首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To correlate serum fructosamine concentrations with established measures of glycemic control and to compare serum fructosamine and blood glycosylated hemoglobin (GHb) concentrations as a means for assessing glycemic control in diabetic cats. DESIGN: Longitudinal cohort study. ANIMALS: 26 healthy cats, 5 cats with stress-induced hyperglycemia, 15 untreated diabetic cats, and 36 treated diabetic cats. PROCEDURE: Control of glycemia was classified and monitored and serum fructosamine and blood GHb concentrations were measured for 12 poorly controlled diabetic cats before and after improving glycemic control, 8 well-controlled treated diabetic cats before and after glycemic control deteriorated, and 5 cats with diabetes mellitus before and after onset of stress-induced hyperglycemia. RESULTS: Mean serum fructosamine and blood GHb concentrations were significantly higher in untreated diabetic cats, compared with healthy cats, and in 24 poorly controlled diabetic cats, compared with 12 well-controlled diabetic cats. Mean serum fructosamine and blood GHb concentrations decreased significantly in 12 poorly controlled diabetic cats after improving glycemic control and increased significantly in 8 well-controlled diabetic cats after glycemic control deteriorated. A significant stress-induced increase in mean blood glucose concentration was evident 12 hours after insulin administration, but not in 5 docile diabetic cats that became fractious. CLINICAL IMPLICATIONS: Serum fructosamine and blood GHb concentrations are clinically useful tools for monitoring control of glycemia in cats with diabetes mellitus.  相似文献   

2.
Fructosamine   总被引:3,自引:0,他引:3  
Fructosamines are glycated serum proteins that, depending on their life span, reflect glycemic control over the previous 2 to 3 weeks. The nitroblue tetrazolium reduction method adapted to autoanalysis appeared to be a practical means to assay fructosamine quickly, economically, and accurately. The upper limit of the reference range is 374 μmol/L in dogs (95% percentile) and 340 μmol/L in cats (95% percentile). Newly diagnosed diabetic dogs and cats that had not undergone previous insulin therapy had significantly higher fructosamine concentrations than nondiabetic animals. In diabetic dogs that were receiving insulin therapy, the fructosamine test reflected the glycemic state far more accurately than did individual blood glucose measurements. Animals with satisfactory metabolic control revealed fructosamine concentrations within the reference range, whereas fructosamine concentrations above 400 μmol/L indicated insufficient metabolic control. On the basis of fructosamine concentrations, cats with a transitory hyperglycemia and cats with diabetes mellitus were differentiated. The fructosamine test is a valuable parameter for the diagnosis and metabolic control of diabetes mellitus in dogs and cats.  相似文献   

3.
Differentiating transient hyperglycemia from diabetic hyperglycemia can be difficult in cats since single blood glucose measurements reflect only momentary glucose concentrations, and values may be elevated because of stress-induced hyperglycemia. Glycated protein measurements serve as monitors of longer-term glycemic control in human diabetics. Using an automated nitroblue tetrazolium assay, fructosamine concentration was measured in serum from 24 healthy control cats and 3 groups of hospitalized cats: 32 euglycemic, 19 transiently hyperglycemic, and 12 diabetic cats. Fructosamine concentrations ranged from 2.1 - 3.8 mmol/L in clinically healthy cats; 1.1 - 3.5 mmol/L in euglycemic cats; 2.0 - 4.1 mmol/L in transiently hyperglycemic cats; and 3.4 to >6.0 mmol/L in diabetic cats. Values for with-in-run precision at 2 fructosamine concentrations (2.64 mmol/L and 6.13 mmol/L) were 1.5% and 1.3%, respectively. Between-run coefficient of variation was 3.8% at a fructosamine concentration of 1.85 mmol/L. The mean fructosamine concentration for the diabetic group differed significantly (P=0.0001) from the mean concentrations of the other 3 groups. Poorly regulated or newly diagnosed diabetic cats tended to have the highest fructosamine values, whereas well-regulated or over-regulated diabetic cats had values approaching the reference range. As a single test for differentiating nondiabetic cats from diabetic cats, fructosamine was very sensitive (92%) and specific (96%), with a positive predictive value of 85% and a negative predictive value of 98%. Serum fructosamine concentration shows promise as an inexpensive, adjunct diagnostic tool for differentiating transiently hyperglycemic cats from poorly controlled diabetic cats.  相似文献   

