首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 Balances between nutrients applied or mineralized and nutrients removed in maize grain and stover were calculated in a hedgerow intercropping experiment in which Leucaena leucocephala and L. pallida prunings and cattle manure were applied. Hedgerow intercropping (also called alley cropping) is an agroforestry system in which trees are grown in dense hedges between alleys where short-cycle crops are grown. The hedges are pruned periodically during the cropping period and the prunings are added to the soil as green manure. In control treatments, nutrient depletion per season was in the order of 7–19 kg N ha–1, 4–12 kg P ha–1, 10–26 kg K ha–1, 0–2 kg Ca ha–1 and 3–6 kg Mg ha–1. N fertilizer reversed the depletion of N, but it accelerated the depletion of the other nutrients. Manure and at least two applications of leucaena prunings resulted in net positive balances of N, K, and Ca between amounts applied or mineralized and amounts removed by maize. The amounts of P and Mg applied with, or mineralized from, prunings or manure were insufficient to offset the negative balances of these nutrients. Received: 27 January 1998  相似文献   

2.
The release of sulphate-sulphur (SO4 2–-S), potassium (K), calcium (Ca) and magnesium (Mg) from soil amended with spent mushroom compost (SMC), a by-product of mushroom production, was measured for 16 weeks in an open laboratory incubation at 25°C. Rates of application were up to 80 t ha–1 moist SMC (0.84% SMC dry weight) both with and without inorganic fertilizer. The rates of nutrient application in the inorganic fertilizer were: 338 kg ha–1 N, 100 kg ha–1 of both phosphorus and K, and 114 kg ha–1 S. SMC contains 1.7% K, 6.5% Ca, 0.4% Mg and 1.2% S (of which 87% is inorganic), and has a carbon:sulphur ratio of 26. The release of SO4 2–-S was rapid, and was described using either a first or mixed order exponential equation, or (underestimated) by the CENTURY model. The release of K, Ca and Mg was initially rapid (first order) and then declined to a constant rate (zero order). Their release was also described using first/first order or first order/parabolic diffusion equations. Model parameters indicated the relative sizes of both readily releasable and recalcitrant nutrient pools. The recovery of SMC-supplied nutrients in the absence of fertilizer was 75–83% of the S, 40–45% of the K, 14–20% of the Ca and 43–66% of the Mg. When fertilizer was applied 33–45% of the S, 22–36% of the K, 12–24% of the Ca and –4 to 20% of the Mg that were supplied by the SMC and fertilizer were recovered in the leachate. The generally lower nutrient recovery when fertilizer was applied could have resulted from the incomplete recovery of fertilizer S and K, from soil fixation of applied nutrients, and from the lower pH following fertilizer application. Received: 3 April 1997  相似文献   

3.
 A litter bag technique was used to study the decomposition and release of N, P, K, Ca, and Mg from Leucaena leucocephala and L. pallida prunings and cattle manure in a hedgerow intercropping trial conducted in the Ethiopian highlands. Hedgerow intercropping (also called alley cropping or alley farming) is an agroforestry system in which trees are grown in dense hedges between alleys where short-cycle crops are grown. The hedges are pruned periodically during the cropping period and the prunings are added to the soil as green manure. Manure was the most resistant to decomposition, losing only 15% of its dry matter (DM) in 15 weeks, compared to 41–57% lost by leucaena prunings. Large quantities of K (up to 104 kg ha–1) were mineralized from prunings and manure, but Ca and Mg were mostly immobilized. More N and P were released from prunings than from manure, which resulted in net immobilization of these nutrients in the initial stages of decomposition and net mineralization in later stages. Between the leucaenas more N was mineralized and less Ca and Mg were immobilized when L. leucocephala prunings were applied than when L. pallida prunings were applied. Fertilizer N increased DM decomposition and N mineralization. Mineralization of the nutrients was constrained by lignin and polyphenol contents. It is concluded that leucaena mulch and cattle manure may be significant sources of N and K for crop growth, but external sources of P, Ca and Mg may be required, particularly in acid soils which have low contents of these nutrients. However, this fertility effect has to be evaluated against the competition effect of trees to predict crop response. Received: 27 January 1997  相似文献   

