper surface of the Philippine Sea plate. The depth to the top of this plate, 4 to 26 kilometers, is much shallower than previous estimates based on the distribution of seismicity. This shallower plate geometry changes the location of maximum finite slip of the 1923 Kanto earthquake and will affect estimations of strong ground motion for seismic hazards analysis within the Tokyo region.  相似文献   

3.
The magnitude 7.3 Landers earthquake of 28 June 1992 triggered a remarkably sudden and widespread increase in earthquake activity across much of the western United States. The triggered earthquakes, which occurred at distances up to 1250 kilometers (17 source dimensions) from the Landers mainshock, were confined to areas of persistent seismicity and strike-slip to normal faulting. Many of the triggered areas also are sites of geothermal and recent volcanic activity. Static stress changes calculated for elastic models of the earthquake appear to be too small to have caused the triggering. The most promising explanations involve nonlinear interactions between large dynamic strains accompanying seismic waves from the mainshock and crustal fluids (perhaps including crustal magma).  相似文献   

4.
Various people have proposed that North and South America are a part of a gigantic crustal plate within which little differential movement is taking place. Considerations of the size of this postulated plate and the pattern of seismicity around the Caribbean indicate that it is in fact two plates, separated in the region between the Lesser Antilles and the Mid-Atlantic Ridge. Many of the offsets of the Mid-Atlantic Ridge opposite the Caribbean are the result of differential spreading rates and the westward continuations of the fracture zones extending from these offsets are active left-lateral faults.  相似文献   

5.
In March, 2004, the rural northern California county of Mendocino voted to ban the propagation of all genetically modified organisms (GMOs). This county was the first, and only, U.S. region to adopt such a ban despite widespread activism against biotechnology. Using a civic agriculture perspective, this article explores how local actors in this small county were able to take on the agri-biotechnology industry. I argue that by localizing the issue, the citizens of Mendocino County were able to ignite a highly effective, decentralized and grassroots social movement against which powerful, and well-funded, pro-biotechnology entities were unable to compete. The social problem of biotechnology was embedded in issues of mass concern to Mendocino County residents, such as democracy, equity, distribution of power, and corporate control over local life. The campaign was an arena for “local problem-solving activities organized around food and agriculture” (Lyson 2004, p. 103). However, though localizing this issue was key for generating a successful ban against the propagation of GMOs at the county level, the local orientation of the No to GMOs movement created a barrier for scaling-up and transferring this success to the wider anti-biotechnology movement.  相似文献   

6.
The Whittier Narrows earthquake sequence (local magnitude, M(L) = 5.9), which caused over $358-million damage, indicates that assessments of earthquake hazards in the Los Angeles metropolitan area may be underestimated. The sequence ruptured a previously unidentified thrust fault that may be part of a large system of thrust faults that extends across the entire east-west length of the northern margin of the Los Angeles basin. Peak horizontal accelerations from the main shock, which were measured at ground level and in structures, were as high as 0.6g (where g is the acceleration of gravity at sea level) within 50 kilometers of the epicenter. The distribution of the modified Mercalli intensity VII reflects a broad north-south elongated zone of damage that is approximately centered on the main shock epicenter.  相似文献   

7.
A flying start, then a slow slip   总被引:1,自引:0,他引:1  
Bilham R 《Science (New York, N.Y.)》2005,308(5725):1126-1127
The human tragedy caused by the Sumatra-Andaman earthquake (moment magnitude 9.3) on 26 December 2004 and its companion Nias earthquake (moment magnitude 8.7) on 28 March 2005 is difficult to comprehend. These earthquakes, the largest in 40 years, have also left seismologists searching for the words and tools to describe the enormity of the geological processes involved. Four papers in this issue discuss aspects of a rupture process of surprising complexity, the first such event to test the sensitivity and range of many new technologies. A surprising feature of the earthquake is that after the initial rapid rupture, subsequent slip of the plate interface occurred with decreasing speed toward the north.  相似文献   

8.
The parkfield, california, earthquake prediction experiment   总被引:1,自引:0,他引:1  
Five moderate (magnitude 6) earthquakes with similar features have occurred on the Parkfield section of the San Andreas fault in central California since 1857. The next moderate Parkfield earthquake is expected to occur before 1993. The Parkfield prediction experiment is designed to monitor the details of the final stages of the earthquake preparation process; observations and reports of seismicity and aseismic slip associated with the last moderate Parkfield earthquake in 1966 constitute much of the basis of the design of the experiment.  相似文献   

