首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
通过检测重庆市长江沿岸表层土壤(0-5cm)和深层土壤(0-20cm)中六六六和滴滴涕的含量发现,表层土壤中总六六六(包括α-六六六、β-六六六、γ-六六六、δ-六六六)和总滴滴涕(包括p,p-DDE、p,p-DDD、o,p-DDT、p,p-DDT)含量范围为0.185-1.374ng/g和0.807-38.281ng/g,分别对应深层的总六六六含量0.0795-1.692ng/g和总滴滴涕含量0.308-88.306ng/g.研究区内有机氯农药在土壤中的垂直分布反应了滴滴涕残留是"老"的来源,并证实了林丹的使用对该区域的有机氯农药污染有一定的影响.  相似文献   

2.
建立了全自动索氏提取-气相色谱法检测土壤中六六六和滴滴涕农药残留量的新方法:以丙酮与石油醚的混合溶剂(体积比1∶1)为提取溶剂,提取温度110℃,热浸提20 min,淋洗40 min,浓缩定容后用浓硫酸磺化,离心取上清液,外标法校正定量,气相色谱法检测目标农药残留含量。8种六六六和滴滴涕在0.01~1.00μg/mL浓度范围内具有良好的线性关系,相关系数不低于0.997,回收率为89.8%~99.0%,变异系数为0.7%~10.3%,方法检出限为0.00017~0.00322 mg/kg。实际检测土壤样品1批,检出α-666、δ-666、p.p’-DDE等5种,残留量为0.074~0.62 mg/kg。该方法定量准确、灵敏度高、操作简便,适用于土壤中六六六和滴滴涕的残留检测。  相似文献   

3.
通过检测重庆市长江沿岸表层土壤(0-5 cm)和深层土壤(0-20 cm)中六六六和滴滴涕的含量发现,表层土壤中总六六六(包括α-六六六、β-六六六、γ-六六六、δ-六六六)和总滴滴涕(包括p,p'-DDE、p,p'-DDD、o,p'-DDT、p,p'-DDT)含量范围为0.185-1.374 ng/g和0.807-38.281 ng/g,分别对应深层的总六六六含量0.079 5-1.692 ng/g和总滴滴涕含量0.308-88.306 ng/g.研究区内有机氯农药在土壤中的垂直分布反应了滴滴涕残留是"老"的来源,并证实了林丹的使用对该区域的有机氯农药污染有一定的影响.
Abstract:
Concentrations of hexachlorocyclohexane(HCH)and dichlorodiphenyltrichloroethane(DDT)were determined in shallow subsurface(0~5 cm depth)and deep soil layers(5~20 cm depth)from the agricultural soils along the Yangtze River in Chongqing,China.Concentrations of total HCHs(including α-HCH,β-HCH,γ-HCH and δ-HCH)and total DDTs(including p,p'-DDE,p,p'-DDD,o,p'-DDT and p,p'-DDT)in shallow subsurface soils ranged from 0.185 to 1.374 ng/g,averaging 0.479 ng/g,and from 0.807 ng/g to 38.281 ng/g,averaging 7.274 ng/g,respectively,and those in the deeper layers ranged from 0.079 5 to 1.692 ng/g,averaging 0.564 ng/g,and from 0.308 to 88.306 ng/g,averaging 13.718 ng/g,respectively.The vertical distribution of HCHs and DDTs suggested that DDT residues resulted from"old"sources and that the contamination of HCHs in this region was partially attributed to the local use of lindane.  相似文献   