4.
OBJECTIVE: To determine the effect of hyperthyroidism on serum fructosamine concentration in cats. DESIGN: Cohort study. ANIMALS: 22 cats with overt hyperthyroidism. PROCEDURE: Hyperthyroidism was diagnosed on the basis of clinical signs, detection of a palpable thyroid gland, and high total serum thyroxine (T4) concentrations. Hyperthyroid cats with abnormal serum albumin, total protein, and glucose concentrations were excluded from the study. Samples for determination of serum fructosamine concentration were obtained prior to initiating treatment. Results were compared with fructosamine concentrations in healthy cats, cats in which diabetes had recently been diagnosed, and cats with hypoproteinemia. In 6 cats, follow-up measurements were obtained 2 and 6 weeks after initiating treatment with carbimazole. RESULTS: Serum fructosamine concentrations ranged from 154 to 267 mumol/L (median, 198 mumol/L) and were significantly lower than values in healthy cats. Eleven (50%) of the hyperthyroid cats had serum fructosamine concentrations less than the reference range. Serum fructosamine concentrations in hyperthyroid, normoproteinemic cats did not differ from values in hypoproteinemic cats. During treatment, an increase in serum fructosamine concentration was detected. CONCLUSIONS AND CLINICAL RELEVANCE: In hyperthyroid cats, concentration of serum fructosamine may be low because of accelerated protein turnover, independent of blood glucose concentration. Serum fructosamine concentrations should not be evaluated in cats with overt hyperthyroidism and diabetes mellitus. Additionally, concentration of serum fructosamine in hyperthyroid cats should not be used to differentiate between diabetes mellitus and transitory stress-related hyperglycemia.  相似文献   

5.
Between January 1997 and December 2000 blood glucose concentrations were measured in 2278 sick cats at the time of their initial presentation at the hospital. In 827 cats (36%) hyperglycemia (blood glucose >8 mmol/l) was documented, 1388 cats (61%) had normal blood glucose levels, 63 cats (3%) were hypoglycemic. In 674 of 827 cats (81.5%) no further investigations were performed and the veterinarian judged the hyperglycemia to be stress related. In 153 of the 827 cats (18.5%) blood glucose measurements were repeated and/or serum fructosamine concentrations evaluated. In 106 cats (69%) stress hyperglycemia and in 47 (31%) diabetes mellitus was then diagnosed. Blood glucose concentrations in cats with stress hyperglycemia were between 8.1 and 60.4 mmol/l (Median 10.3), in cats with diabetes mellitus between 8.5 and 70.0 (Median 27.7). Blood glucose concentrations in cats with diabetes mellitus were significantly higher than in cats with stress hyperglycemia. Cats with stress hyperglycemia suffered from a variety of different diseases, the most frequently encountered were surgical problems, neoplasia, heart diseases, upper and lower urinary tract diseases. Blood glucose concentrations in cats with heart diseases and in cats with neoplasia was higher than in cats with other disorders, however, the difference was not significant. Cats with diabetes mellitus were significantly more frequent male castrated than cats with stress hyperglycemia. Cats with stress hyperglycemia were significantly older than cats with normoglycemia.  相似文献   

6.
Fructosamines are glycated serum proteins that reflect long-term serum glucose concentrations in humans and several animal species. In the present study, blood samples were drawn from three populations of diabetic cats: untreated diabetic cats with clinical symptoms prevailing only a few days (n = 1), untreated diabetic cats with symptoms lasting more than two weeks (n = 6) and clinically well stabilised diabetic cats receiving insulin twice daily which showed no signs of disease (n = 4). All untreated diabetic cats showed elevated fructosamine measurements. Based on fructosamine measurements, clinically well stabilised diabetic cats could be subdivided further according to the degree of glycaemic control. Diabetic cats with satisfactory glycaemic control revealed fructosamine concentrations within or close to the reference range (146 to 271 umol/litre), whereas fructosamine concentrations above 400 umol/litre indicated insufficient glycaemic control. This study suggests that the fructosamine assay reflects persistently elevated serum glucose concentrations in cats and is a useful parameter for diagnosing and monitoring diabetes mellitus in cats.  相似文献   

