首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
高楠  窦秀静  杨洋  单安山 《畜牧兽医学报》2020,51(10):2349-2358
肠道是营养物质消化、吸收的主要器官,但易受外界环境刺激,导致炎症性肠病(inflammatory bowel disease,IBD)的发生,严重危害动物肠道健康。膳食氨基酸在促进肠道发育、维持肠道健康方面发挥重要作用,其主要通过调控腺苷酸活化蛋白激酶(AMP-activated kinase,AMPK)、雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)、丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)、Toll样受体(Toll-like receptors,TLRs)、核苷酸结合寡聚化结构域(nucleotide binding oligomerization domain,NOD)/核因子-κB(nuclear factor kappa-B,NF-κB)等信号通路影响肠上皮细胞生理活动、改善肠道屏障功能、减轻肠道氧化损伤、调节炎性因子的产生、提高内源抗菌肽表达,进而预防和治疗IBD。本文综述了IBD的基本特征、氨基酸在IBD中的作用及其信号通路,以及氨基酸在畜禽生长中维持肠道健康的作用与应用,为膳食营养素防治IBD提供有效线索与策略。  相似文献   

2.
Besides its primary role in the digestion and absorption of nutrients, the intestine also interacts with a complex external milieu, and is the first defense line against noxious pathogens and antigens. Dysfunction of the intestinal barrier is associated with enhanced intestinal permeability and development of various gastrointestinal diseases. The branched‐chain amino acids (BCAAs) are important nutrients, which are the essential substrates for protein biosynthesis. Recently, emerging evidence showed that BCAAs are involved in maintaining intestinal barrier function. It has been reported that dietary supplementation with BCAAs promotes intestinal development, enhances enterocyte proliferation, increases intestinal absorption of amino acids (AA) and glucose, and improves the immune defenses of piglets. The underlying mechanism of these effects is mediated by regulating expression of genes and proteins associate with various signaling pathways. In addition, BCAAs promote the production of beneficial bacteria in the intestine of mice. Compelling evidence supports the notion that BCAAs play important roles in both nutrition and intestinal health. Therefore, as functional amino acids with various physiological effects, BCAAs hold key roles in promoting intestinal development and health in animals and humans.  相似文献   

3.
小檗碱是传统中药黄连等植物的主要活性成分,具有抗菌消炎、调节机体免疫等作用,可改善由炎症性肠病(IBD)导致的肠道屏障损伤。小檗碱通过抑制Toll样受体(TLRs)/核转录因子κB(NF⁃κB)、Janus活化激酶(JAK)/信号转导与转录激活子(STAT)信号通路和激活胰岛素样生长因子1(IGF⁃1)/胰岛素样生长因子结合蛋白(IGFBPs)信号通路,缓解IBD引起的肠道机械屏障、化学屏障、免疫屏障和微生物屏障功能损伤。本文就小檗碱的来源及理化性质、IBD的病理特征、小檗碱对IBD肠道屏障的修复作用及其信号通路进行综述,以期为畜牧生产中保护动物肠道健康提供参考。  相似文献   

4.
作为维持哺乳动物生命活动重要的"生物工厂",乳腺利用从流经血液中摄取的氨基酸等营养物质为底物合成乳蛋白。研究证实,氨基酸还可作为一种信号因子,通过乳腺内多种信号级联传导通路,调控乳蛋白基因的转录及翻译过程,从而影响乳腺中乳蛋白的合成。酪氨酸蛋白激酶-信号转导子和转录激活子(JAK-STAT)信号通路和哺乳动物雷帕霉素靶蛋白(m TOR)信号通路是乳蛋白基因转录和翻译过程中的主要调控路径。本文综述了乳腺JAKSTAT和m TOR信号通路的分子机制及氨基酸通过这些通路调控乳蛋白合成的研究进展,旨在进一步阐明氨基酸调控乳蛋白合成的作用机理。  相似文献   

5.
白藜芦醇(resveratrol, RES)是一种天然的非黄酮类多酚化合物,广泛存在于多种植物组织中,如葡萄、虎杖和花生等,是植物抵御病原微生物入侵和维持自身稳态的重要物质,因此也被称作植物抗毒素。RES具有良好的抗氧化、抗炎和抗菌特性,在改善动物抗逆性、提高免疫能力和维持肠道健康等方面发挥重要作用。RES通过调控核因子E2相关因子2(nuclear factor E2-related factor 2,Nrf2)-Kelch样环氧氯丙烷相关蛋白-1(Kelch-like epichlorohydrin-related protein-1,keap1)促进畜禽体内Nrf2因子的表达,提高抗氧化因子表达和抗氧化酶活性,缓解氧化应激;通过核因子-κB (nuclear factor kappa-B,NF-κB)信号通路降低机体炎性因子表达水平,减少炎症反应。在动物肠道健康方面,RES可通过调控Wnt/β-连环蛋白(Wnt/β-catenin)信号通路促进肠道上皮细胞增殖分化,改善肠道黏膜屏障完整性,促进肠道微生物定植,进而改善肠道菌群结构。在动物生产中,RES作为饲料添加剂可提高动物的生长...  相似文献   