4.
A long-term (30 years) soybean–wheat experiment was conducted at Hawalbagh, Almora, India to study the effects of organic and inorganic sources of nutrients on grain yield trends of rainfed soybean (Glycine max)–wheat (Triticum aestivum) system and nutrient status (soil C, N, P and K) in a sandy loam soil (Typic Haplaquept). The unfertilized plot supported 0.56 Mg ha−1 of soybean yield and 0.71 Mg ha−1 of wheat yield (average yield of 30 years). Soybean responded to inorganic NPK application and the yield increased significantly to 0.87 Mg ha−1 with NPK. Maximum yields of soybean (2.84 Mg ha−1) and residual wheat (1.88 Mg ha−1) were obtained in the plots under NPK + farmyard manure (FYM) treatment, which were significantly higher than yields observed under other treatments. Soybean yields in the plots under the unfertilized and the inorganic fertilizer treatments decreased with time, whereas yields increased significantly in the plots under N + FYM and NPK + FYM treatments. At the end of 30 years, total soil organic C (SOC) and total N concentrations increased in all the treatments. Soils under NPK + FYM-treated plots contained higher SOC and total N by 89 and 58% in the 0–45 cm soil layer, respectively, over that of the initial status. Hence, the decline in yields might be due to decline in available P and K status of soil. Combined use of NPK and FYM increased SOC, oxidizable SOC, total N, total P, Olsen P, and ammonium acetate exchangeable K by 37.8, 42.0, 20.8, 30.2, 25.0, and 52.7%, respectively, at 0–45 cm soil layer compared to application of NPK through inorganic fertilizers. However, the soil profiles under all the treatments had a net loss of nonexchangeable K, ranging from 172 kg ha−1 under treatment NK to a maximum of 960 kg ha−1 under NPK + FYM after 30 years of cropping. Depletion of available P and K might have contributed to the soybean yield decline in treatments where manure was not applied. The study also showed that although the combined NPK and FYM application sustained long-term productivity of the soybean–wheat system, increased K input is required to maintain soil nonexchangeable K level.  相似文献   

5.
 The release of SO4 2–-S, K+, Ca2+ and Mg2+ from soil amended with spent mushroom compost (SMC), a byproduct of mushroom production, was measured in leachate from field lysimeters for 30 weeks. Rates of application were 0 and 80 t ha–1 moist SMC. The SMC contained 1.7% K, 6.5% Ca, 0.4% Mg and 1.2% S (of which 87% is SO4 2–-S), and has a C : S ratio of 26. The break-through curves of ion leaching were polymodal indicating the preservation of soil structure in the lysimeters and its influence on leaching. SO4 2–-S release from SMC was rapid (first-order exponential) and was very similar to the release from a laboratory incubation. The release of K+, Ca2+ and Mg2+ was described using first/zero-order models which were also used to describe their release in the laboratory. The rate and amount of Ca2+ release was similar in the field and laboratory, but the amount of K+ (and to a lesser extent Mg2+) release was less in the field than in the laboratory. Recoveries of SMC applied nutrients in leachate were 80% of S (263 kg ha–1), 3% of K (14 kg ha–1), 16% of Ca (284 kg ha–1) and 37% of Mg (40 kg ha–1). Little if any S was mineralised. Using SMC could provide plants with S, K, Ca and Mg but there is potential for SO4 2–-S losses via leaching. Received: 7 April 1999  相似文献   

6.
 Microcosms were used to determine the influence of N additions on active bacterial and active fungal biomass, cellulose degradation and lignin degradation at 5, 10 and 15 weeks in soils from blackwater and redwater wetlands in the northern Florida panhandle. Blackwater streams contain a high dissolved organic C concentration which imparts a dark color to the water and contain low concentrations of nutrients. Redwater streams contain high concentrations of suspended clays and inorganic nutrients, such as N and P, compared to blackwater streams. Active bacterial and fungal biomass was determined by direct microscopy; cellulose and lignin degradation were measured radiometrically. The experimental design was a randomized block. Treatments were: soil type (blackwater or redwater forested wetlands) and N additions (soils amended with the equivalent of 0, 200 or 400 kg N ha–1 as NH4NO3). Redwater soils contained higher concentrations of C, total N, P, K, Ca, Mn, Fe, B and Zn than blackwater soils. After N addition and 15 weeks of incubation, the active bacterial biomass in redwater soils was lower than in blackwater soils; the active bacterial biomass in blackwater soils was lower when 400 kg N ha–1, but not when 200 kg N ha–1, was added. The active fungal biomass in blackwater soils was higher when 400 kg N ha–1, but not when 200 kg N ha–1, was added. The active fungal biomass in redwater wetland soils was lower when 200 kg N ha–1, but not when 400 kg N ha–1, was added. Cellulose and lignin degradation was higher in redwater than in blackwater soils. After 10 and 15 weeks of incubation, the addition of 200 or 400 kg N as NH4NO3 ha–1 decreased cellulose and lignin degradation in both wetland soils to similar levels. This study indicated that the addition of N may slow organic matter degradation and nutrient mineralization, thereby creating deficiencies of other plant-essential nutrients in wetland forest soils. Received: 7 April 1999  相似文献   

