首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of heterosis for gestation length, dystocia, calf survival, birth weight, 200-d weight, and ADG from birth to weaning were evaluated in F1, F2, and combined F3 and F4 generations in three composite populations. Breed effects were evaluated for the nine parental breeds (Red Poll, Hereford, Angus, Limousin, Braunvieh, Pinzgauer, Gelbvieh, Simmental, and Charolais) that contributed to the three composite populations. Breed effects were significant for all traits evaluated except survival at birth. The large differences among breeds in additive direct and additive maternal genetic effects offer a great opportunity to use the genetic differences among breeds to achieve and maintain optimum additive genetic (breed) composition to match genetic resources to a wide range of production-marketing ecosystems. There was no heterosis for gestation length. Mean heterosis for dystocia was significant estimated in F1 but not in F2 or in the combined F3 and F4 generations. Mean heterosis was not significant in any generation for survival at birth, to 72 h, and to weaning for the F1 generation; mean heterosis was significant for survival to weaning for the F2 generation and approached significance (P = .06) for the combined F3 and F4 generations. Mean heterosis over all composite populations and heterosis for each composite population were significant in all generations for weight at birth and at 200 d and for ADG from birth to weaning. Retained heterosis was not less than expected from retained heterozygosity in composite populations for the traits evaluated. These results suggest that heterosis for these traits likely is due to dominance effects and, thus, can be attributed to the recovery of accumulated inbreeding depression in the parental breeds.  相似文献   

2.
Heterosis effects were evaluated in F1, F2, and F3 generations of females and in the F1, F2, and combined F3 and F4 generations of males in three composite populations of beef cattle. Traits included weight, height, and condition scores at different ages, percentage of females reaching puberty at 368, 410, and 452 d, adjusted age, and adjusted weight of females at puberty and scrotal circumference and paired testicular volume of males. Breed effects were evaluated for the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 C, 1/4 B, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed effects were significant for all traits evaluated. Heterosis was significant for weight, height, and condition score at all ages and for most measures of puberty in each generation of each composite and for the mean of the three composite populations. Heterosis for age at puberty was largely independent of heterosis effects on 368-d weight. Heterosis was significant for scrotal circumference and paired testicular volume in each generation of each composite and for the mean of the three composite populations. Heterosis effects on scrotal measurements are mediated both through heterosis effects on growth rate and through factors that are independent of growth rate. Correlation coefficients among breed group means and correlations of breed rank for scrotal measurements with puberty traits of females were greater than or equal to .88 (P less than .01) for all puberty traits except weight at puberty, which was not associated with scrotal measurements. There was close agreement in heterosis observed for most traits and expectation based on retained heterozygosity. These results support the hypothesis that heterosis in cattle for size, puberty, and scrotal measurement traits is due to dominance effects of genes.  相似文献   

3.
Heterosis effects were evaluated in three composite populations in F1, F2, and F3 generations separately and combined in 1-yr-old and from 2- through greater than or equal to 7-yr-old beef cows. Traits included actual weight, weight adjusted to a common condition score, hip height, and condition score. Breed effects were evaluated in the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed group (parental breed and composite) effects were significant for all traits analyzed. The effects of heterosis were generally important (P less than .05) for all traits in F1, F2, and F3 generations separately and combined in the three composite populations. Generally, the magnitude of heterosis observed at 1 yr of age did not differ from that observed in cows from 2 through greater than or equal to 7 yr old. Adjusting weight to a common condition score resulted in an average reduction of heterosis effects on actual weight by approximately one-fourth. Thus, approximately one-fourth of the effects of heterosis on weight result from heterosis effects on condition score. Generally, retained heterosis in the F3 generation of either 1-yr-old or from 2-through greater than or equal to 7-yr-old cows of the three composite populations did not differ (P greater than .05) from expectation based on retained heterozygosity for the traits analyzed. These results support the hypothesis that heterosis for weight, hip height, and condition score of cows of these age classes is the result of dominance effects of genes.  相似文献   

