首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
南京两种菜地土壤氨挥发的研究   总被引:40,自引:3,他引:40       下载免费PDF全文
在南京雨花区武警农场和栖霞区东阳科技站先后进行了秋季小青菜和秋冬季大白菜田间试验,研究菜地土壤施用氮肥后的氨挥发及其影响因素,氨挥发采用密闭室间歇密闭通气法测定。结果表明,小青菜试验地的pH为5 .4 ,施肥后土壤pH值也未高于6 .0 ,故氨挥发损失低(<0 .4 % ) ;而在pH为7.7的大白菜试验地上,控释尿素、低氮和高氮3个处理(施氮量分别为N 180、30 0和6 0 0kghm-2 )氨挥发率分别为0 .97%、12 .1%和17 1%。以上结果表明,土壤pH是影响菜地土壤氨挥发的主要因素,降低氮肥用量能明显减少氨挥发,而施用控释尿素是一种有效控制氨挥发损失的措施。大白菜不同施肥期的结果还表明,施尿素后降雨通过降低表层土壤氮的浓度而影响氨挥发,降雨离施肥期越近,雨量越大,氨挥发越小  相似文献   

2.
施肥培肥措施对春玉米农田土壤氨挥发的影响   总被引:1,自引:1,他引:1       下载免费PDF全文
采用通气法进行不同秸秆还田方式、施肥时期和方法对春玉米农田土壤氨挥发影响的研究。结果表明,秸秆还田同秋季耕翻深施肥结合,可以大幅度减少春玉米农田土壤氨挥发损失。试验测定期间,春施肥各处理的田间土壤氨挥发总量较大且处理间有明显差异,特别是秸秆直接还田春施肥处理(S3)氨挥发量最高,达30.36kg/hm2,较不施肥处理多挥发26.91kg/hm2,田间氨挥发损失占到施N肥总量的17.94%;秋施肥各处理的田间土壤氨挥发总量介于5.57~6.92kg/hm2间,田间氨挥发损失仅占施N肥总量的0.28%~1.18%,各处理间差异甚微,氨挥发损失总量极低。春施肥同秋施肥处理间比较,田间土壤氨挥发总量也存在明显差异,以秸秆覆盖间(S2、A2)差异最小,为2.65kg/hm2,以秸秆直接还田间(S3、A3)差异最大,为25.58kg/hm2,氨挥发损失增加了1.77%~17.06%。  相似文献   

3.
不同施氮量下双季稻连作体系土壤氨挥发损失研究   总被引:11,自引:2,他引:9  
采用密闭室间歇通气法研究双季稻连作体系不同施氮量下土壤氨挥发损失。结果表明,早稻氨挥发损失主要发生在施肥后的15d内,第3~5d出现峰值,损失总量为N 22.60~162.0 kg /hm2,损失率为 29.29%~52.32%;晚稻氨挥发主要发生在施肥后的11d内,第3 d出现峰值,损失总量为N 22.35~141.4 kg /hm2,损失率为35.75%~46.82%。早、晚稻各生育期连作周期的氨挥发量均与施氮量呈显著线性关系。  相似文献   

4.
露地种植大白菜的氮肥效应与氮素损失研究   总被引:7,自引:0,他引:7  
采用田间小区和微区试验,研究了施用化学氮肥在露地大白菜上的氮肥效应和氮素损失。氮素总损失用15N示踪法测定,氨挥发用通气密闭室法测定,反硝化损失用乙炔抑制原状土柱培养法测定,不加乙炔测定N2O排放。结果表明,施用化学氮肥增产显著,用差值法计算得到的氮肥利用率在25.3%4~7.2%之间,相应的示踪法氮肥利用率为18.1%2~4.6%。化学氮肥显著增加了氨挥发、反硝化和N2O排放等气态氮损失;其中氨挥发占施氮量的0.97%1~7.1%,反硝化占4.33%8~.55%,N2O排放在1.09%1~.63%之间变化。大白菜收获时9.2%~10.9%的标记尿素被淋洗到40.cm以下土层。试验期间尿素的氮素总损失达41.1%4~8.1%,以表观淋洗损失最为严重,其次是氨挥发,而反硝化损失最低。与普通尿素相比,包衣尿素明显降低了氨挥发。  相似文献   