4.
建立了硫丹(Endosulfan)在苹果中残留分析方法。样品用30 ml丙酮:乙酸乙酯(9:1)提取,5 g 5%水脱活处理的Florisi L(含活性炭)柱层析净化,气相色谱测定。硫丹3种单体的最小检测量分别为10~(-11)、10~(-11)、2.5×10~(-11)g。苹果样品中α-硫丹的添加回收率为86.54%~95.34%,变异系数为1.45%~4.73%;β-硫丹的添加回收率为82.91%~100.63%,变异系数为1.39%~4.72%;硫丹硫酸酯82.22%~101.15%,变异系数为0.75%~3.99%。方法的最低检出浓度分别为2.5×10~(-3)mg/kg,2.5×10~(-3)mg/kg,6.25×10~(-3)mg/kg。该方法的准确度、精确度、灵敏度均达到农药残留分析的要求。  相似文献   

5.
固相萃取-气相色谱法测定茶叶中5种农药残留   总被引:3,自引:0,他引:3  
采用弗罗里硅土固相柱净化方法,用配有电子捕获检测器的气相色谱仪,一次测定5种有机氯和拟除虫菊酯农药(α-666、β-666、γ-666、δ-666、pp′-DDE、op′-DDT、pp′-DDD、pp′-DDT、氯氰菊酯、氰戊菊酯、甲氰菊酯)的残留量。该方法的回收率在71.1%~88.0%,变异系数在0.7%~12.8%,最低检测限在0.04~2.70μg.L-1。  相似文献   

6.
黄瓜及土壤中异菌脲残留量的气相色谱分析   总被引:1,自引:0,他引:1  
建立了异菌脲在黄瓜和土壤中残留量检测的气相色谱分析方法。将黄瓜和土壤样品经乙腈提取,Florisil固相萃取小柱净化,收集淋洗液浓缩至干,正己烷定容,通过气相色谱-电子俘获检测器(GCECD)测定,面积外标法定量。结果表明,黄瓜样品的平均回收率为86.6%~106.2%,变异系数为5.5%~7.7%,最低检出浓度为1.7μg/kg;土壤样品的平均回收率为97.6%~105.7%,变异系数为1.5%~8.6%,最低检出浓度为1.4μg/kg。该方法灵敏、准确、精密,符合农药残留检测要求。  相似文献   

7.
本文建立了超声波提取、固相萃取净化、气相色谱-电子捕获检测器法(GC-ECD)同时测定瓜菜中α-六六六、β-六六六、γ-六六六、δ-六六六、p.p"-DDE、p.p"-DDD、p.p"-DDT和o.p"-DDT 8种有机氯农药残留的方法。样品用丙酮:正己烷(体积比1:1)混合溶液超声提取,采用自制多壁碳纳米管/弗罗里硅土固相萃取柱净化,GC-ECD测定,外标法定量。结果显示,8种有机氯农药在0.5~500 μg/L浓度范围内线性关系良好,相关系数r均大于0.999;在1.25~100 μg/kg添加水平下,回收率在88.6%~115.0%之间,相对标准偏差(n=5)在2.29%~14.48%之间,检出限为0.1~0.6 μg/kg,定量限为1.25~5 μg/kg。该方法操作简单,前处理净化效果好,具有较好的准确度、精密度和灵敏度,适用于同时测定瓜菜中8种有机氯农药。  相似文献   

8.
建立超高效液相色谱串联质谱法(UPLC-MS/MS)检测猪肉中溴布特罗、西布特罗、西马特罗、克伦特罗等13种β-受体激动剂残留方法。选用盐酸葡萄糖醛苷酶/芳基硫酸酯酶水解,混合型阳离子交换固相萃取净化,以0.1%甲酸水溶液-0.1%甲酸乙腈溶液-甲醇为流动相,超高效液相色谱串联质谱法检测,在0.3、1.0、10 ng·m L-1浓度添加水平,空白肌肉组织中13种药物添加平均回收率范围68.3%~97.2%,日内变异系数范围6.6%~16.9%,日间变异系数范围8.8%~23.3%。该方法检测限为0.1 ng·m L-1,定量限为0.3 ng·m L-1,具有准确敏感特性。在黑龙江省采集202份猪肉样品验证检测13种β-受体激动剂,样品均未检出残留物。  相似文献   