4.
Heterosis effects in F1 dams producing F2 progeny and retained heterosis in combined F2 and F3 dams producing F3 and F4 progeny were evaluated in dams 2 yr old, in dams greater than or equal to 5 yr old, and in dams of all ages. Traits included pregnant percentage, calf crop born percentage, calf crop weaned percentage, 200-d calf weight per heifer or cow exposed, and 200-d calf weight. Breed effects were evaluated in the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed effects were significant for all traits evaluated in the three age groupings and generally were greatest in 2-yr-old dams and smallest in dams greater than or equal to 5 yr old. Heterosis effects for 200-d calf weight were relatively uniform among age groupings and among the three composite populations and heterosis retained was equal to, or greater than, expectation based on retained heterozygosity. Heterosis effects in animals of all ages for reproductive traits in F1 dams producing F2 progeny differed among the three composite populations, as did heterosis retained in combined F2 and F3 dams producing F3 and F4 progeny. In dams of all ages, heterosis retained for reproductive traits in F2 and F3 dams producing F3 and F4 progeny did not differ (P greater than .05) from expectation based on retained heterozygosity in two of the three composite populations, but loss of heterosis was greater (P less than .05) than expectation based on retained heterozygosity in one of the three composite populations for calf crop born percentage, calf crop weaned percentage, and 200-d calf weight per heifer or cow exposed. This reduction was the result of increased fetal loss between pregnancy diagnosis and parturition.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Heterosis effects were evaluated as traits of the dam in F2 progeny of F1 dams and F3 and 4 progeny of F2 and 3 dams in three composite populations of beef cattle. Traits included birth weight, birth date, calving difficulty percentage, and survival percentage at birth, 72 h, and weaning for calves with dams of different age classes. Breed effects were evaluated for the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 C, 1/4 B, 1/4 L, 1/4 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Among calves with 2-yr-old dams, breed effects were significant for birth weight, birth date, calving difficulty percentage, and survival percentage at birth but not at 72 h and weaning. Calf survival at weaning was lowest for smallest (less than mu - 1.5 sigma) and largest (greater than mu + 1.5 sigma) birth weight classes and did not differ among intermediate birth weight classes. Calves with difficult births with 2-yr-old dams were significantly heavier at birth (39.6 vs 35.4 kg) and had significantly lower survival at 72 h (87.1 vs 92.2%) and at weaning (77.4 vs 85.1%) than calves with 2-yr-old dams that did not experience difficult births. Among calves with dams greater than or equal to 3 yr old and from dams of all ages, breed group effects generally were significant for the traits analyzed. Important breed group effects on dystocia and survival traits were observed independent of breed group effects on birth weight. Effects of heterosis were significant for birth weight for each generation of each composite population and for the mean of the three composite populations. Generally, heterosis effects for calving difficulty percentage were not significant. Effects of heterosis generally were significant for date of birth (earlier) for each composite population and for the mean of the three composite populations. Heterosis effects on survival to weaning percentage generally were positive but generally were not significant. Heterosis retained for birth weight, birth date, and survival percentage in combined F3 and 4 generation progeny of combined F2 and 3 generation dams did not differ (P greater than .05) from expectation based on retained heterozygosity. These results support the hypothesis that heterosis in cattle for these traits is the result of dominance effects of genes.  相似文献   