5.
春秋季红壤旱地氨挥发对氮施用量、气象因子的响应   总被引:1,自引:0,他引:1  
通过红壤旱地种植牧草马唐和蔬菜冬萝卜轮作试验,研究了在春秋二季红壤旱地氨挥发对不同施氮量和气象因子的响应。结果表明,红壤旱地春季牧草实验,氮肥处理N90、N160和N230,氨挥发持续10~17d,在施肥后6~8d达到峰值,峰值(扣除对照N0)分别为N0.11、0.57和1.84kghm-2d-1。秋季氮肥处理N70、N130、N190和N250以基肥和以水带肥追施(基/追比为7∶3)氨挥发持续时间均为10~11d,基肥氨挥发峰值(扣除对照N0)分别为N0.02、0.05、0.06kghm-2d-1和0.09kghm-2d-1;追肥氨挥发峰值(扣除对照N0)分别为N0.05、0.22、0.38kghm-2d-1和0.72kghm-2d-1。不同施氮处理,春季累计氨挥发量为N0.67~5.16kghm-2,占施入肥料N的0.74%~2.24%;秋季累计氨挥发量为N0.37~3.04kghm-2,占施入肥料N的1.31%~3.69%。红壤旱地春秋二季氨挥发量(y)均随施N量(x)的提高而指数递增,其关系式分别为:y=0.1576e0.0146x和y=0.1826e0.0112x。显著性检验表明,春秋两季不同施氮量处理之间,土壤氨挥发量及挥发通量差异均达到显著水平。春秋二季基肥氨挥发总量和通量均与气温、气压、蒸发量和土温等环境气象因子有较好的相关性(p<0.05)。  相似文献   

6.
不同施氮量对冬小麦田氮去向和气态损失的影响   总被引:9,自引:1,他引:9  
该文研究氮肥对冬小麦田肥料氮素去向和气态损失的影响。通过布置田间微区试验,采用15N微区示踪技术和密闭室间歇通气法、密闭式静态箱法田间原位监测冬小麦氮肥的去向和气态损失。随着施氮量的增加,冬小麦产量和地上部吸氮量增加,但当施氮量高于150 kg/hm2时,产量出现降低的趋势,地上部吸氮比例也以土壤氮为主转变为肥料氮为主。4个施氮处理N75、N150、N225和N300的0-100 cm的土壤氮残留分别为32.6,26.8,34.7,40.6 kg/hm2。冬小麦田间土壤氨挥发排放总量随着施氮量的增加而增加,排放量在6.03~13.26kg/hm2之间,占施N量的5.4%~11.4%。N2O排放造成的氮素损失比例为0.08%~0.28%,苗期是冬小麦季N2O排放的主要时期。化肥氮在冬小麦当季作物吸收、土壤残留及损失量分别为37.2%~50.2%,26.7%~40.6%,17.4%~22.2%,且随着施氮量的增加而升高。在本试验条件下,150 kg/hm2是适宜的氮肥用量,产量最高,土壤氮残留最低,气态损失占肥料氮总损失的比例高于75 kg/hm2处理,但差异不显著(p0.05)。因此控制氮肥用量是提高氮肥利用率的一项关键措施。  相似文献   

7.
基施氮肥对麦田冬前氨挥发损失的影响   总被引:2,自引:1,他引:1  
通过田间原位测定农田氨挥发的方法,研究了京郊不同基施氮肥水平的麦田冬前土壤氨挥发情况及其时间变化规律。结果表明,麦田土壤氨挥发主要发生在施肥后1~2周内,以施肥后连续采样14 d的氨挥发累积量作为小麦冬前氨挥发总排放量,高施氮量处理的氨挥发总量大于低施氮量处理的氨挥发总量,50~400 kg·hm-2不同施肥水平下土壤的氨挥发总量(N)为1.83~14.29 kg·hm-2,占施氮量的2.04%~6.74%。温度回升也导致了氨挥发量小范围升高。  相似文献   

8.
长期施肥条件下小麦农田氨挥发损失的原位研究   总被引:14,自引:3,他引:14  
采用密闭通气法在长期定位试验基础上研究了连作小麦的原位氨挥发损失。结果表明,小麦昼夜都有氨挥发损失,全天的氨挥发速率在小麦孕穗期为14.69±4.86.g/(hm2·d),灌浆期为18.84±4.09.g/(hm2·d),成熟期为20.91±3.28.g/(hm2·d);昼间的氨挥发损失随小麦生育期的推移迅速增大。单施N、P的氨挥发速率进入灌浆期后开始大幅度增加,单施M的氨挥发速率进入成熟期才大幅度增加。肥料配施可以明显增加小麦孕穗期昼间氨挥发损失速率,不同程度地降低了小麦灌浆期和成熟期昼间氨挥发速率。作物夜间的氨挥发损失小于白天相同处理的氨挥发损失,占白天氨挥发损失平均速率的比例也因生育期而异,孕穗期57.34%±15.93%、灌浆期37.78%±17.84%、成熟期13.73%±11.19%。小麦生育期氨挥发损失与土壤养分含量有一定的相关关系,灌浆期降水对氨挥发的影响也因施用肥料的不同而异。  相似文献   