7.
A semiquantitative nutrient balance is presented for a field monocropped with sisal on Ferralsols in Tanzania. Input of nutrients included wet deposition, non-symbiotic nitrogen fixation and nutrients added with planting material. Nutrient output consisted of the harvested product. The average annual shortfall between 1966 to 1990 was 12 kg N ha−1, 2·8 kg P ha−1, 38 kg K ha−1, 44 kg Ca ha−1 and 19 kg Mg ha−1. The nutrient balance was compared to changes in topsoil (0–20 cm) nutrient contents of the sisal field during the same period. Average annual decrease in soil nutrient contents was: 104 kg N ha−1, 1·8 kg P ha−1, 11 kg K ha−1, 29 kg Ca ha−1 and 10 kg Mg ha−1. Much more nitrogen was lost from the topsoil than can be explained by the nutrient balance, indicating significant losses. Changes in soil phosphorus content are almost explained by the nutrient balance. More exchangeable cations were removed with the yield than were lost from the topsoil, which may imply that cations are extracted from the subsoil. Both the nutrient balance and the changes in soil nutrient contents showed that monocropping sisal is mining nutrients. © 1997 John Wiley & Sons, Ltd.  相似文献   

8.
Soybean is an important crop for the Brazilian economy, and soil acidity is one of the main yield-limiting factors in Brazilian Oxisols. A field experiment was conducted during three consecutive years with the objective to determine soybean response to liming grown on Oxisols. Liming rates used were 0, 3, 6, 12, and 18 Mg ha?1. Liming significantly increased grain yield in a quadratic trend. Ninety percent maximum economic grain yield (2900 kg ha?1) was achieved with the application of about 6 Mg lime ha?1. Shoot dry weight, number of pods per plant, and 100-grain weight were also increased significantly in a quadratic fashion with increasing liming rate from 0 to 18 Mg ha?1. These growth and yield components had a significant positive association with grain yield. Maximum contribution in increasing grain yield was of number of pods per plant followed by grain harvest index and shoot dry weight. Uptake of nitrogen (N) was greatest and phosphorus (P) was least among macronutrients in soybean plant. Nutrient-use efficiency (kg grain per kg nutrient accumulation in grain) was maximum for magnesium (Mg) and lowest for N among macronutrients. Application of 3 Mg lime ha?1 neutralized all aluminum ions in soil solution. Optimal acidity indices for 90% of maximum yield were pH 6.0, calcium (Ca) 1.6 cmolc kg?1, Mg 0.9 cmolc kg?1, base saturation 51%, cation exchange capacity (CEC) 4.8 cmolc kg?1, Ca/Mg ratio 1.9, Ca?/?potassium (K) ratio 5.6, and Mg/K ratio 3.0.  相似文献   

9.
Poultry litter (PL) is an important nutrient source; however, no information is available regarding its value in supplying N and P in rice–wheat (RW) production. A three-year field study was conducted at Ludhiana, Punjab, India on a loamy sand soil to identify optimum combination of PL and N and P fertilizers for a sustainable RW production. The litter was applied to rice at 5 Mg ha−1 as a single application and supplemented with different rates of N. The residual effect of PL and the direct effects of the different combinations of N and P were studied in the following wheat. Nitrogen and P mineralization from PL was studied under controlled conditions in the laboratory, and macronutrient input–output balances were estimated from field results. About 46% of the N from PL was released after 60 days of incubation. The release of P from the PL occurred mainly during the initial 20 days after incubation, accounting for 15–17% of the total P. Combining PL with fertilizer N (40 kg ha−1) increased rice yield and nutrient uptake similar to what was obtained with the application of recommended fertilizer N (120 kg ha−1). In the following wheat, the residual effect of PL was equal to 30 kg N ha−1 and 13 kg P ha−1. After three annual cropping cycles and PL application, mean soil organic C increased by 17%, Olsen-P by 73%, and NH4OAc-extractable-K by 24%. Most treatments had positive P but negative K balances. About 11% of the net P balance was recovered from the soil as Olsen-P. The study showed that optimum N and P fertilizer doses for an RW system receiving 5 Mg ha−1 of PL are 40 kg N ha−1 for rice and 90 kg N + 13 kg P ha−1 for the following wheat. Safe and effective management of PL should be based on P balance, particularly when regular applications of PL are to be made in the RW system.  相似文献   