6.
In recent years, many studies have shown that the intestinal microflora has various effects that are linked to the critical physiological functions and pathological systems of the host. The intestinal microbial community is widely involved in the metabolism of food components such as protein, which is one of the essential nutrients in diets. Additionally, dietary protein/amino acids have been shown to have had a profound impact on profile and operation of gut microbiota. This review summarizes the current literature on the mutual interaction between intestinal microbiota and protein/amino acid metabolism for host mucosal immunity and health.  相似文献   

7.
TOR(target of rapamycin)是一种进化上十分保守的丝氨酸(Ser)/苏氨酸(Thr)蛋白激酶,可以感知营养状况、能量、生长因子等信号,进而调节细胞的生长、增殖和凋亡等生理进程.本文综述了TOR的上、下游信号传导通路及各种氨基酸对TOR信号传导通路的影响,为探讨氨基酸调控蛋白质合成的作用机制及建立精确...  相似文献   

8.
9.
The dialogue between the mammalian conceptus(embryo/fetus and associated membranes) involves signaling for pregnancy recognition and maintenance of pregnancy during the critical peri-implantation period of pregnancy when the stage is set for implantation and placentation that precedes fetal development. Uterine epithelial cells secrete and/or transport a wide range of molecules, including nutrients,collectively referred to as histotroph that are transported into the fetal-placental vascular system to support growth and development of the conceptus. The availability of uterine-derived histotroph has long-term consequences for the health and well-being of the fetus and the prevention of adult onset of metabolic diseases. Histotroph includes numerous amino acids, but arginine plays a particularly important role as a source of nitric oxide and polyamines required for fetal-placental development in rodents, swine and humans through mechanisms that remain to be fully elucidated. Mechanisms whereby arginine regulates expression of genes via the mechanistic target of rapamycin cell signaling pathways critical to conceptus development, implantation and placentation are discussed in detail in this review.  相似文献   

10.
Fungal biochemical pathways can yield various compounds that are not considered to be necessary for their growth and are thus referred to as secondary metabolites. These compounds have been found to have wide ranging biological effects and include potent poisons(mycotoxins). Mycotoxins invariably contaminate crops and(thus) animal feeds. The intestine is the key link between ingested mycotoxins and their detrimental effects on the animal. Effects on the intestine, or intestinal environment, and immune system have been reported with various mycotoxins. These effects are almost certainly occurring across species. Most, if not all, of the reported effects of mycotoxins are negative in terms of intestinal health, for example, decreased intestinal cell viability, reductions in short chain fatty acid(SCFA)concentrations and elimination of beneficial bacteria, increased expression of genes involved in promoting inflammation and counteracting oxidative stress. This challenge to intestinal health will predispose the animal to intestinal(and systemic) infections and impair efficient digestion and absorption of nutrients, with the associated effect on animal productivity.  相似文献   

11.
Maintaining and optimising the intestinal barrier (IB) function in poultry has important implications for the health and performance of the birds. As a key aspect of the IB, intestinal permeability (IP) is mainly controlled by complex junctional proteins called tight junction proteins (TJ) that link enterocytes together. The disruption of TJ is associated with increased gut leakage with possible subsequent implications for bacterial translocation, intestinal inflammation, compromised health and performance of the birds. Despite considerable data being available for other species, research on IP in broiler chickens and in general avian species is still an understudied topic. This paper reviews the available literature with a specific focus on IP in broiler chickens with consideration given to practical factors affecting the IP, current assessment methods, markers and nutritional modulation of IP. Several experimental models to induce gut leakage are discussed including pathogens, rye-based diets, feed deprivation and stress-inducing agents such as exogenous glucocorticoids and heat stress. Although various markers including fluorescein isothiocyanate dextran, expression of TJ and bacterial translocation have been widely utilized to study IP, recent studies have identified a number of excreta biomarkers to evaluate intestinal integrity, in particular non-invasive IP. Although the research on various nutrients and feed additives to potentially modulate IP is still at an early stage, the most promising outcomes are anticipated for probiotics, prebiotics, amino acids and those feed ingredients, nutrients and additives with anti-inflammatory properties. Considerable research gaps are identified for the mechanistic mode of action of various nutrients to influence IP under different experimental models. The modulation of IP through various strategies (i.e. nutritional manipulation of diet) may be regarded as a new frontier for disease prevention and improving the health and performance of poultry particularly in an antibiotic-free production system.  相似文献   