9.
华北平原中部夏玉米农田不同施氮水平氨挥发规律   总被引:1,自引:1,他引:0       下载免费PDF全文
以华北平原中部地区潮土为对象,研究了撒施不同水平尿素对夏玉米季氨挥发的影响,为合理施用氮肥和减少农田氨挥发损失提供依据。结合当地农民种植与施氮习惯,试验设置8个施氮水平,分别为0(N0)、50(N1)、100(N2)、150(N3)、200(N4)、250(N5)、300(N6)、400(N7)kg·hm~(-2),利用田间试验原位测定-密闭室连续抽气法测定氨挥发。结果表明,夏玉米种植体系在施入氮肥后发生了明显的氨挥发,且氨挥发主要发生在施肥后5 d内,在施肥后1~3 d出现氨挥发速率峰值,基肥与追肥后氨挥发通量最大分别达到N 2.35、5.30 kg·hm~(-2)·d~(-1),基肥期氨挥发量在N 3.76~9.82 kg·hm~(-2),追肥期氨挥发量在N 5.79~27.29 kg·hm~(-2)。在整个夏玉米生长期间,氨挥发量随着氮肥施用量的增加而增加。施氮量为200 kg·hm~(-2)条件下,氨挥发量相对较低,夏玉米产量为10 721.87 kg·hm~(-2),高于其他施氮水平处理的玉米产量。可见,合理的氮肥用量能够兼顾产量和生态环境,京郊夏玉米田间土壤在200 kg·hm~(-2)的氮肥水平下,玉米产量最高且氨挥发损失较低。  相似文献   

10.
低量施氮对小青菜生长和氮素损失的影响   总被引:1,自引:5,他引:1  
采用田间试验和微区试验相结合,研究了低量施氮对小青菜(Brassica.chinensis)产量、氮肥利用率和氮素损失的影响,其中氮素总损失用15N示踪法测定,氨挥发用通气密闭室法测定,反硝化损失用乙炔抑制-原状土柱培养法测定,不加乙炔测定N2O排放。结果表明,施用氮肥显著增加了小青菜的产量和吸氮量,在75和150kg/hm2氮肥水平下,氮肥利用率分别为46.8%和39.4%。由于试验地土壤pH低(5.38),各处理的氨挥发均很低且差异不大,施用氮肥没有增加氨挥发。试验地土壤反硝化损失和N2O排放量较高,分别为N4.34kg/hm2/sup和N2.65kg/hm2,施用氮肥没有增加反硝化损失和N2O排放,表明氮源不是反硝化作用的限制因子。在N75和150kg/hm2两个施氮水平下,氮素回收率分别为103%和91.3%,并且土壤残留氮主要累积在020cm土层,表明肥料氮损失很少,这与氨挥发、反硝化损失较低的结果相吻合。  相似文献   

11.
添加脲酶抑制剂NBPT对麦秆还田稻田氨挥发的影响   总被引:13,自引:2,他引:11  
氨挥发是稻田氮素损失的重要途径,为探明脲酶抑制剂NBPT对小麦秸秆还田稻田中氨挥发的影响,采用密闭室通气法,在太湖地区乌珊土上,研究了脲酶抑制剂n-丁基硫代磷酰三胺(NBPT)对小麦秸秆还田稻田中施肥后尿素水解和氨挥发动态变化的影响。结果表明:稻田氨挥发损失主要集中在基肥和分蘖肥时期。添加NBPT可明显延缓尿素水解,推迟田面水NH4+-N峰值出现的时间,并降低NH4+-N峰值,降低了田面水氨挥发速率和挥发量。NBPT的效果在基肥和分蘖肥施用后尤为明显,不加NBPT时施入的尿素在2~3 d内基本水解彻底,NH4+-N和氨挥发速率在第2 d即达到峰值,两次施肥后NH4+-N峰值分别为132.3 mg·L-1和66.3mg·L-1,氨挥发峰值为15.6 kg·hm-2·d-1和10.4 kg·hm-2·d-1;而添加NBPT后,NH4+-N峰值推迟至施肥后第4 d出现,NH4+-N峰值降至70.7 mg·L-1和51.6 mg·L-1,氨挥发峰值降至4.7 kg·hm-2·d-1和2.6 kg·hm-2·d-1。添加NBPT使稻田氨挥发损失总量从73.3 kg(N)·hm-2(占施氮量的24.4%)降低至34.5 kg(N)·hm-2(占施氮量的11.5%),降低53%。在添加小麦秸秆稻田中添加NBPT通过延缓尿素水解而显著降低了氨挥发损失。  相似文献   