10.
Yard trimmings from sources rich in grass clippings have the potential to supply nutrients for crop production. Our objectives were to estimate N availability from yard trimmings and determine their effects on crop production, soil nutrients, and organic matter levels. We conducted a field experiment, comparing three consecutive years of yard trimmings applications (22, 44, or 66 Mg ha?1 yr?1 dry weight) with inorganic N (112 kg N ha?1 yr?1) and zero-N controls in a silage corn (Zea mays L.) - winter triticale (Triticosecale spp.) rotation. The yard trimmings were screened and ground, and allowed to heat for a short period. They were incorporated each spring before planting corn. We measured crop yield and N uptake, and estimated apparent N recovery (ANR). We measured soil inorganic N two weeks after yard trimmings application and after corn harvest. In a one-year on-farm demonstration, we compared three sources of yard trimmings applied at a single rate. Yard trimmings applied at 44 Mg ha?1 dry weight provided sufficient available N to replace inorganic N. For silage corn grown with summer irrigation, estimated ANR in the crop was 7% in Year 1, 19% in Year 2, and 18% in Year 3 at the 44 Mg ha?1 yard trimmings rate, compared with a mean ANR of 65% for the inorganic N treatment. Postharvest soil nitrate residual (0-to 120-cm depth) was similar for the 44 Mg ha?1 treatment and inorganic N treatment. We observed variation in N availability with year and source of material. Yard trimmings also increased soil test K and organic matter.  相似文献   

11.
 N2 fixation by leguminous crops is a relatively low-cost alternative to N fertilizer for small-holder farmers in developing countries. N2 fixation in faba bean (Vicia faba L.) as affected by P fertilization (0 and 20 kg P ha–1) and inoculation (uninoculated and inoculated) with Rhizobium leguminosarium biovar viciae (strain S-18) was studied using the 15N isotope dilution method in the southeastern Ethiopian highlands at three sites differing in soil conditions and length of growing period. Nodulation at the late flowering stage was significantly influenced by P and inoculation only at the location exhibiting the lowest soil P and pH levels. The percentage of N derived from the atmosphere ranged from 66 to 74%, 58 to 74% and 62 to 73% with a corresponding total amount of N2 fixed ranging from 169 to 210 kg N ha–1, 139 to 184 kg N ha–1 and 147 to 174 kg N ha–1 at Bekoji, Kulumsa and Asasa, respectively. The total N2 fixed was not significantly affected by P fertilizer or inoculation across all locations, and there was no interaction between the factors. However, at all three locations, N2 fixation was highly positively correlated with the dry matter production and total N yield of faba bean. Soil N balances after faba bean were positive (12–58 kg N ha–1) relative to the highly negative N balances (–9–44 kg N ha–1) following wheat (Triticum aestivum L.), highlighting the importance of rotation with faba bean in the cereal-based cropping systems of Ethiopia. Received: 13 January 2000  相似文献   