7.
Fructosamine concentrations in hyperglycemic cats.   总被引:4,自引:1,他引:3       下载免费PDF全文
The aims of this study were 1) to establish a reference range for fructosamine in cats using a commercial fructosamine kit; 2) to demonstrate that the fructosamine concentration is not increased by transient hyperglycemia of 90 min duration, simulating hyperglycemia of acute stress; and 3) to determine what percentage of blood samples submitted to a commercial laboratory from 95 sick cats had evidence of persistent hyperglycemia based on an elevated fructosamine concentration. Reference intervals for the serum fructosamine concentration were established in healthy, normoglycemic cats using a second generation kit designed for the measurement of the fructosamine concentration in humans. Transient hyperglycemia of 90 min duration was induced by IV glucose injection in healthy cats. Multisourced blood samples that were submitted to a commercial veterinary laboratory either as fluoride oxalated plasma or serum were used to determine the percentage of hyperglycemic cats having persistent hyperglycemia. The reference interval for the serum fructosamine concentration was 249 to 406 mumol/L. Transient hyperglycemia of 90 min duration did not increase the fructosamine concentration and there was no correlation between fructosamine and blood glucose. In contrast, the fructosamine concentration was correlated with the glucose concentration in sick hyper- and normoglycemic cats. It is concluded that the fructosamine concentration is a useful marker for the detection of persistent hyperglycemia and its differentiation from transient stress hyperglycemia. Fructosamine determinations should be considered when blood glucose is 12 to 20 mmol/L and only a single blood sample is available for analysis.  相似文献   

8.
BACKGROUND: The total glycated protein (fructosamine) concentration in serum consists mainly of glycated albumin and lipoproteins. Measurement of fructosamine is used to diagnose and monitor diabetes mellitus in cats. OBJECTIVE: The aims of this study were to measure glycated proteins in diabetic and healthy (nondiabetic) cats using a semiquantitative technique and to determine whether measurement of any of the fractions of glycated protein could be potentially advantageous for the diagnosis and monitoring of diabetic cats. METHODS: Serum samples from 6 cats with diabetes mellitus and 10 clinically healthy adult cats were assayed for total glycated protein using a nitroblue tetrazolium (NBT) fructosamine assay. Serum proteins were separated by agarose gel electrophoresis and stained with NBT to identify individual glycated proteins within the bands. Gels were scanned by densitometry at 525 nm and the glycated protein content was calculated with reference to the total glycated protein content of the sample. RESULTS: Diabetic cats with increased total fructosamine concentrations had higher concentrations of glycated albumin and glycated alpha- and beta-lipoproteins compared with healthy cats. The concentration of glycated proteins in each of the fractions had a positive linear association with the total glycated protein content of serum, but there was large variation in the relative contributions of the 3 protein fractions to the total glycated protein concentration. CONCLUSIONS: Based on the results of this study, measurement of individual glycated fractions does not seem to offer any potential diagnostic advantage over measurement of total glycated protein (fructosamine) concentration alone. In some diabetic and healthy cats, glycated lipoproteins formed the major part of the total glycated protein, whereas in other cats albumin was the major contributor.  相似文献   