9.
凝胶渗透色谱及固相萃取技术测定蔬菜中20种农药的残留   总被引:3,自引:0,他引:3  
采用凝胶渗透色谱(GPC)净化结合固相萃取技术,建立了蔬菜中α-六六六、β-六六六、γ-六六六、δ-六六六、百菌清、艾氏剂、三唑酮、噻嗪酮、P,P'-DDE.、狄氏剂、o,p'DDT、P,P'DDD、P,P'-DDT、联苯菊酯、甲氰菊酯、氯菊酯、氯氟氰菊酯、氯氰菊酯、氰戊菊酯、溴氰菊酯等20种有机氯和拟除虫菊酯类农药残留的气相色谱(GC-ECD)检测方法.结果表明,供试的20种农药分离状况良好,黄瓜中添加0.01~1.0 mg·kg-1水平的农药,回收率为69.2%~116.3%,相对标准偏差为1.4%~8.9%,最低检出限为0.06~13.0 μg·kg-1.结果证明,该方法回收率、精密度、最低检出限均能满足农药残留检测要求.  相似文献   

10.
对有机氯农药六六六4个组份、滴滴涕4个组份,在淡水养殖用水和底泥中的残留进行了试验分析;对有机氯农药多残留分析方法进行了优化和评估。按欧盟法规2002/657/EC要求,对方法的回收率与日内、日间精密度等进行了单实验室验证。对两种不同定义的“方法的检出限”进行了详细的估算和结果比较。结果表明: 本试验方法在加标水平养殖用水2.0×10-5、2.5×10-5mg·L-1和底泥为1.0×10-3、5.0×10-3mg·kg-1时,平均回收率养殖用水在65%-119%之间,变异系数在9%以内;底泥在77%-116%,变异系数在11%以内。本试验中有机氯农药六六六、滴滴涕在二倍信噪比法的检出限养殖用水为1.8×10-6-3.8×10-6 mg·L-1,底泥4.7×10-5-8.8×10-5 mg·kg-1;USEPA定义的检出限养殖用水3.1×10-6-4.7×10-6mg·L-1,底泥1.0×10-4-2.0×10-4mg·kg-1。结果符合欧盟制定的规定和要求。  相似文献   

11.
于2006—2011年间每年的3月份,在海南岛沿岸选取的4个重要港湾(马袅港、东寨港、八所港、榆林港)采集近江牡蛎(Crassostrea rivularis Gould)成体30只,用气相色谱法测定其六六六(HCHs,包括α-、β-、γ-、δ-HCH)含量。结果显示,2006—2011年近江牡蛎体中HCHs含量范围是未检出~1.16 ng.g-1,平均含量是0.15 ng·g-1,与1985年海南岛贝类体内的HCHs残留量相比,20多年间浓度降低至原来的1/45。在这6年中HCHs含量于2006—2008年先略微下降,之后小范围上下波动,但总体上呈平稳的趋势;样品中HCHs区域平均含量由高到低依次为马袅港>东寨港>八所港>榆林港。通过对HCHs的组分特征分析,认为海南岛采样海域周围近年没有新的HCHs污染源输入。与世界其他海域贝类体内HCHs含量比较,海南岛沿岸牡蛎体内HCHs残留量较低,符合中国《海洋生物质量》一类质量标准。通过计算安全消费量,认为海南岛沿岸海域牡蛎体内HCHs致癌风险和暴露风险均在可接受的范围之内。  相似文献   

12.
水果中有机磷农药多残留快速检测方法的比较研究   总被引:2,自引:0,他引:2  
以丙酮、二氯甲烷以及乙腈等作为提取剂,比较了国标法和CDFA-MRSM法对水果中有机磷农药的提取效率和回收率,提取液用气相色谱仪-火焰光度检测器进行定性、定量分析。结果表明,采用国标法测定农药的平均回收率为82.3%~90.2%,变异系数为3%~9%;采用CDFA-MRSM法测定农药的平均回收率为79.3%~88.7%,变异系数为4%~11%。说明2种方法准确度与精密度较好,均符合农药残留量分析的基本要求。  相似文献   