9.
Splay fault branching along the Nankai subduction zone   总被引:3,自引:0,他引:3  
Seismic reflection profiles reveal steeply landward-dipping splay faults in the rupture area of the magnitude (M) 8.1 Tonankai earthquake in the Nankai subduction zone. These splay faults branch upward from the plate-boundary interface (that is, the subduction zone) at a depth of approximately 10 kilometers, approximately 50 to 55 kilometers landward of the trough axis, breaking through the upper crustal plate. Slip on the active splay fault may be an important mechanism that accommodates the elastic strain caused by relative plate motion.  相似文献   

10.
Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra   总被引:1,自引:0,他引:1  
Continuously recording Global Positioning System stations near the 28 March 2005 rupture of the Sunda megathrust [moment magnitude (Mw) 8.7] show that the earthquake triggered aseismic frictional afterslip on the subduction megathrust, with a major fraction of this slip in the up-dip direction from the main rupture. Eleven months after the main shock, afterslip continues at rates several times the average interseismic rate, resulting in deformation equivalent to at least a M(w) 8.2 earthquake. In general, along-strike variations in frictional behavior appear to persist over multiple earthquake cycles. Aftershocks cluster along the boundary between the region of coseismic slip and the up-dip creeping zone. We observe that the cumulative number of aftershocks increases linearly with postseismic displacements; this finding suggests that the temporal evolution of aftershocks is governed by afterslip.  相似文献   

11.
Since 1978 and 1979, California has had a significantly higher frequency of moderate to large earthquakes than in the preceding 25 years. In the past such periods have also been associated with major destructive earthquakes, of magnitude 7 or greater, and the annual probability of occurrence of such an event is now 13 percent in California. The increase in seismicity is associated with a marked deviation in the pattern of strain accumulation, a correlation that is physically plausible. Although great earthquakes (magnitude greater than 7.5) are too infrequent to have clear associations with any pattern of seismicity that is now observed, the San Andreas fault in southern California has accumulated sufficient potential displacement since the last rupture in 1857 to generate a great earthquake along part or all of its length.  相似文献   

12.
Hydrophobic collapse in multidomain protein folding   总被引:1,自引:0,他引:1  
We performed molecular dynamics simulations of the collapse of a two-domain protein, the BphC enzyme, into a globular structure to examine how water molecules mediate hydrophobic collapse of proteins. In the interdomain region, liquid water persists with a density 10 to 15% lower than in the bulk, even at small domain separations. Water depletion and hydrophobic collapse occur on a nanosecond time scale, which is two orders of magnitude slower than that found in the collapse of idealized paraffin-like plates. When the electrostatic protein-water forces are turned off, a dewetting transition occurs in the interdomain region and the collapse speeds up by more than an order of magnitude. When attractive van der Waals forces are turned off as well, the dewetting in the interdomain region is more profound, and the collapse is even faster.  相似文献   

13.
Analysis of global positioning system data shows that the rate of crustal deformations in the Tokai region of Japan, a seismic gap area, changed over the past 18 months. Kalman filtering analysis shows aseismic slip on the plate boundary in the western Tokai region centered on Lake Hamana, adjacent to the anticipated Tokai earthquake source area. The cumulative moment magnitude reaches 6.7 in June 2002 with a relative slip increase northeast of Lake Haman from January 2002. An existence of aseismic slip in the western Tokai supports the hypothesis of a silent event as the cause of uplifting several days before the 1944 Tonankai earthquake.  相似文献   