12.
乳酸杆菌益生作用机制的研究进展   总被引:2,自引:0,他引:2  
乳酸杆菌作为益生菌广泛用于人和动物。本文综述了乳酸杆菌改善宿主健康的机制。乳酸杆菌可通过产生抗菌物质如乳酸、过氧化氢、细菌素,或者通过竞争营养或肠道黏附位点来抑制致病菌;通过诱导黏附素的分泌或阻止细胞凋亡而增强肠道的屏障功能,从而保护肠道。文章重点讨论了乳酸杆菌表面成分(表面蛋白、脂磷壁酸和肽聚糖)与肠道受体(C型凝集素受体、Toll样受体和 Nod样受体),阐述了他们结合后启动免疫调节信号,调控肠道免疫功能以发挥改善健康作用的机制。  相似文献   

13.
猪只日粮中添加纤维会在一定程度上降低营养物质的吸收效率,但是饲粮纤维可在猪只肠道后端进行一定程度的发酵,并产生大量的挥发性脂肪酸,具备了一定的营养作用.同时,也因此而降低猪只肠道pH,影响肠道菌群丰度及菌群结构.通过改变纤维日粮的组成来影响肠道中的菌群,发挥肠道上皮屏障功能,并且通过调节肠道微生物的组成来维持肠道微生物...  相似文献   

14.
Protein is quantitatively the most expensive nutrient in swine diets. Hence it is imperative to understand the physiological roles played by amino acids in growth, development, lactation, reproduction, and health of pigs to improve their protein nutrition and reduce the costs of pork production. Due to incomplete knowledge of amino acid biochemistry and nutrition, it was traditionally assumed that neonatal, post-weaning, growing-finishing, and gestating pigs could synthesize sufficient amounts of all "nutritionally nonessential amino acids" (NEAA) to support maximum production performance. Therefore, over the past 50 years, much emphasis has been placed on dietary requirements of nutritionally essential amino acids as building blocks for tissue proteins. However, a large body of literature shows that NEAA, particularly glutamine, glutamate, arginine and proline regulate physiological functions via cell signaling pathways, such as mammalian target of rapamycin, AMP-activated protein kinase, extracellular signal-related kinase, Jun kinase, mitogen-activated protein kinase, and NEAA-derived gaseous molecules (e.g., nitric oxide, carbon monoxide, and hydrogen sulfide). Available evidence shows that under current feeding programs, only 70% and 55% of dietary amino acids are deposited as tissue proteins in 14-day-old sow-reared piglets and in 30-day-old pigs weaned at 21 days of age, respectively. Therefore, there is an urgent need to understand the roles and dietary requirements of NEAA in swine nutrition. This review highlights the basic biochemistry and physiology of absorption and utilization of amino acids in young pigs to enhance the efficacy of utilization of dietary protein and to minimize excretion of nitrogenous wastes from the body.  相似文献   

15.
家禽肠道健康评价指标研究进展   总被引:1,自引:0,他引:1  
肠道是家禽消化和吸收营养物质的重要器官,同时也是机体防御的重要屏障。肠道多种屏障有机地结合在一起,共同抵御致病菌等有害物质的侵袭,保护动物肠道及机体健康。禽舍内温度、氨气等环境因子以及营养水平和营养物质等都会影响肠道健康。因此,了解并保障家禽肠道健康状况十分必要。本文主要通过总结和分析了肠道健康的评价指标,为深入研究家禽肠道健康进而防治肠道疾病、促进家禽健康生长提供理论依据。  相似文献   

16.
The intestine is not only critical for nutrient digestion and absorption, but also is the largest immune organ in the body.However, in pig production, inflammation induced by numerous factors, such as pathogen infection and stresses(e.g.,weaning), results in intestinal mucosal injury and dysfunction, and consequently results in poor growth of pigs. Dietary fatty acids not only play critical roles in energy homeostasis and cel ular membrane composition, but also exert potent effects on intestinal development, immune function, and inflammatory response. Recent studies support potential therapeutic roles for specific fatty acids(short chain and medium chain fatty acids and long chain polyunsaturated fatty acids) in intestinal inflammation of pigs. Results of these new lines of work indicate trophic and cytoprotective effects of fatty acids on intestinal integrity in pigs. In this article, we review the effect of inflammation on intestinal structure and function, and the role of specific fatty acids on intestinal health of pigs, especial y under inflammatory conditions.  相似文献   