12.
华北山前平原农田生态系统氮通量与调控   总被引:4,自引:2,他引:2  
针对华北太行山前平原冬小麦-夏玉米轮作农田, 研究农田常规施肥[400 kg(N)·hm-2·a-1]条件下作物氮素吸收与损失通量过程, 并根据各氮素输出通量特征开展管理调控。研究结果表明, 全年小麦-玉米轮作农田系统氮输入总量为561~580 kg(N)·hm-2, 输出量468~494 kg(N)·hm-2, 两季作物总盈余86~93 kg(N)·hm-2, 其中有机氮为24~36 kg·hm-2。氨挥发和NO3--N 淋溶损失是该区域农田氮素损失的主要途径, 是氮肥利用率低的重要原因。平均每年因氨挥发而造成的肥料氮损失量为60 kg(N)·hm-2, NO3--N 淋溶损失量为47~84kg(N)·hm-2, 两者占施肥总量的30%。每年因硝化-反硝化过程造成的肥料损失很小, 仅为5.0~8.7 kg(N)·hm-2。通过施肥后适时灌水、合理调控灌水时间与用量, 以及利用秸秆还田与肥料混合施用等管理措施可改善氮素的迁移和转化规律, 有效减少氨挥发和NO3--N 淋溶损失, 并结合缓/控释肥与精准施肥技术, 充分利用土壤本身矿质氮素, 可有效提高养分利用效率和作物产量, 改善农田生态环境与促进农业持续和谐发展。  相似文献   

13.
秸秆还田与配施化肥是未来农业持续发展的方向。为明确秸秆还田条件下获得较高产量和最佳经济效益的氮肥用量, 研究设计了秸秆全量(6 t·hm-2)还田条件下N0、N1、N2、N3 和N4 5 个氮肥用量的田间试验(肥料N 用量分别为0、120 kg·hm-2、180 kg·hm-2、240 kg·hm-2、300 kg·hm-2)。两年试验结果表明: 秸秆还田条件下水稻产量随着氮肥用量的增加呈先增加后降低的趋势, 2007 年、2008 年水稻最高产量分别为8 543 kg·hm-2、7 772 kg·hm-2, 施氮处理比无氮处理(N0)分别增产9.6%~19.4%、13.0%~17.8%; 当氮肥用量达300 kg·hm-2 时, 边际产量、氮肥农学利用率、结实率、千粒重、新增纯收益率以及边际成本报酬率均显著低于其余处理(N0~N3), 其中2008 年上述各指标值分别为-4.5 kg·kg-1、3.0 kg·kg-1(N)、69.9%、25.1 g、0.91%、1.03 元·元-1。由水稻产量、经济效益与氮肥用量拟合方程求得最大经济收益时的氮肥用量为218~223kg·hm-2, 水稻产量和经济收益分别为7 686~8 295 kg·hm-2 和7 413~8 607 元·hm-2。因此, 秸秆还田条件下合理配施氮肥, 不仅可以获得最佳经济收益, 还可以获得较高水稻产量和氮肥利用率。  相似文献   