13.
2008年4月和10月在山东沿海5个地区的海产品市场共采集样品20份,采用气相色谱-电子捕获检测器(GC-ECD)、外标法定量,对贝类体内有机氯农药(HCHs、DDTs)残留量进行检测。结果表明:贝类体内HCHs未检出,DDTs的检出率为35%,均未超过相关国家标准。与国内其它海域的贝类相比,山东沿海贝类有机氯农药残留低,与2005年数据相比,其污染情况也有明显的改善。pp'-DDD和pp'-DDE占DDTs的主要部分,说明山东沿海近期污染源输入很少,DDTs的降解主要源于有氧降解。  相似文献   

14.
[目的]了解北江佛山段饮用水源HCHs和DDTs的含量和季节分布。[方法]在不同季节北江佛山段的北江、石塘、金沙和石湾4个饮用水厂取水口取水样,参照美国EPA方法进行HCHs、DDTs检测分析。[结果]HCHs平均含量为1.125 ng/L,DDTs平均含量为0.267 ng/L,枯水期高于丰水期;不同结构HCHs中,α/γ平均比值为0.99,(α+γ)/β平均比值为1.99;(DDD+DDE)/DDT平均比值为1.03,DDD/DDE平均比值为1.10。[结论]北江佛山段饮用水源中HCHs和DDTs污染水平均低于国标(GB3838-2002),北江佛山段流域存在新的HCHs和DDTs污染源,水体处于厌氧环境。  相似文献   

15.
本研究建立了用高效液相色谱法测定稻田中噻嗪酮农药残留量的方法.样品采用随机取样法,稻田土经甲醇提取,二氯甲烷萃取,净亿;田水经二氯甲烷萃取,净化浓缩.用乙腈:水溶液(85/15,V/V)作流动相,C18柱,紫外检测器210nm检测,外标法定量.添加量在0.01~2.00mg/kg时,平均回收率为77.08%~98.60...  相似文献   

16.
河西走廊及兰州地区土壤中典型有机氯农药残留研究   总被引:3,自引:0,他引:3  
应用Agilent 7890-5975C GC-MSD对甘肃省河西走廊及兰州地区17个表层土壤样品中六六六(HCHs)和滴滴涕(DDTs)的残留水平进行分析,并对其来源进行初步解析.研究结果表明:研究区土壤中DDTs残留范围为0.22~53.69 ng·g-1,平均值为8.58ng· g-1; HCHs残留范围为0.07~9.16 ng·g-1,平均值为1.32 ng·g-1;DDTs的残留较HCHs占优势,约占二者总残留量的87%.(DDE+DDD)/DDT比值介于0.12~0.48之间,平均值为0.27,o,p'-DDT/p,p'-DDT比值在0.11~0.79之间,平均值为0.34,表明研究区土壤中的DDTs主要来源于工业源DDTs残留.α-HCH/γ-HCH介于0.64~15.5间,平均值为3.19,可推断研究区近期内不存在HCHs的使用,土壤中的HCHs残留主要来源于历史上工业HCHs和林丹的共同输入.与国内外其他地区土壤相比,该地区HCHs和DDTs的残留量处于较低水平;依照土壤环境质量标准(GB 15618-1995)的要求,研究区各采样点土壤环境处于相对安全的状态.  相似文献   