9.
Background: This study describes the efficacy of a new protamine zinc recombinant human insulin (PZIR) preparation for treating diabetic cats. Objective: To evaluate effects of PZIR on control of glycemia in cats with newly diagnosed or poorly controlled diabetes mellitus. Animals: One hundred and thirty‐three diabetic cats 120 newly diagnosed and 13 previously treated. Methods: Prospective, uncontrolled clinical trial. Cats were treated with PZIR twice daily for 45 days. Control of glycemia was assessed on days 7, 14, 30, and 45 by evaluation of change in water consumption, frequency of urination, appetite, and body weight, serum fructosamine concentration, and blood glucose concentrations determined 1, 3, 5, 7, and 9 hours after administration of PZIR. Adjustments in dosage of PZIR were made as needed to control glycemia. Results: PZIR administration resulted in a significant decrease in 9‐hour mean blood glucose (199 ± 114 versus 417 ± 83 mg/dL, X± SD, P < .001) and serum fructosamine (375 ± 117 versus 505 ± 96 μmol/L, P < .001) concentration and a significant increase in mean body weight (5.9 ± 1.4 versus 5.4 ± 1.5 kg, P= .017) in 133 diabetic cats at day 45 compared with day 0, respectively. By day 45, polyuria and polydipsia had improved in 79% (105 of 133), 89% (118 of 133) had a good body condition, and 9‐hour mean blood glucose concentration, serum fructosamine concentration, or both had improved in 84% (112 of 133) of the cats compared with day 0. Hypoglycemia (<80 mg/dL) was identified in 151 of 678, 9‐hour serial blood glucose determinations and in 85 of 133 diabetic cats. Hypoglycemia causing clinical signs was confirmed in 2 diabetic cats. Conclusions and Clinical Relevance: PZIR is effective for controlling glycemia in diabetic cats and can be used as an initial treatment or as an alternative treatment in diabetic cats that do not respond to treatment with other insulin preparations.  相似文献   

10.
Measurements of serum fructosamine, glycated hemoglobin, and glycated albumin (GA) complement serum glucose concentration for better management of diabetes mellitus (DM). Especially, the serum fructosamine test has long been used for diagnosing and monitoring the effect of treatment of DM in dogs. However, fructosamine tests are currently not performed in veterinary medicine in Japan. GA and fructoasmine levels have been shown to strongly correlate. However, the clinical implications of using GA remain to be elucidated. Therefore, the purpose of the current study was threefold: 1) Determine whether GA% is altered by acute hyperglycemia in normal dogs, simulating stress induced hyperglycemia; 2) Demonstrate that GA% does not dynamically change with diurnal variation of blood glucose concentration in diabetic dogs; and 3) Investigate whether GA% is capable of providing an index of glycemic control for 1–3 weeks in diabetic dogs as is the case with diabetic human patients. Our study demonstrated that serum GA% remains very stable and unaltered under acute hyperglycemic conditions (intravenous glucose injection) and in spite of diurnal variation of blood glucose concentration. Furthermore, serum GA% can reflect long-term changes (almost 1–3 weeks) in blood glucose concentration and the effect of injected insulin in diabetic dogs.  相似文献   

11.
Increasing evidence implicates oxidative damage in the progression and pathologic complications of human diabetics. This study assessed antioxidant status and oxidative stress in cats with diabetes mellitus (DM). Antioxidant status was measured in diabetic (n = 10) and control (n = 10) cats by HPLC of vitamin E isomers, reduced (GSH) and oxidized glutathione (GSSG), and calculation of the GSH:GSSG ratio. Biomarkers of protein, lipid and DNA peroxidation (fructosamine, isoprostanes and Comet assay, respectively), and neutrophil function evaluated oxidative stress. Correlation between glycemic control and antioxidant status/ oxidative stress was also investigated. A diabetic index was generated using clinical signs, body condition score, insulin dose, fructosamine, fasted blood glucose and urinary glucose and ketones. Alpha tocopherol was increased (DM = 0.11 μg/mL, controls = 0.06 μg/mL; p = 0.0012) and gamma tocopherol was decreased (DM = 0.03 μg/mL, controls = 0.05 μg/mL; p = 0.0065) in diabetic vs. control cats. There was no difference in the GSH:GSH ratio between groups. Predictably, fructosamine was greater in diabetic vs. control cats (DM = 447 μmol/L, controls = 204 μmol/L; p < 0.0001). Antioxidant status/oxidative stress was not associated with glycaemic control in diabetic cats. Despite strong association of DM with oxidative stress in humans, this simple relationship is not found in diabetic cats. They have both increased and decreased parameters of systemic oxidative stress compared with control cats. This may be due to higher levels of antioxidants in feline therapeutic diets, the relatively short duration of disease in cats compared with humans, or other factors.  相似文献   