6.
Retained heterosis in F2 cows nursing F3 progeny was evaluated in 3-, 4-, and greater than or equal to 5-yr-old cows. Traits evaluated included milk yield at three stages of lactation and 200-d weight of progeny. Breed effects were evaluated in the nine parental breeds (Red Poll [R], Hereford [H], Angus [A], Limousin [L], Braunvieh [B], Pinzgauer [P], Gelbvieh [G], Simmental [S], and Charolais [C]) that contributed to the three composite populations (MARC I = 1/4 B, 1/4 C, 1/4 L, 1/8 H, 1/8 A; MARC II = 1/4 G, 1/4 S, 1/4 H, 1/4 A; and MARC III = 1/4 R, 1/4 P, 1/4 H, 1/4 A). Breed effects were significant for 12-h milk yield, estimated 200-d milk yield, and 200-d weight of progeny. Herefords were lowest (P less than .05) for 12-h milk yield and estimated 200-d milk yield, and Braunvieh produced significantly more milk than all breed groups except Pinzgauer and Simmental, for which the difference approached significance. The correlation among breed group means (nine parental breeds and three composites) for 12-h milk yield with 200-d weight of progeny was .91. When 200-d weight was adjusted to a common estimated 200-d milk yield, Hereford, Angus, Red Poll, and Limousin did not differ (P greater than .05); all were significantly lighter than Braunvieh, Pinzgauer, Gelbvieh, Simmental, and Charolais, which did not differ (P greater than .05) from each other.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Breed additive and non-additive effects, and heritabilities of birth weight (BWT), weaning weight (WWT), 6 months weight (SMWT), yearling weight (YWT), eighteen months weight (EWT), 2 years weight (TWT) and average daily weight gain from birth to 6 months (ADG1) and from 6 months to 2 years (ADG2) were estimated in Ethiopian Boran (B) cattle and their crosses with Holstein Friesian (F) in central Ethiopia. The data analysed were spread over 15 years. Ethiopian Boran were consistently lighter (p < 0.01) than the B-F crosses at all ages. Ethiopian Boran also gained lower weight than all the crosses. At birth, 50% F crosses were significantly (p < 0.01) lighter than all the other crosses. However, the differences in SMWT, YWT, EWT, TWT, ADG1 and ADG2 were all non-significant among the crosses. The individual additive breed differences between B and F breeds were positive and significant (p < 0.01) for all traits. The individual heterosis effects were significant (p < 0.05) for all traits except WWT for which the effect was non-significant. The maternal heterosis effects were significant (p < 0.01) for BWT (2.5 kg) and WWT (-3.0 kg). The heritability estimates for all traits in B and crosses were generally moderate to high indicating that there is scope for genetic improvement through selection. Selection within B and crossbreeding should be the strategy to enhance the growth performance under such production systems.  相似文献   

8.
Direct and maternal additive effects and heterosis were estimated using data from straightbred Angus, Brahman, Charolais, Hereford, and four generations of rotational crosses among these breeds. Traits of interest were birth weight, Julian day of birth, average daily gain from birth to weaning, 205-d weight, and weaning weight per cow exposed. Complete data were available on 3,445 calves produced from 4,733 matings. Discrete generations of 4-yr duration were produced from 1970 through 1988. Brahman was included in each rotational crossbreeding system. Genetic effects were estimated by regression. Direct and maternal additive effects of Brahman, Charolais, and Hereford were estimated as deviations from Angus. Direct and maternal heterosis effects were assumed proportional to expected heterozygosity. The Brahman direct additive effect resulted in later-born calves (P < 0.01). Brahman, Charolais, and Hereford direct additive effects increased birth weight, and the Brahman maternal additive effect decreased birth weight compared with Angus (P < 0.05). Charolais direct and maternal additive effects were greater than Angus for average daily gain and 205-d weight (P < 0.01). The Hereford maternal additive effects on average daily gain and 205-d weight were less than those of the other breeds (P < 0.01). Breed combinations including Brahman had greater direct heterosis for birth weight, average daily gain, and 205-d weight than other combinations (P < 0.01). Angus, Charolais, and Hereford direct additive effects on weaning weight per cow exposed were greater than Brahman (P < 0.05). Predicted average daily gain, 205-d weight, and weaning weight per cow exposed were, on average, greater in four-breed rotation systems than in three- and two-breed systems. Among two-breed rotation systems, predicted average daily gain and 205-d weaning weight were greatest for Charolais-Brahman and least for Angus-Hereford. Calves from the Angus-Charolais-Hereford system weighed less at weaning than any other three-breed combination. However, weaning weight per cow exposed from the Angus-Charolais-Hereford system was greatest among three-breed systems. Within three- and four-breed rotation systems, ranges in predicted birth and weaning weights among generations varied by up to 10.0 and 25.2 kg, respectively. The choice of breeds affects performance, and the sequence of their use may affect intergenerational variation in performance.  相似文献   