12.
 Leguminous cover crops such as Mucuna pruriens (mucuna) have the potential to contribute to soil N and increase the yields of subsequent or associated cereal crops through symbiotic N fixation. It has often been assumed that mucuna will freely nodulate, fix N2 and therefore contribute to soil N. However, results of recent work have indicated mucuna's failure to nodulate in some farmers' fields in the derived savanna in Benin. One of the management practices that can help to improve mucuna establishment and growth is the use of rhizobial inocula to ensure compatibility between the symbiotic partners. Experiments were conducted in 1995 and 1996 on 15 farmers' fields located in three different villages (Eglimé, Zouzouvou and Tchi) in the derived savanna in Benin. The aim was to determine the response of mucuna to inoculation and examine the factors affecting it when grown in relay cropping with maize. The actual amount of N2 fixed by mucuna in the farmers' fields at 20 weeks after planting (WAP) averaged 60 kg N ha–1 (range: 41–76 kg N ha–1) representing 55% (range: 49–58%) of the plant total N. The result suggested that mucuna in these farmers' fields could not meet its total N demand for growth and seed production only by N2 fixation. It was estimated that after grain removal mucuna led to a net N contribution ranging from –37 to 30 kg N ha–1. Shoot dry weight at 20 WAP varied between 1.5 and 8.7 t ha–1 and N accumulation ranged from 22 to 193 kg N ha–1. Inoculation increased shoot dry matter by an average of 28% above the uninoculated treatments, but the increase depended on the field, location and year. For the combinations of inoculated treatments and farmers' fields, the response frequency was higher in Eglimé and Tchi than in Zouzouvou. The response to inoculated treatments was dependent on the field and inversely related to the numbers of rhizobia in the soil. Soil rhizobial populations ranged from 0 to >188 cells g–1 soil, and response to inoculation often occurred when numbers of indigenous rhizobia were <5 cells g–1 soil. In two farmers' fields at Zouzouvou where extractable P was below 10 μg g–1 soil, mucuna did not respond to rhizobial inoculation despite a higher population of rhizobia. Significant relationships between mycorrhizal colonization, growth and nodulation of mucuna were observed, and inoculated plants with rhizobia had a higher rate of colonization by arbuscular mycorrhizal fungi (%AMF) than uninoculated ones. Therefore, it was shown that mucuna will establish and fix N2 effectively in those fields where farmer's management practices such as good crop rotation and rhizobial inoculation allow a build up of AMF spores that might lead to a high degree of AMF infection and alleviate P deficiency. Received: 14 June 1999  相似文献   

13.
 The effects of Leucaena leucocephala and L. pallida prunings and cattle manure on maize nutrient uptake and yield were investigated in a hedgerow intercropping trial in the Ethiopian highlands. Hedgerow intercropping (also called alley cropping) is an agroforestry system in which trees are grown in dense hedges between alleys where short-cycle crops are grown. The hedges are pruned periodically during the cropping period and the prunings are added to the soil as green manure. For each leucaena species, the experiment had 16 treatments resulting from a factorial combination of four levels of leucaena leaf prunings (no prunings applied; first prunings applied; first and second prunings applied; first, second and third prunings applied), two levels of air-dried cattle manure (0 and 3 t dry matter ha–1) and two levels of N fertilizer (0 and 40 kg N ha–1 as urea). Uptake of N, P and K increased significantly with application of the three nutrient sources, but uptake of Ca and Mg either did not respond or decreased with application of prunings and manure. All the three factors increased maize grain and stover yields significantly, usually with no significant interactions between the factors. At least two applications of prunings were required to significantly increase nutrient uptake and maize yield. Maize in the row closest to the hedge did not respond to these nutrient inputs. It is concluded that hedgerow intercropping, with or without manure application, can increase crop yields moderately (to 2–3 t ha–1 maize grain yields) in the highlands, but P, Ca and Mg may have to be supplied from external sources if they are deficient in the soil. Additional N is still required for higher yields (>4 t ha–1 maize grain yields). However, quantification of the competition effects of the trees is also required to confirm these results. Received: 27 January 1997  相似文献   