14.
The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.  相似文献   

15.
Bird P 《Science (New York, N.Y.)》1988,239(4847):1501-1507
One hypothesis for the information of the Rocky Mountain structures in late Cretaceous through Eocene time is that plate of oceanic lithosphere was underthrust horizontally along the base of the North American lithosphere. The horizontal components of the motion of this plate are known from paleomagnetism, and the edge of the region of flat slab can estimated from reconstructed patterns of volcanism. New techniques of finite-element modeling allow prediction of the thermal and mechanical effects of horizontal subduction on the North American plate. A model that has a realistic temperature-dependent rheology and a simple plane-layered initial condition is used to compute the consequences of horizontal underthrusting in the time interval 75 million to 30 million years before present. Successful prediction of this model include (i) the location, amount, and direction of horizontal shortening that has been inferred from Laramide structures; (ii) massive transport of lower crust from southwest to northeast; (iii) the location and timing of the subsequent extension in metamorphic core complexes and the Rio Grande rift; and (iv) the total area eventually involved in Basin-and-Range style extension. In a broad sense, this model has predicted the belt of Laramide structures, the transport of crust from the coastal region to the continental interior, the subsequent extension in metamorphic core complexes and the Rio Grande rift, and the geographic region of late Tertiary Basin-and-Range extension. Its principal defects are that (i) many events are predicted about 5 million to 10 million years too late and (ii) the wave of crustal thickening does not travel far enough to the east. Reasonable modifications to the oceanic plate kinematics and rheologies that were assumed may correct these defects. The correspondence of model predictions to actual geology is already sufficiently close to show that the hypothesis that horizontal subduction caused the Laramide orogeny is probably correct. The Rocky Mountain thrust and reverse faults formed in an environment of east-west to northeast-southwest compressive stress that was caused by the viscous coupling between the oceanic plate and the base of the North American crust. Nonuniform crustal thickening by simple-shear transport also caused relative uplifts; therefore, this model is consistent with both of the range-forming mechanisms that have been inferred (1). A new proposal that arises from this simulation is that horizontal subduction also caused the subsequent extensional Basin-and-Range taphrogeny by stripping away the mantle lithosphere so that the crust was exposed to hot asthenosphere after the oceanic slab dropped away.  相似文献   

16.
Changes in the ground surface tilt and in the rate of seismicity indicate that an aseismic deformation event may have occurred between 1978 and 1980 along the plate boundary in the eastern Aleutians, Alaska, within the Shumagin seismic gap. Pavlof Volcano was unusually quiescent during this period. The proposed event would cause an increase of stress on the shallow locked portion of the plate boundary, bringing it closer to rupture in a great earthquake.  相似文献   

17.
Dilational processes accompanying earthquakes in the long valley caldera   总被引:1,自引:0,他引:1  
Regional distance seismic moment tensor determinations and broadband waveforms of moment magnitude 4.6 to 4.9 earthquakes from a November 1997 Long Valley Caldera swarm, during an inflation episode, display evidence of anomalous seismic radiation characterized by non-double couple (NDC) moment tensors with significant volumetric components. Observed coseismic dilation suggests that hydrothermal or magmatic processes are directly triggering some of the seismicity in the region. Similarity in the NDC solutions implies a common source process, and the anomalous events may have been triggered by net fault-normal stress reduction due to high-pressure fluid injection or pressurization of fluid-saturated faults due to magmatic heating.  相似文献   

18.
Subducting seamounts are thought to increase the normal stress between subducting and overriding plates. However, recent seismic surveys and laboratory experiments suggest that interplate coupling is weak. A seismic survey in the Japan Trench shows that a large seamount is being subducted near a region of repeating earthquakes of magnitude M approximately 7. Both observed seismicity and the pattern of rupture propagation during the 1982 M 7.0 event imply that interplate coupling was weak over the seamount. A large rupture area with small slip occurred in front of the seamount. Its northern bound could be determined by a trace of multiple subducted seamounts. Whereas a subducted seamount itself may not define the rupture area, its width may be influenced by that of the seamount.  相似文献   

19.
The Morgan Hill, California, earthquake (magnitude 6.1) of 24 April 1984 ruptured a 30-kilometer-long segment of the Calaveras fault zone to the east of San Jose. Although it was recognized in 1980 that an earthquake of magnitude 6 occurred on this segment in 1911 and that a repeat of this event might reasonably be expected, no short-term precursors were noted and so the time of the 1984 earthquake was not predicted. Unilateral rupture propagation toward the south-southeast and an energetic late source of seismic radiation located near the southeast end of the rupture zone contributed to the highly focused pattern of strong motion, including an exceptionally large horizontal acceleration of 1.29g at a site on a dam abutment near the southeast end of the rupture zone.  相似文献   

20.
Southwestern Colombia and northern Ecuador were shaken by a shal-low-focus earthquake on 12 December 1979. The magnitude 8 shock, located near Tumaco, Colombia, was the largest in northwestern South America since 1942 and had been forecast to fill a seismic gap. Thrust faulting occurred on a 280- by 130-kilometer rectangular patch of a subduction zone that dips east beneath the Pacific coast of Colombia. A 200-kilometer stretch of the coast tectonically subsided as much as 1.6 meters; uplift occurred offshore on the continental slope. A tsunami swept inland immediately after the earthquake. Ground shaking (intensity VI to IX) caused many buildings to collapse and generated liquefaction in sand fills and in Holocene beach, lagoonal, and fluvial deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号