14.
氮硫配施对冬小麦氮硫吸收转运及利用效率的影响   总被引:1,自引:1,他引:0  
采用二元二次正交旋转组合设计,通过田间试验研究了陕西关中地区氮硫配施对冬小麦氮硫素吸收、转运及利用效率的影响。试验施氮量[kg(N)·hm-2]设75(N1)、108(N2)、187.5(N3)、267(N4)和300(N5)5个水平,施硫量[kg(S)·hm-2]设75(S1)、97.5(S2)、150(S3)、202.5(S4)和225(S5)5个水平,组成N4S4、N4S2、N2S4、N2S2、N5S3、N1S3、N3S5、N3S1、N3S3 9个处理。结果表明:拔节期至开花期是冬小麦干物质和氮、硫积累的高峰期,积累量分别占全生育期内干物质和氮、硫积累量的43.33%~48.42%、28.71%~44.77%和40.11%~50.43%。氮素向籽粒的转运率(63.61%~70.64%)远高于硫素向籽粒的转运率(10.63%~30.98%);氮硫配施促进了小麦花后营养器官氮硫向籽粒的运转,同时增加了总转运量对籽粒氮硫的贡献率。在N2(108 kg·hm-2)和S2(97.5 kg·hm-2)水平,氮硫积累量及转运量随施硫量或施氮量的增加而增加;在N3(187.5 kg·hm-2)和S3(150 kg·hm-2)水平,则随施硫量或施氮量的增加先增加后趋于稳定。植株体内的氮素和硫素吸收累积量具有极显著相关关系。综合考虑氮素(硫素)表观利用率及生理效率,在施氮量(170.64~204.52 kg·hm-2)与施硫量(97.35~139.32 kg·hm-2)水平下,氮硫肥利用率较高。因此,在冬小麦栽培过程中,可以通过调节施氮量和施硫量,充分利用氮硫交互效应,提高氮硫的吸收、分配及利用效率。  相似文献   

15.
针对目前我国北方地区农业面源污染严重、氮肥利用率低的现象,选择北方典型稻区——天津市宝坻水稻种植区为研究区,以整个稻田生态系统为基本研究单元,建立氮素输入和输出模型,并以水稻普通种植模式(CK,水稻单作)为对照进行田间试验,研究水稻立体种养殖模式(RF,水稻-鱼-虾-蟹共作+田埂+沟渠)氮素的吸收利用率。结果表明,两种水稻种植模式氮素的输入主要来自灌溉、施肥和降雨,其中RF输入氮肥128.25 kg(N)·hm-2,与CK相比减少11.75 kg(N)·hm-2,与南方种植水稻地区相比,氮肥施用量减少14%~52%,RF从源头减少氮素输入,降低了营养元素流失风险。CK氮素的输出主要包括土壤固定、氨挥发、侧渗流失和水稻吸收,RF与CK相比,氮素的输出还包括鱼虾蟹的吸收,由于RF特殊的田埂-沟渠生态净化系统,通过侧渗损失的氮素(以NO3--N为主)较CK减少9.33 kg(N)·hm-2。试验期间,RF和CK氨累积挥发量分别为8.91kg(N)·hm-2和21.54 kg(N)·hm-2,RF氨挥发速率为6.9%,比CK低8.5%,比全国平均水平低10.3%;收获期,RF与CK相比,水稻产量增加6.65%,表明稻田养殖鱼虾蟹不会降低水稻产量。RF氮素利用率为64.3%,比CK高19.7%,既实现了水稻丰产,又减少了氮素流失。因此,在满足水稻灌溉需求的北方地区,可以开展水稻立体种养殖模式,以控制北方地区农业面源污染。  相似文献   

16.
2012年3—10月在甘肃省河西走廊石羊河绿洲灌区进行大田试验,研究了不同施氮水平[0、140 kg(N)·hm-2、221 kg(N)·hm-2和300 kg(N)·hm-2]对小麦//玉米间作系统生产力、间作优势和水分吸收利用的影响。研究结果表明:当施氮量达221 kg(N)·hm-2时,小麦单作籽粒产量(5 036 kg·hm-2)和水分利用效率(25.13 kg·hm-2·mm-1)达最大值;当施氮量达300 kg(N)·hm-2时,小麦间作籽粒产量(3 078 kg·hm-2)和水分利用效率(39.76kg·hm-2·mm-1)、玉米单作籽粒产量(9 921 kg·hm-2)和水分利用效率(38.96 kg·hm-2·mm-1)、玉米间作籽粒产量(6 895 kg·hm-2)和水分利用效率(46.31 kg·hm-2·mm-1)达最大值;当施氮量为0 kg(N)·hm-2时,小麦相对于玉米的竞争力(0.049)达最大值;当施氮量为300 kg(N)·hm-2时,小麦//玉米间作的土地当量比(1.33)达最大值;当施氮量为140 kg(N)·hm-2时,小麦相对于玉米的水分竞争比率(0.98)达最大值。与单作相比,小麦//玉米间作具有显著的间作产量优势和水分利用优势。间作方式中小麦的竞争能力大于玉米;小麦、玉米两作物对水分生理需求时间有效性差异是小麦//玉米间作高效利用水分资源的基础,合理施氮能促进间作种植产量优势和水分利用优势的发挥。  相似文献   