14.
The role of mounds of the fungus-growing termite Macrotermes bellicosus (Smeathman) in nutrient recycling in a highly weathered and nutrient-depleted tropical red earth (Ultisol) of the Nigerian savanna was examined by measuring stored amounts of selected nutrients and estimating their rates of turnover via the mounds. A study plot (4?ha) with a representative termite population density (1.5?mounds?ha?1) and size (3.7?±?0.4?m in height, 2.4?±?0.2?m in basal diameter) of M. bellicosus mounds was selected. The mounds were found to contain soil mass of 9249?±?2371?kg?ha?1, composed of 7502?±?1934?kg?ha?1 of mound wall and 1747?±?440?kg?ha?1 of nest body. Significant nutrient enrichment, compared to the neighboring topmost soil (Ap1 horizon: 0–16?cm), was observed in the nest body for total nitrogen (N) and exchangeable calcium (Ca), magnesium (Mg) and potassium (K), and in the mound wall for exchangeable K only. In contrast, available (Bray-1) phosphorus (P) content was found to be lower in both the mound wall and the nest body than in the adjacent topmost soil horizon. Consequently, the mounds formed by M. bellicosus contained 1.71?±?0.62?kg?ha?1 of total N, 0.004?±?0.003?kg?ha?1 of available P, 3.23?±?0.81?kg?ha?1 of exchangeable Ca, 1.11?±?0.22?kg?ha?1 of exchangeable Mg and 0.79?±?0.21?kg?ha?1 of exchangeable K. However, with the exception of exchangeable K (1.2%), these nutrients amounted to less than 0.5% of those found in the topmost soil horizon. The soil nutrient turnover rate via M. bellicosus mounds was indeed limited, being estimated at 1.72?kg?ha?1 for organic carbon (C), 0.15?kg?ha?1 for total N, 0.0004?kg?ha?1 for available P, 0.15?kg?ha?1 for exchangeable Ca, 0.05?kg?ha?1 for exchangeable Mg, and 0.06?kg?ha?1 for exchangeable K per annum. These findings suggest that the mounds of M. bellicosus, while being enriched with some nutrients to create hot spots of soil nutrients in the vicinity of the mounds, are not a significant reservoir of soil nutrients and are therefore of minor importance for nutrient cycling at the ecosystem scale in the tropical savanna.  相似文献   

15.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

16.
 The evoluion of NH4 +-N and NO3 -N was monitored during three growing seasons, 1992–1993, 1993–1994, 1994–1995 in the soil profile (0–60 or 0–90 cm) under bare fallow and wheat on a vertisol site of the Sais plateau, Morocco. The aim of this study was to relate the soil mineral N dynamics to crop N uptake and soil N transformation processes. The efficacy of the current N fertilisation rate (100 kg N ha–1) for wheat production in the region was evaluated. The high level of residual mineral N in the soil profile resulted from a low N plant uptake relative to the soil N supply and N fertilisation, and masked the effect of N fertilisation on dry matter accumulation. NH4 +-N was present in considerable amounts, suggesting a low nitrification rate under the given pedo-climatic conditions. An artefact due to the sampling procedure was encountered shortly after the application of N fertiliser. Losses through leaching and denitrification occurred after heavy rainfall, but were limited. At least part of the exchangeable NH4 +-N seemed to be barely taken up by the crop. NO3 -N was therefore considered to be a better indicator of plant-available N than total mineral N for this type of soil. The low N fertiliser use efficiencies demonstrated clearly that the current fertilisation rate (100 kg N ha–1) for wheat production in this region is unsustainable. The maximum N uptake ranged from 40 kg N ha–1 to 180 kg N ha–1. The estimation of the seasonal production potential is considered to be the main prerequisite for the determination of the best rates and timing of N fertiliser application in this region. Received: 9 December 1997  相似文献   

17.
 Microcosms were used to determine the influence of N additions on active bacterial and fungal biomass, atrazine and dichlorophenoxyacetic acid (2,4-D) mineralization at 5, 10 and 15 weeks in soils from blackwater and redwater wetland forest ecosystems in the northern Florida Panhandle. Active bacterial and fungal biomass was determined by staining techniques combined with direct microscopy. Atrazine and 2,4-D mineralization were measured radiometrically. Treatments were: soil type, (blackwater or redwater forested wetland soils) and N additions (soils amended with the equivalent of 0, 200 or 400 kg N ha–1 as NH4NO3). Redwater soils contained higher concentrations of C, total N, P, K, Ca, Mn, Fe, B and Zn than blackwater soils. After N addition and 15 weeks of incubation, active bacterial biomass in redwater soils was lower when N was added. Active bacterial biomass in blackwater soils was lower when 400 kg N ha–1, but not when 200 kg N ha–1, was added. Active fungal biomass in blackwater soils was higher when 400 kg N ha–1, but not when 200 kg N ha–1, was added. Active fungal biomass in redwater soils was lower when 200 kg N ha–1, but not when 400 kg N ha–1, was added. After 15 weeks of incubation 2,4-D degradation was higher in redwater wetland soils than in blackwater soils. After 10 and 15 weeks of incubation the addition of 200 or 400 kg N ha–1 decreased both atrazine and 2,4-D degradation in redwater soils. The addition of 400 kg N ha–1 decreased 2,4-D degradation but not atrazine degradation in blackwater soils after 10 and 15 weeks of incubation. High concentrations of N in surface runoff and groundwater resulting from agricultural operations may have resulted in the accumulation of N in many wetland soils. Large amounts of N accumulating in wetlands may decrease mineralization of toxic agricultural pesticides. Received: 26 June 1998  相似文献   