9.
Angus (A), Brown Swiss (S) and A X S reciprocal F1 (AS) dams were mated to A, S and AS (also reciprocal F1) sires resulting in nine breed groups of progeny with varying proportions of Angus and Brown Swiss breeding. Breed group of dam and of sire significantly influenced birth weight, preweaning daily gain, weaning weight, 205-d weight, condition score and frame size. The means for birth weight and weaning weight were 33 and 213 kg, respectively. Brown Swiss bulls sired calves with the heaviest birth and weaning weights. Calves produced by S dams likewise were heavier at birth and weaning. Pregnancy rates were influenced significantly by year, age and breed of dam and averaged 79, 95 and 92% for S, AS and A cows, respectively. Survival rate averaged 97% and was not influenced significantly by any of the effects examined. Because survival rates were similar for all breed groups, the results for weaning rate paralleled those for pregnancy rate. Genetic influences on preweaning growth traits and survival rate were partitioned into additive breed differences (B) and heterosis (H) effects for direct (d) and maternal (m) components. Pregnancy and weaning rates were examined using similar analyses except that genotype of service sire of dam replaced that of the offspring for the direct additive breed and direct heterosis components. The Bd values indicated that the Angus breed was inferior (P less than .01) to the Brown Swiss breed for all preweaning growth traits except for condition score, in which the Angus breed surpassed (P less than .01) the Brown Swiss. The Bm values also showed an advantage for the Brown Swiss breed for all preweaning growth traits. The additive maternal effect (the genotype of the females exposed), Bm, was important for pregnancy rate and weaning rate (P less than .001 and P less than .05) but not for survival rate (P greater than .10). The direct additive breed effect was not important for any reproductive trait. Direct heterosis did not affect any of the preweaning or reproduction traits; however, maternal heterosis (Hm) significantly affected all traits except birth weight, frame score and survival rate. The Hm estimates were 12.0 and 8.4 kg for weaning weight and 205-d weight, respectively. The Hm estimates for pregnancy rate, survival rate and weaning rate were 10, 2 and 13%, respectively.  相似文献   

10.
The objective of this study was to characterize breeds representing diverse biological types for postweaning growth and carcass composition traits in terminal crossbred cattle. Postweaning growth and carcass traits were analyzed on 434 steers and 373 heifers obtained by mating F1 cows to Charolais sires. Maternal grandsires represented Hereford, Angus, and MARC III (1/4 Hereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford or Angus (British Breeds), Norwegian Red, Swedish Red and White, Wagyu, or Friesian breeds. Breed groups were slaughtered serially in each of 2 yr (2002 and 2003). Postweaning ADG, slaughter weight, hot carcass weight, dressing percentage, percentage Choice, LM area, marbling score, USDA yield grade, fat thickness, retail product yield (percentage), retail product weight, fat yield (percentage), fat weight, bone yield (percentage), and bone weight were analyzed. Maternal grandsire breed was significant (P < 0.05) for all traits except dressing percentage, percentage Choice, and LM area. Marbling score for animals with Norwegian Red, Wagyu, Swedish Red and White, British Breeds, and Friesian inheritance was 550, 544, 532, 530, and 515, respectively (SEM = 8). Retail product weight for these animals was 224, 211, 227, 223, and 223 kg, respectively (SEM = 2 kg). Maternal granddam breed was not significant for any of the traits analyzed. Grandsire breed effects can be optimized by selection and use of appropriate crossbreeding systems.  相似文献   

11.
Ewe performance was compared for five pure breeds of sheep (Finnsheep, F; Rambouillet, R; Dorset, D; Targhee, T; Suffolk, S) and the crosses in development of two maternal composite lines (C1 = 1/2F1/4R1/4D and C2 = 1/2F1/4T1/4S). The data involved 10,959 breeding season records of 4,219 ewes by 412 sires. Ewe production and the components (fertility, litter size, neonatal and preweaning lamb survival and mean lamb weaning weight) were adjusted for age and standardized across season of lambing and years. The D and F ewes produced more weight of lamb/ewe exposed than R, S and T ewes because of higher D and F fertility, higher D lamb survival and larger F litters. First cross and inter se generations of C1 and C2 ewes averaged 17 to 27% higher fertility than the parental mean. Litter size averaged about one lamb higher for F than for other pure breeds, but only slightly higher for C1 and C2 than for the mean of F and other breeds. Lower neonatal survival for F than for other breeds and crosses was associated with the larger F litters and with 2 to 8% positive heterosis in the crosses. Preweaning survival of suckled and nursery lambs was low for F and S and positive heterosis ranged from 9 to 19% in crosses. Mean lamb weaning weights were highest for S, lowest for F, with little heterosis in crosses. Crossbred ewes reared .3 to .4 more lambs than mean for parental pure breeds. Heterosis in C1 and C2 ranged from 11 to 28% for lambs born, 27 to 43% for lambs weaned and 29 to 44% for weight of lamb weaned/ewe exposed. Decline in heterosis with inter se mating of crosses was no greater than expected from the reduction in predicted heterozygosity.  相似文献   