12.
Blood glycosylated hemoglobin (GHb) concentration was quantified in 84 healthy cats, 9 cats with stress-induced hyperglycemia, 37 cats with newly diagnosed diabetes mellitus, and 122 diabetic cats treated with insulin or glipizide. Diabetic control was classified as good or poor in insulin-treated or glipizide-treated cats based on review of history, physical examination findings, changes in body weight, and measurement of blood glucose concentrations. Blood GHb concentration was determined using an affinity chromatography assay. Mean blood GHb concentration was similar for healthy normoglycemic cats and cats with transient, stress-induced hyperglycemia, but was significantly (P < .001) higher in untreated diabetic cats when compared with healthy normoglycemic cats. Mean blood GHb concentration was significantly (P < .001) higher in 84 cats with poorly controlled diabetes mellitus when compared with 38 cats in which the disease was well controlled. Mean blood GHb concentration decreased significantly (P < .01) in 6 cats with untreated diabetes mellitus after insulin and dietary treatment. A similar significant (P < .01) decrease in mean blood GHb concentration occurred in 7 cats with poorly controlled diabetes mellitus after diabetic control was improved by an increase in insulin dosage from 1.1 ± 0.9 to 1.4 ± 0.6 U/kg/ 24 h and by feeding a diet containing increased fiber content and in 6 cats with transient diabetes mellitus 8.2 ± 0.6 weeks after discontinuing insulin treatment. There was a significant (P< .01) stress-induced increase in mean fasting blood glucose concentration and mean blood glucose concentration for 12 hours after administration of insulin or glipizide but no change in mean blood GHb concentration in 5 docile diabetic cats 12.2 ± 0.4 weeks after the cats became fractious as a result of frequent hospitalizations and blood samplings. Results of this study suggest that evaluation of blood GHb concentration may be a clinically useful tool for monitoring glycemic control of diabetes in cats.  相似文献   

13.
Measurement of serum fructosamine, 1-amino-1-deoxyfructose, is commonly used in diagnosing and monitoring hyperglycaemic disorders, such as diabetes mellitus in dogs. Serum fructosamine indicates long-term serum glucose concentrations and replaces serial serum glucose measurements. This study investigates the clinical usefulness of serum fructosamine in differentiating conditions other than diabetes mellitus characterised by glucosuria. Four dogs presented with glucosuria all had serum fructosamine concentrations within or close to the reference range (313 micromol 1(-1), 291 micromol 1(-1), 348 micromol 1(-1), 262 micromol 1(-1) reference range: 250 to 320 micromol 1(-1) indicating that a single serum fructosamine measurement is a simple and efficient way of verifying concurrent persistent normoglycaemia. Therefore, serum fructosamine is a useful parameter not only in diabetic patients, bu also in differentiating conditions in dogs characterised by glucosuria without hyperglycaemia, such as primary renal glucosuria and the Fanconi syndrome. To distinguish between primary renal glucosuria and the Fanconi syndrome, measurement of the amino acid concentration in urine was performed.  相似文献   

14.
Fructosamine, a glycated serum protein, was evaluated as an index of glycemic control in normal and diabetic cats. Fructosamine was determined manually by use of a modification of an automated method. The within-run precision was 2.4 to 3.2%, and the day-to-day precision was 2.7 to 3.1%. Fructosamine was found to be stable in serum samples stored for 1 week at 4 C and for 2 weeks at -20 C. The reference range for serum fructosamine concentration in 31 clinically normal colony cats was 2.19 to 3.47 mmol/L (mean, 2.83 +/- 0.32 mmol/L). In 27 samples from 16 cats with poorly controlled diabetes mellitus, the range for fructosamine concentration was 3.04 to 8.83 mmol/L (mean, 5.93 +/- 1.35 mmol/L). Fructosamine concentration was directly and highly correlated to blood glucose concentration. Fructosamine concentration also remained high in consort with increased blood glucose concentration in cats with poorly controlled diabetes mellitus over extended periods. It is concluded that measurement of serum fructosamine concentration can be a valuable adjunct to blood glucose monitoring to evaluate glycemic control in diabetic cats. The question of whether fructosamine can replace glucose for monitoring control of diabetes mellitus requires further study.  相似文献   