17.
通过对天津市辖区6种不同土地利用类型和2种灌溉类型的188个点位进行野外实地采样及定量分析,分析了天津市土壤环境中有机氯农药(OCPs)残留的空间分布特征及来源,系统研究了天津市六六六(HCHs)和滴滴涕(DDTs)各异构体单体在土壤中的残留水平、空间和剖面的分布特征,以及残留量今昔情况比较。结果表明:天津市土壤环境中HCHs和DDTs含量均可以达到国家一级标准。天津市HCHs污染空间分布特征为近郊区、滨海地区相对较重,市区次之,远郊区较轻;DDTs污染空间分布特征为近郊区、市区相对较重,远郊区次之,滨海地区较轻;不同的土壤利用类型中,城市绿地的OCPs残留量最高,清灌区和污灌区的OCPs残留量差异不大。剖面分析结果显示,有机氯农药的残留总量主要集中在0~30 cm的耕作层中。通过比较HCHs和DDTs的残留情况发现,DDTs的降解率高于HCHs,天津个别地区出现残留水平异常情况。  相似文献   

18.
 【目的】研究丘陵平原过渡区土壤农药残留特征,为其农业生产布局及土壤污染防治提供科学依据。【方法】以四川省五通桥区为例,利用气相色谱法检测丘陵平原过渡区103个样点的土壤样品中六六六(HCHs)、滴滴涕(DDTs)和10种有机磷农药(OPPs)残留量,利用地统计方法和GIS技术,评价研究区域内的土壤农药残留空间分布特征。【结果】94%的样品中HCHs含量符合国家二级标准(50~500 μg•kg-1),70%的样品中DDTs含量符合国家一级标准(<50 μg•kg-1)。10种OPPs中杀螟硫磷和溴硫磷超标率最高,检出率分别达到60.40%和55.45%。【结论】区内HCHs和DDTs残留不会影响正常的农业生产安全,OPPs存在一定程度的污染。不同功能区、自然乡镇农药残留分布差异较大,岷江两岸以及丘陵/河流冲积平原区之间农药残留分布差异较小。  相似文献   

19.
采集福州地区106个表层土壤样品,运用气相色谱-电子捕获检测器(GC-μECD),分析了不同土地类型土壤中六六六(HCHs)和滴滴涕(DDTs)残留水平、组成特征及来源。结果表明,福州土壤HCHs总浓度为0.581~66.9μg·kg-1,DDTs总浓度为0.782~110μg·kg-1。不同土地利用类型土壤中HCHs残留量为未利用地>水田>旱田>草地>林地。4种HCHs异构体中,草地、旱田和林地土壤中分别以α-HCH、β-HCH和γ-HCH相对含量最高,水田和未利用地土壤中δ-HCH含量最高。不同土地利用类型土壤中DDTs残留量为未利用地>旱田>水田>林地>草地,除未利用地土壤中相对含量最高的同系物是p,p′-DDD外,其余4种类型土壤中均是p,p′-DDE相对含量最高。来源分析表明,福州可能有林丹(主要成分为γ-HCH)输入,草地可能还有工业HCHs的输入;未利用地、旱田、林地土壤还存在新的DDTs输入,水田和草地土壤近期无工业DDTs输入;旱田、水田、未利用地可能还有少量三氯杀螨醇的使用或输入。  相似文献   

20.
付羽  李明  刘玥垠  常耀强 《湖北农业科学》2012,51(11):2325-2328
采用高效液相色谱法,使用SunFireTMC18色谱柱和紫外检测器,样品用甲醇与丙酮的混合液提取,经弗罗里硅土净化后,以甲醇∶水( 80∶20,V/V)为流动相,流速为0.5 mL/min,在260 nm波长下对水稻及土壤中稻瘟灵与三环唑进行同时测定.结果表明,2种分析物得到了有效分离,稻瘟灵和三环唑的线性相关系数分别为0.999 8、0.9999,最低检出量分别为1.6、1.3 ng;水稻中稻瘟灵和三环唑平均回收率分别为84.78%~93.35%、86.75%~91.13%,相对标准偏差分别为2.15%~5.81%、2.46%~4.94%;土壤中稻瘟灵和三环唑平均回收率分别为89.65%~94.08%、88.81%~91.06%,相对标准偏差分别为2.19%~4.31%、3.08%~5.38%.该分析方法快速、简单、灵敏,具有良好的准确度和精密度,适用于常规分析检验.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号