12.
Beefmaster, Brahman, Brangus, and Santa Gertrudis field data records were used to determine genetic and environmental parameter estimates using a multiple-trait, pseudo-expectation approach. Adjusted birth weight, 205-d weight, and postweaning gain records were analyzed for each breed. Also, Brangus weaning sheath and navel scores were both analyzed using a single-trait, pseudo-expectation method to determine genetic parameter estimates. Additive birth weight heritability (h2A) estimates ranged from .22 to .37 and maternal birth weight heritability (h2M) estimates ranged from .12 to .55. Estimates for 205-d weight h2A for the four breeds varied from .21 to .25, and 205-d weight h2M estimates ranged from .15 to .21. Postweaning gain h2A estimates ranged from .16 to .56. The genetic correlation between direct and maternal portions of birth weight was negative for all breeds. This was also true for the genetic correlation between direct and maternal portions of 205-d weight, except in Brahman cattle, for which it was .15. The genetic correlation between additive portions of birth weight and 205-d weight was large and positive in all breeds. A moderately positive correlation between 205-d weight and postweaning gain was found for all breeds except Santa Gertrudis, whereas the environmental correlation between these two traits was a small to moderately negative estimate in all breeds. Brangus weaning sheath and navel score heritabilities indicated that genetic change for the size and shape of the sheath and navel area is possible.  相似文献   

13.
Demographic characteristics and genetic trends in birth weight and pre- and postweaning ADG were examined in a population of Hereford cattle (Line 1). Line 1 was founded largely from two paternal half-sib sires and has been selected for postweaning growth. There were pedigree records on 951 members of the base population that predated 1935, when data collection began. Numbers of records analyzed using mixed-model methodology were 4,716 birth weight, 4,427 preweaning ADG, and 3,579 postweaning ADG. Birth weight and preweaning ADG were considered to have direct and maternal genetic components. Inbreeding accumulated rapidly from 1935 to 1960 and more slowly (.22%/yr) thereafter. Any reduction in additive genetic variance due to inbreeding and selection may have been offset by a concurrent reduction in generation interval that was observed as time progressed. Expected selection differential for 365-d weight, averaged over sexes, was 31.2 kg per generation. For birth weight, annual genetic trends in direct and maternal effects were 42 +/- 3 g and 15 +/- 3 g, respectively. Annual direct and maternal genetic trends for preweaning ADG were .70 +/- .06 g/d and .63 +/- .06 g/d, respectively. Direct response in postweaning ADG was linear and equal to 5.3 +/- .6 g.d-1.yr-1. As a result, estimated breeding values of birth weight, 200-d weight, and 365-d weight increased by 3.2 kg, 14.5 kg, and 62.4 kg, respectively, from 1935 to 1989. Selection within Line 1 was effective in increasing genetic potential for growth over 13 generations. No selection plateau was observed in any of the traits examined.  相似文献   

14.
Published information on relative performance of beef breed crosses was used to derive combined estimates of purebred breed values for predominant temperate beef breeds. The sources of information were largely from the United States, Canada, and New Zealand, although some European estimates were also included. Emphasis was on maternal traits of potential economic importance to the suckler beef production system, but some postweaning traits were also considered. The estimates were taken from comparison studies undertaken in the 1970s, 1980s and 1990s, each with representative samples of beef breeds used in temperate agriculture. Weighting factors for breed-cross estimates were derived using the number of sires and offspring that contributed to that estimate. These weights were then used in a weighted multiple regression analysis to obtain single purebred breed effects. Both direct additive and maternal additive genetic effects were estimated for preweaning traits. Important genetic differences between the breeds were shown for many of the traits. Significant regression coefficients were estimated for the effect of mature weight on calving ease, both maternal and direct additive genetic, survival to weaning direct, and birth weight direct. The breeds with greater mature weight were found to have greater maternal genetic effects for calving ease but negative direct genetic effects on calving ease. A negative effect of mature weight on the direct genetic effect of survival to weaning was observed. A cluster analysis was done using 17 breeds for which information existed on nine maternal traits. Regression was used to predict breed-cross-specific heterosis using genetic distance. Only five traits, birth weight, survival to weaning, cow fertility, and preweaning and postweaning growth rate had enough breed-cross-specific heterosis estimates to develop a prediction model. The breed biological values estimated provide a basis to predict the biological value of crossbred suckler cows and their offspring.  相似文献   