15.
The aim of this study was to investigate the effect of bexagliflozin on glycemic control in poorly regulated diabetic cats and to evaluate for adverse events associated with this medication.Sodium-glucose cotransporter 2 inhibitors are a newer class of drugs used in the management of humans with type 2 diabetes mellitus. The objective of this study was to evaluate the effect of the orally administered drug, bexagliflozin in a group of poorly regulated diabetic cats over a 4-week study period. Five client-owned cats with poorly controlled diabetes mellitus receiving insulin therapy were enrolled. Bexagliflozin was administered once daily. Serum fructosamine, serum biochemistry profile, and 10-hour blood glucose curves were assessed at baseline (Day 0), Day 14, and Day 28. All cats had a significant reduction in insulin dose requirement (P = 0.015) and insulin was discontinued in 2 cats. There was a significant decrease in blood glucose concentration obtained from blood glucose concentration curves during the study period (P = 0.022). Serum fructosamine decreased in 4 of the 5 cats with a median decrease of 152 μmol/L (range: 103 to 241 μmol/L), which was not statistically significant (P = 0.117). No cats had any documented episodes of hypoglycemia. Adverse effects were mild. The addition of bexagliflozin significantly improved diabetic management in this group of cats.  相似文献   

16.
Objectives : To describe the effect of trilostane on insulin requirements and serum fructosamine in dogs with diabetes mellitus (DM) and hyperadrenocorticism (HAC). Methods : Observational retrospective study of eight dogs. Results : Median fructosamine concentration at presentation was 401 μmol/L (range 244 to 554 μmol/L). Median insulin dose at presentation was 1·1 IU/kg/dose (0·4 to 2·1 IU/kg/dose) administered twice daily in five animals and once in three. Four dogs had their insulin dose prospectively reduced at the start of trilostane therapy. The HAC was controlled within 28 days in seven dogs. The remaining case was controlled by 17 weeks. Two dogs died within 40 days of starting trilostane. The median fructosamine concentration was 438 μmol/L (range 325 to 600 μmol/L) after stabilisation of the HAC. One case had a consistent reduction in serum fructosamine concentration over the first four months. The median insulin dose after stabilisation of HAC was 1·5 IU/kg dose (range 0·25 to 3·0 IU/kg/dose). Insulin requirements were reduced in two cases after treatment with trilostane. Four dogs required increased insulin doses. Clinical Significance : Insulin requirements and fructosamine concentrations do not consistently reduce during trilostane treatment for HAC. Prospective studies are required to provide recommendations regarding reductions in insulin doses with trilostane treatment.  相似文献   

17.
The goals of this study were to compare the efficacy of once-daily administered Glargine insulin to twice-daily administered Lente insulin in cats with diabetes mellitus and to describe the use of a high-protein, low-carbohydrate diet designed for the management of diabetes mellitus in cats. All cats with naturally occurring diabetes mellitus were eligible for inclusion. Baseline testing included a physical examination, serum biochemistry, urinalysis and urine culture, serum thyroxine concentration, and serum fructosamine concentration. All cats were fed the high-protein, low-carbohydrate diet exclusively. Cats were randomized to receive either 0.5 U/kg Lente insulin q12h or 0.5 U/kg Glargine insulin q24h. Re-evaluations were performed on all cats at weeks 1, 2, 4, 8, and 12, and included an assessment of clinical signs, physical examination, 16-hour blood glucose curve, and serum fructosamine concentrations. Thirteen cats completed the study (Lente, n = 7, Glargine, n = 6). There was significant improvement in serum fructosamine and glucose concentrations in all cats but there was no significant difference between the 2 insulin groups. Four of the 13 cats were in complete remission by the end of the study period (Lente, n = 3; Glargine, n = 1). The results of the study support the use of once-daily insulin Glargine or twice-daily Lente insulin in combination with a high-protein, low-carbohydrate diet for treatment of feline diabetes mellitus.  相似文献   