17.
The intestine is not only critical for nutrient digestion and absorption, but also is the largest immune organ in the body. However, in pig production, inflammation induced by numerous factors, such as pathogen infection and stresses (e.g., weaning), results in intestinal mucosal injury and dysfunction, and consequently results in poor growth of pigs. Dietary fatty acids not only play critical roles in energy homeostasis and cellular membrane composition, but also exert potent effects on intestinal development, immune function, and inflammatory response. Recent studies support potential therapeutic roles for specific fatty acids (short chain and medium chain fatty acids and long chain polyunsaturated fatty acids) in intestinal inflammation of pigs. Results of these new lines of work indicate trophic and cytoprotective effects of fatty acids on intestinal integrity in pigs. In this article, we review the effect of inflammation on intestinal structure and function, and the role of specific fatty acids on intestinal health of pigs, especially under inflammatory conditions.  相似文献   

18.
乳蛋白是乳中重要的营养成分之一,超过90%的乳蛋白是乳腺利用从血液中摄取的氨基酸从头合成,因此在保证氨基酸充足供给的前提下,乳腺对氨基酸摄取率的高低是影响乳蛋白产量的关键因素。血液中的氨基酸不能自由扩散进出乳腺,需要由乳腺上皮细胞膜上特异的氨基酸转运载体(AAT)协助完成。而乳腺AAT活性受到营养物质和激素水平的调节,当乳腺感知到营养物质和激素水平变化的信号,能够通过激活或抑制以哺乳动物雷帕霉素靶蛋白复合物1(mTORC1)和一般性调控阻遏蛋白激酶2(GCN2)为核心的2条信号通路的活性,进而影响AAT活性,调节乳腺对氨基酸的摄取。本文主要从乳腺AAT的分类和功能、影响乳腺摄取氨基酸的主要因素以及调控乳腺氨基酸摄取的信号通路机制3个方面作一综述,旨在从氨基酸摄取的角度为提高乳蛋白的合成提供参考。  相似文献   

19.
It is widely known that branched chain amino acids(BCAA) are not only elementary components for building muscle tissue but also participate in increasing protein synthesis in animals and humans. BCAA(isoleucine, leucine and valine) regulate many key signaling pathways, the most classic of which is the activation of the m TOR signaling pathway. This signaling pathway connects many diverse physiological and metabolic roles. Recent years have witnessed many striking developments in determining the novel functions of BCAA including:(1) Insufficient or excessive levels of BCAA in the diet enhances lipolysis.(2) BCAA, especially isoleucine, play a major role in enhancing glucose consumption and utilization by up-regulating intestinal and muscular glucose transporters.(3)Supplementation of leucine in the diet enhances meat quality in finishing pigs.(4) BCAA are beneficial for mammary health, milk quality and embryo growth.(5) BCAA enhance intestinal development, intestinal amino acid transportation and mucin production.(6) BCAA participate in up-regulating innate and adaptive immune responses.In addition, abnormally elevated BCAA levels in the blood(decreased BCAA catabolism) are a good biomarker for the early detection of obesity, diabetes and other metabolic diseases. This review will provide some insights into these novel metabolic and physiological functions of BCAA.  相似文献   

20.
Recent molecular studies have revealed complex bacterial, fungal, archaeal, and viral communities in the gastrointestinal tract of dogs and cats. More than 10 bacterial phyla have been identified, with Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, and Actinobacteria constituting more than 99% of all gut microbiota. Microbes act as a defending barrier against invading pathogens, aid in digestion, provide nutritional support for enterocytes, and play a crucial role in the development of the immune system. Of significance for gastrointestinal health is their ability to ferment dietary substrates into short-chain fatty acids, predominantly to acetate, propionate, and butyrate. However, microbes can have also a detrimental effect on host health. Specific pathogens (e.g., Salmonella, Campylobacter jejuni, and enterotoxigenic Clostridium perfringens) have been implicated in acute and chronic gastrointestinal disease. Compositional changes in the small intestinal microbiota, potentially leading to changes in intestinal permeability and digestive function, have been suggested in canine small intestinal dysbiosis or antibiotic-responsive diarrhea. There is mounting evidence that microbes play an important role in the pathogenesis of canine and feline inflammatory bowel disease (IBD). Current theories for the development of IBD favor a combination of environmental factors, the intestinal microbiota, and a genetic susceptibility of the host. Recent studies have revealed a genetic susceptibility for defective bacterial clearance in Boxer dogs with granulomatous colitis. Differential expression of pathogen recognition receptors (i.e., Toll-like receptors) were identified in dogs with chronic enteropathies. Similarly to humans, a microbial dysbiosis has been identified in feline and canine IBD. Commonly observed microbial changes are increased Proteobacteria (i.e., Escherichia coli) with concurrent decreases in Firmicutes, especially a reduced diversity in Clostridium clusters XIVa and IV (i.e., Lachnospiraceae, Ruminococcaceae, Faecalibacterium spp.). This would indicate that these bacterial groups, important short-chain fatty acid producers, may play an important role in promoting intestinal health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号