15.
The objective of this study was to characterize breeds representing diverse biological types for birth and weaning traits in crossbred cattle (Bos taurus). Gestation length, calving difficulty, percentage of unassisted calving, percentage of perinatal survival, percentage of survival from birth to weaning, birth weight, weaning weight, BW at 205 d, and ADG was measured in 1,370 calves born and 1,285 calves weaned. Calves were obtained by mating Hereford, Angus, and MARC III (1/4 Hereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) mature cows to Hereford or Angus (British breeds), Norwegian Red, Swedish Red and White, Wagyu, and Friesian sires. Calves were born during the spring of 1997 and 1998. Sire breed was significant for gestation length, birth weight, BW at 205 d, and ADG (P < 0.001). Offspring from Swedish Red and White and Friesian had the shortest gestation length (282 d), whereas offspring from Wagyu sires had the longest gestation length (286 d). Progeny from British breeds were the heaviest at birth (40.5 kg) and at 205 d (237 kg), and grew faster (0.97 kg/d) than offspring from other breeds. Offspring from Wagyu sires were the lightest at birth (36.3 kg) and at 205 d (214 kg), and had the slowest growth (0.91 kg/d). Dam breed was significant for gestation length (P < 0.001), birth weight (P = 0.009), BW at 205 d, and ADG (P < 0.001). Offspring from Hereford cows had the longest gestation length (284 d), whereas offspring from Angus cows had the shortest (282 d). Offspring from MARC III cows were the heaviest at birth (39.4 kg) when compared with offspring from Hereford (38.2 kg) and Angus (38.6 kg) cows. Progeny from Angus cows were the heaviest at 205 d (235 kg) and grew faster (0.96 kg/d), whereas offspring from Hereford cows were the lightest at 205 d (219 kg) and were the slowest in growth (0.88 kg/d). Sex was significant for gestation length (P = 0.026), birth weight, BW at 205 d, and ADG (P < 0.001). Male calves had a longer gestation length (284 d) when compared with female calves (283 d). Males were heavier than females at birth and at 205 d, and grew faster. Sire breed effects can be optimized by selection and use of appropriate crossbreeding systems.  相似文献   

16.
The influence of different levels of adjusted fat thickness (AFT) and HCW slaughter end points (covariates) on estimates of breed and retained heterosis effects was studied for 14 carcass traits from serially slaughtered purebred and composite steers from the US Meat Animal Research Center (MARC). Contrasts among breed solutions were estimated at 0.7, 1.1, and 1.5 cm of AFT, and at 295.1, 340.5, and 385.9 kg of HCW. For constant slaughter age, contrasts were adjusted to the overall mean (432.5 d). Breed effects for Red Poll, Hereford, Limousin, Braunvieh, Pinzgauer, Gelbvieh, Simmental, Charolais, MARC I, MARC II, and MARC III were estimated as deviations from Angus. In addition, purebreds were pooled into 3 groups based on lean-to-fat ratio, and then differences were estimated among groups. Retention of combined individual and maternal heterosis was estimated for each composite. Mean retained heterosis for the 3 composites also was estimated. Breed rankings and expression of heterosis varied within and among end points. For example, Charolais had greater (P < 0.05) dressing percentages than Angus at the 2 largest levels of AFT and smaller (P < 0.01) percentages at the 2 largest levels of HCW, whereas the 2 breeds did not differ (P > or = 0.05) at a constant age. The MARC III composite produced 9.7 kg more (P < 0.01) fat than Angus at AFT of 0.7 cm, but 7.9 kg less (P < 0.05) at AFT of 1.5 cm. For MARC III, the estimate of retained heterosis for HCW was significant (P < 0.05) at the lowest level of AFT, but at the intermediate and greatest levels estimates were nil. The pattern was the same for MARC I and MARC III for LM area. Adjustment for age resulted in near zero estimates of retained heterosis for AFT, and similarly, adjustment for HCW resulted in nil estimates of retained heterosis for LM area. For actual retail product as a percentage of HCW, the estimate of retained heterosis for MARC III was negative (-1.27%; P < 0.05) at 0.7 cm but was significantly positive (2.55%; P < 0.05) at 1.5 cm of AFT. Furthermore, for MARC III, estimates of heterosis for some traits (fat as a percentage of HCW as another example) also doubled in magnitude depending on different levels of AFT end point. Rational exploitation of breeds requires special attention to use of different end points and levels of those end points, mainly for fat thickness.  相似文献   