18.
Fructosamine and glycated hemoglobin (HbA1c) concentrations were measured simultaneously in 222 dogs (96 healthy and 126 sick dogs). The dogs were divided into 3 groups according to the glucose concentration: hypo, hyper and euglycaemic dogs. Serum fructosamine concentrations were measured by the reduction test with nitroblue tetrazolium. A turbidimetric inhibition immunoassay and specific polyclonal antibodies were used to evaluate glycated hemoglobin concentrations. A significant correlation was found between glucose concentration and either fructosamine (r = 0.63, p < 0.0001) or glycated hemoglobin (r = 0.82, p < 0.0001). The correlation was higher in hyperglycaemic dogs for fructosamine (r = 0.80, p < 0.0001) and in hypoglycaemic dogs for glycated hemoglobin (r = 0.91, p < 0.005). We found a significant correlation between serum fructosamine and glycated hemoglobin (r = 0.65, p < 0.0001 ) when all the dogs were studied. A significant correlation was observed between serum fructosamine and glycated hemoglobin only in hyperglycaemic dogs (r = 0.82, p < 0.0003). Thus, fructosamine and HbA1c may be considered for use in screening tests for diabetes mellitus in dogs and clinical tests for monitoring control and evaluation of the diabetic animal's response to treatment. The choice of the analytical assay depends on the characteristic and analytical opportunities of the laboratory, as well as the number of serum samples to be analysed.  相似文献   

19.
Serum concentrations of insulin-like growth factor 1 (IGF-1) and growth hormone were measured in 25 cats with untreated diabetes mellitus (11 of which were used for follow-up measurements, one to three, four to eight, nine to 12 and 13 to 16 weeks after their treatment with insulin began), 14 diabetic cats that had previously been treated with insulin, and seven diabetic cats that also had hypersomatotropism, two of which had not previously been treated with insulin; 18 healthy cats were used as controls. In the untreated diabetic cats the concentration of IGF-1 ranged from 13.0 to 433.0 ng/ml (median 170.5 ng/ml), which was significantly lower than the concentrations in the control cats (196.0 to 791.0 ng/ml, median 452.0 ng/ml). Their IGF-1 concentrations increased significantly when they were treated with insulin and after four to eight weeks were not different from those in the control cats. In the diabetic cats that had previously been treated with insulin the IGF-1 concentrations were 33.0 to 476.0 ng/ml (median 316.0 ng/ml), which was significantly lower than the concentrations in the control cats, but significantly higher than in the untreated diabetic cats. The IGF-1 concentrations in the two previously untreated diabetic cats with hypersomatotropism were low and low-normal but increased markedly after treatment with insulin. In the five previously treated cats with hypersomatotropism the concentration of IGF-1 was above the normal range. The concentrations of growth hormone in the treated and untreated diabetic cats without hypersomatotropisms were not significantly different and there was an overlap in its concentrations in the diabetic cats with and without hypersomatotropism.  相似文献   

20.
The goal of this randomized, double‐blind study was to compare the effects of feeding a low carbohydrate, high protein diet versus a maintenance diet in a group of cats with diabetes mellitus treated with insulin glargine twice daily. All cats with naturally occurring diabetes mellitus not currently treated with insulin glargine or diabetogenic drugs or being fed a low carbohydrate, high protein diet were eligible for inclusion. Baseline testing included a physical examination, complete blood count, serum biochemistry profile, urinalysis and urine culture, serum thyroxine concentration, and serum fructosamine concentration. All cats were treated with insulin glargine (starting dose of 0.25 U/kg) twice daily. Insulin was adjusted as needed for glucose regulation. Cats were randomized to receive either a low carbohydrate, high protein diet or a feline maintenance diet. Re‐evaluations were performed on all cats at weeks 1, 2, 4, 6 and 10, and included an assessment of clinical signs, physical examination, 12‐h blood glucose curve, and serum fructosamine concentrations. Changes in continuous variables over the course of the study were analyzed using analysis of variance with repeated measures. p < 0.05 was considered statistically significant. Ten cats have completed the study. There were no significant differences between diet groups at baseline for age, gender, weight, body condition score, serum glucose or fructosamine concentrations. Although there was not a significant difference over time in clinical signs, insulin doses, or peak or nadir glucose concentrations between diet groups, diet did have a significant effect on serum fructosamine concentrations (p = 0.01). Six of the 10 cats that have completed the study achieved complete remission by the end of the study period, with no statistical difference between diets. The study's results indicate that diet can have significant effects on glucose regulation in cats receiving insulin glargine for treatment of feline diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号