17.
氮磷钾肥用量对紫云英产量效应的研究   总被引:4,自引:1,他引:3  
采用"3414"肥料效应试验设计方案对紫云英氮、磷、钾肥施用效应及养分的交互作用进行了研究,结果表明:与不施肥处理(CK)相比,13个施肥处理紫云英鲜草平均增产21.1 t·hm-2,平均产量为不施肥处理的2.35倍;分别固定磷(P2O5 60 kg·hm-2)、钾(K2O 60 kg·hm-2)肥,氮(N75 kg·hm-2)、钾(K2O 60 kg·hm-2)肥和氮(N 75 kg·hm-2)、磷(P2O5 60 kg·hm-2)肥用量,在施N 0~112.5 kg·hm-2,P2O5 0~90 kg·hm-2和K2O 0~90 kg·hm-2范围内,紫云英产量随相应肥料用量的增加而显著提高,N、P、K各养分施用的最高增产率分别为65.0%、27.8%和44.5%;从养分效率看,中量水平的氮(N 75.0 kg·hm-2)、磷(P2O5 60 kg·hm-2)和低量水平的钾(K2O 30 kg·hm-2)增产效果最好;氮、磷、钾肥之间存在一定的交互作用,互相影响肥效的发挥,中量水平的养分用量(N 75.0 kg·hm-2、P2O5 60 kg·hm-2和K2O 60 kg·hm-2)有利于各养分效果的发挥.结果说明,施肥对紫云英增产效果明显,氮、磷、钾肥用量和配比是影响紫云英产量的重要因素.  相似文献   

18.
RZWQM模拟小麦 玉米轮作系统氮素运移及损失特征   总被引:2,自引:1,他引:2  
本文以位于华北平原的河北省农林科学院大河试验站冬小麦-夏玉米轮作系统为研究对象,应用RZWQM(Root Zone Water Quality Model)模型对华北地区2010年冬小麦-夏玉米的1个轮作周期内土壤剖面水分和剖面硝态氮累积、作物产量、硝态氮淋失以及氨挥发进行模型模拟。本文利用并通过RZWQM模型在不同梯度施肥情况下讨论了施肥量对小麦-玉米轮作体系中硝态氮淋溶和氨挥发特性,并尝试通过拟合出的回归曲线来确定施氮量和硝态氮淋失和氨挥发之间的关系。设置冬小麦-夏玉米轮作周期施纯氮量分别为575 kg-hm-2(N3)、400 kg-hm-2(N2)、215 kg-hm-2(N1)和0 kg-hm-2(N0)4个处理,应用轮作周期中玉米数据进行模型参数率定,应用小麦进行模型参数的验证。结果表明:模型的玉米率定以及小麦验证的过程中结果偏差均在可接受范围内,剖面水分率定均方误差(RMSE)最高为0.019 cm3-cm-3,平均相对误差(MRE)最高为15.98%;剖面硝态氮累积验证结果 RMSE平均值为4.580 mg-kg-1,MRE平均值为52.63%。在模型验证的小麦-玉米季土壤基础上,硝态氮淋溶和氮挥发都与施氮量呈一定线性相关关系。综上结论,本试验结果能较好地模拟华北地区土壤剖面水分、硝态氮积累,以及施氮量对土壤硝态氮淋失和氨挥发的影响,为预测和估算土壤适宜施氮量提供了便捷可靠的方法。但RZWQM模型验证参数过程还需要进一步的校正与完善。  相似文献   

19.
夏季休牧对高寒矮嵩草草甸温室气体排放的影响   总被引:2,自引:0,他引:2  
以高寒矮嵩草草甸为研究对象,利用密闭箱-气相色谱法,对夏季休牧8a的围栏草地(休牧草地)和全年放牧的草地(放牧草地)的温室气体排放通量、土壤特性和生物量进行了对比研究。结果表明:与放牧草地相比,休牧草地植被盖度较之高41%,单位面积生物量较之高53%。同时,土壤特性也有较大不同;休牧草地的植被-土壤系统CO2排放通量比放牧草地低20.7%,测定期间两者CO2排放通量以每天每公顷排放C的质量计分别为30.7和38.7 kg·(hm2·d)-1;试验期间高寒矮嵩草草甸植被-土壤系统是大气CH4的弱汇,休牧后草地土壤对CH4的吸收能力增强,休牧和放牧草地CH4的平均吸收强度分别为28.1和21.9 g·(hm2·d)-1;休牧草地土壤N2O排放通量比放牧草地低,两者排放通量分别为4.5和7.6 g·(hm2·d)-1。可见,夏季休牧措施降低了草地对大气中温室气体浓度增加的贡献。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号