17.
The primary objective was to estimate breed, heterosis, and recombination effects on growth and carcass traits of two different four-breed composite populations of pigs. Experiment 1 (Exp. 1) included purebred and crossbred pigs originating from Yorkshire, Landrace, Large White, and Chester White breeds, and Experiment 2 (Exp. 2) included pigs from Duroc, Hampshire, Pietrain, and Spot breeds. Data were recorded on purebred pigs, two-breed cross pigs, and pigs from generations F1 through F6, where F1 pigs were the first generation of a four-breed cross. Pig weights were recorded at birth and at 14, 28, 56, 70, and 154 d of age. Average daily gain was calculated for intervals between weights, and ultrasonic backfat measurements (A-mode) were taken at 154 d of age. Feed intake was measured between 70 and 154 d of age on mixed pens of boars and barrows. Carcass backfat, length, and loin muscle area were measured on barrows at slaughter. Mixed-model analyses were done separately by experiment, fitting an animal model. Fixed effects included farrowing group and sex for growth traits and farrowing group for carcass traits. For ADFI, a weighted mixed-model analysis was done fitting farrowing group as a fixed effect, sire nested within farrowing group as a random effect, and weighting each observation by the number of pigs in each pen. To test feed efficiency, a second analysis of ADFI was done adding ADG as a covariate in the previous model. Included as covariates in all models were direct, maternal, and maternal grandam breed effects, direct and maternal heterosis effects, and a direct recombination effect. Recombination is the breakup of additive x additive epistatic effects present in purebreds during gamete formation by crossbred parents. Effects of direct heterosis significantly increased weights at birth, 14, 56, 70, and 154 d of age in Exp. 1. Effects of direct heterosis significantly increased ADG from birth to 14, 28 to 56, and 70 to 154 d of age in Exp. 1. In Exp. 2, effect of direct heterosis significantly increased weights and ADG at all ages. In Exp. 1, recombination significantly reduced loin muscle area. In Exp. 2, recombination significantly increased weights at birth, 14, 28, and 56 d, ADFI from 70 to 154 d, and ADFI adjusted for ADG. The correlation between maternal heterosis and recombination effects for all traits in Exp. 1 and Exp. 2 was approximately -0.90. Maternal heterosis and recombination effects were estimable, but greatly confounded.  相似文献   

18.
The objective of this study was to investigate a potential association of an inactive myostatin allele with early calf mortality, and evaluate its effect on growth and carcass traits in a crossbred population. Animals were obtained by mating F1 cows to F1 (Belgian Blue x British Breed) or Charolais sires. Cows were obtained from mating Hereford, Angus, and MARC III (1/4 Hereford, 1/4 Angus, 1/4 Pinzgauer, and 1/4 Red Poll) dams to Hereford, Angus, Tuli, Boran, Brahman, or Belgian Blue sires. Belgian Blue was the source of the inactive myostatin allele. Myostatin genotypes were determined for all animals including those that died before weaning. Early calf mortality was examined in the F2 subpopulation (n = 154), derived from the F1 sires mated to F1 cows from Belgian Blue sires, to evaluate animals with zero, one, or two copies of inactive myostatin allele. An overall 1:2:1 ratio (homozygous active myostatin allele:heterozygous:homozygous inactive myostatin allele) was observed in the population; however, a comparison between calves dying before weaning and those alive at slaughter showed an unequal distribution across genotypes (P < 0.01). Calves with two copies of the inactive allele were more likely (P < 0.01) to die before weaning. Postweaning growth traits were evaluated in the surviving animals (n = 1,370), including birth, weaning, and live weight at slaughter, and postweaning ADG. Carcass composition traits analyzed were hot carcass weight, fat thickness, LM area, marbling score, USDA yield grade, estimated kidney, pelvic, and heart fat, retail product yield and weight, fat yield and weight, bone yield and weight, and percentage of carcasses classified as Choice. Charolais lack the inactive myostatin allele segregating in Belgian Blue; thus, in the population sired by Charolais (n = 645), only animals with zero or one copy of the inactive myostatin allele were evaluated. Animals carrying one copy were heavier at birth and at weaning, and their carcasses were leaner and more muscled. In the population sired by Belgian Blue x British Breed (n = 725), animals with two copies of inactive myostatin allele were heavier at birth, leaner, and had a higher proportion of muscle mass than animals with zero or one copies. Heterozygous animals were heaviest at weaning and had the highest live weight, whereas animals with zero copies had the highest fat content. The use of the inactive myostatin allele is an option to increase retail product yield, but considerations of conditions at calving are important to prevent mortality.  相似文献   