18.
 This study investigated the influence of liming and P/K fertilization on the feeding activities of soil fauna and leaf litter decomposition rates in deciduous forest soils. The parameters examined were correlated to soil chemical characteristics. In 1994, we established a field experiment with six plots in an oak-beech forest and added different amounts of dolomite, partly combined with P/K fertilization. Two years thereafter a bait-lamina test was used to examine the feeding activity of soil fauna and a minicontainer test to study beech-leaf decomposition. In 1996, the feeding activity in the Ah horizon was lower in the plots left untreated in 1994 than in the plots which had been fertilized in 1994. The highest feeding activity was found in the treatment with 6 t dolomite ha–1 plus P/K. In all plots, the feeding activity decreased with increasing soil depth. The decomposition rates varied from 0.49% to 0.78% week–1 in the period April–October 1996. In 1996, the plots treated with 6 t dolomite ha–1 had the highest decomposition rates and differed significantly from those treated with 9 t or 15 t dolomite ha–1. No significant differences were found between the untreated plots and those treated with 9 t or 15 t dolomite ha–1. These results were confirmed by those obtained in 1997. The C/N ratio of litter also decreased, mostly in the treatment with 6 t dolomite ha–1. Feeding activities in the Ah horizon correlated positively with pH and concentrations of mobile Ca, Mg, K, and negatively with concentrations of mobile Al and heavy metals. We concluded that an increased supply of mobile nutrients and a decrease in mobile Al and heavy metals in these forest soils, as well as a balanced ratio between macro- and micronutrients, led to increased biological activity. Received: 26 June 1998  相似文献   

19.
We investigated conservation and cycling of N under oat–oat and lupine–oat rotations in disturbed and undisturbed soil, when roots or roots plus aboveground residues were retained. Crop residues were labelled with 15N in Year 1, and differential soil disturbance was imposed after harvest. In Year 2, plant growth, N transfer from residue into the various sinks of the second crop (plant, soil, and residual residues), and changes in microbial activity and numbers were determined. Oat biomass was greater after lupine than after oat due to differences in supply of N from these residues. Buried residues of both crops appeared to decompose faster than when left on the soil surface. Lupine residues decomposed faster than oat residues. Oat biomass was not affected by soil disturbance if grown after lupine but decreased when oat straw was buried in the soil. More residue N was recovered from soil than from the crop. Most 15N was recovered from disturbed soil, which also had greater dehydrogenase activity and more culturable fungi. At the end of the oat–oat rotation, 20 and 5 kg N ha−1 were derived from the roots of the first crop in undisturbed or disturbed soil, respectively. Equivalent values for the lupine–oat rotation were 18 and 44 kg N ha−1. Returning aboveground residues provided an extra 52–80 kg N ha−1 for oat and 61–63 kg N ha−1 for lupine relative to treatments where they were removed. Over a year, lupine contributed 9 to 20 kg N ha−1 more to the agroecosystem than did oat.  相似文献   

20.
 A 15N isotope dilution technique was applied to quantify the extent of N2 fixation in lentil (Lens culinaris Medik.) cultivars as influenced by Rhizobium leguminosarum bv. viciae strains in a field experiment in Pakistan. The experiment was conducted on a soil with a very small indigenous rhizobial population and where N was a limiting factor for crop production. Significant variations in number of nodules, dry weight of nodules, biomass yield, grain yield, total N yield, proportion of plant N derived from N2 fixation (Pfix) and amount of N derived from the atmosphere (Ndfa) were observed among combined treatments of four rhizobial strains and six lentil varieties. In a field previously labelled with 15N, to which a basal dose of 75 kg P2O5 ha–1 was applied as single super phosphate, Ndfa ranged from 15 to 24 kg N ha–1 when calculated according to rhizobial strain and from 4 to 38 kg N ha–1 when calculated according to lentil variety. Lc 26 was the most effective strain and fixed 243% more N than the indigenous population in the uninoculated control. In treatments with the lentil variety PL-406, Ndfa was 38 kg N ha–1, which was 850% higher than with the lentil variety Precoz/F6-20-1×M-85. Generally, the varieties with greater Pfix produced a higher dry matter yield. Received: 26 May 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号