19.
The objectives of this work were to evaluate birth and weaning traits, to estimate genetic effects, including heterosis and direct and maternal breed effects, and to evaluate calving difficulty, calf vigor at birth, and calf mortality of Romosinuano as purebreds and as crosses with Brahman and Angus. Calves (n = 1,348) were spring-born from 2002 through 2005 and weaned in the fall of each year at about 7 mo of age. Traits evaluated included birth and weaning weight, ADG, BCS, and weaning hip height. Models used to analyze these traits included the fixed effects of year, sire and dam breeds, management unit, calf sex, cow age, and source of Angus sire (within or outside of the research herd). Calf age in days was investigated as a covariate for weaning traits. Sire within sire breed and dam within dam breed were random effects. Estimates of Romosinuano-Brahman and Romosinuano-Angus heterosis (P < 0.05) were 2.6 +/- 0.3 (8.6%) and 1.4 +/- 0.3 kg (4.7%) for birth weight, 20.5 +/- 1.5 (9.5%) and 14.6 +/- 1.4 kg (7.4%) for weaning weight, 79.2 +/- 6.1 (9.8%) and 55.1 +/- 6.0 g (7.5%) for ADG, 0.16 +/- 0.03 (2.7%) and 0.07 +/- 0.03 (1.2%) for BCS, and 2.77 +/- 0.32 cm (2.4%) and 1.87 +/- 0.32 cm (1.7%) for hip height. Heterosis for Brahman-Angus was greater (P < 0.05) than all Romosinuano estimates except those for Romosinuano-Brahman and Romosinuano-Angus BCS. Romosinuano direct effects were negative and lowest of the breeds, except for the Angus estimate for hip height. Romosinuano maternal effects were the largest of the 3 breeds for birth weight and hip height but intermediate to the other breeds for weaning weight and ADG. A large proportion of Brahman-sired calves from Angus dams (0.09 +/- 0.03; n = 11) was born in difficult births and died before 4 d of age. Brahman and Angus purebreds and Romosinuano-sired calves from Brahman dams also had large proportions of calves that died before weaning (0.09 or greater). Results indicated that Romosinuano may be used as a source of adaptation to subtropical environments and still incorporate substantial crossbred advantage for weaning traits, although not to the extent of crosses of Brahman and Angus.  相似文献   

20.
Gestation length, birth weight calving difficulty, calf mortality rate at birth, calf mortality rate from birth to weaning, preweaning calf growth rate and calf 200-d weight were evaluated in a biological type study in which four sire breeds were bred by AI to Hereford dams. Angus and Red Poll sires represented breeds of medium size, and Pinzgauer and Simmental sires represented large breeds. Angus and Pinzgauer represented breeds with medium milk production, and Red Poll and Simmental represented breeds with high milk production. Dams mated to large sire breeds had longer (P less than .01) gestation lengths (.95 d) and higher calving difficulty scores than dams mated to medium-sized sire breeds. Calves from large sire breeds had heavier birth weight (P less than .01) and 200-d wt (6.1 kg; P less than .01) than calves from medium-sized sire breeds. Calf death loss and ADG to weaning were similar (P greater than .10) for all breeds of sire. Calves from the higher milk level sire breeds exceeded the medium-milk breeds in birth weight (1.3 kg; P less than .01) but did not (P greater than .10) in other traits. Calves from the higher milk level sire breeds exceeded the medium-milk breeds in birth weight (1.3 kg; P less than .01) but not (P greater than .10) in other traits. Interaction between size and milk production of sire breed existed for gestation length, birth weight, ADG from birth to weaning and 200-d calf weight (P less than .01). In general, mature size of sire breed was a good indication of expected performance traits not easily influenced by environment. Not all differences, however, could be explained by size and milk production of the size breed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号