首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extensive measurements of low-energy plasma electrons and positive ions were made during the Voyager 1 encounter with Saturn and its satellites. The magnetospheric plasma contains light and heavy ions, probably hydrogen and nitrogen or oxygen; at radial distances between 15 and 7 Saturn-radii (Rs) on the inbound trajectory, the plasma appears to corotate with a velocity within 20 percent of that expected for rigid corotation. The general morphology of Saturn's magnetosphere is well represented by a plasma sheet that extends from at least 5 to 17 Rs, is symmetrical with respect to Saturn's equatorial plane and rotation axis, and appears to be well ordered by the magnetic shell parameter L (which represents the equatorial distance of a magnetic field line measured in units of Rs). Within this general configuration, two distinct structures can be identified: a central plasma sheet observed from L = 5 to L = 8 in which the density decreases rapidly away from the equatorial plane, and a more extended structure from L = 7 to beyond 18 Rs in which the density profile is nearly flat for a distance +/- 1.8 Rs off the plane and falls rapidly thereafter. The encounter with Titan took place inside the magnetosphere. The data show a clear signature characteristic of the interaction between a subsonic corotating magnetospheric plasma and the atmospheric or ionospheric exosphere of Titan. Titan appears to be a significant source of ions for the outer magnetosphere. The locations of bow shock crossings observed inbound and outbound indicate that the shape of the Saturnian magnetosphere is similar to that of Earth and that the position of the stagnation point scales approximately as the inverse one-sixth power of the ram pressure.  相似文献   

2.
Magnetic field studies by Voyager 1 have confirmed and refined certain general features of the Saturnian magnetosphere and planetary magnetic field established by Pioneer 11 in 1979. The main field of Saturn is well represented by a dipole of moment 0.21 +/- 0.005 gauss-R(s)(3) (where 1 Saturn radius, R(s), is 60,330 kilometers), tilted 0.7 degrees +/- 0.35 degrees from the rotation axis and located within 0.02 R(s) of the center of the planet. The radius of the magnetopause at the subsolar point was observed to be 23 R(s) on the average, rather than 17 R(s). Voyager 1 discovered a magnetic tail of Saturn with a diameter of approximately 80 R(s). This tail extends away from the Sun and is similar to type II comet tails and the terrestrial and Jovian magnetic tails. Data from the very close flyby at Titan (located within the Saturnian magnetosphere) at a local time of 1330, showed an absence of any substantial intrinsic satellite magnetic field. However, the results did indicate a very well developed, induced magnetosphere with a bipolar magnetic tail. The upper limit to any possible internal satellite magnetic moment is 5 x 10(21) gauss-cubic centimeter, equivalent to a 30-nanotesla equatorial surface field.  相似文献   

3.
The Pioneer Saturn vector helium magnetometer has detected a bow shock and magnetopause at Saturn and has provided an accurate characterization of the planetary field. The equatorial surface field is 0.20 gauss, a factor of 3 to 5 times smaller than anticipated on the basis of attempted scalings from Earth and Jupiter. The tilt angle between the magnetic dipole axis and Saturn's rotation axis is < 1 degrees , a surprisingly small value. Spherical harmonic analysis of the measurements shows that the ratio of quadrupole to dipole moments is < 10 percent, indicating that the field is more uniform than those of the Earth or Jupiter and consistent with Saturn having a relatively small core. The field in the outer magnetosphere shows systematic departures from the dipole field, principally a compression of the field near noon and an equatorial orientation associated with a current sheet near dawn. A hydromagnetic wake resulting from the interaction of Titan with the rotating magnetosphere appears to have been observed.  相似文献   

4.
During the passage of Voyager 2 through the Saturn system, infrared spectral and radiometric data were obtained for Saturn, Titan, Enceladus, Tethys, Iapetus, and the rings. Combined Voyager 1 and Voyager 2 observations of temperatures in the upper troposphere of Saturn indicate a seasonal asymmetry between the northern and southern hemispheres, with superposed small-scale meridional gradients. Comparison of high spatial resolution data from the two hemispheres poleward of 60 degrees latitude suggests an approximate symmetry in the small-scale structure, consistent with the extension of a symmetric system of zonal jets into the polar regions. Longitudinal variations of 1 to 2 K are observed. Disk- averaged infrared spectra of Titan show little change over the 9-month interval between Voyager encounters. By combining Voyager 2 temperature measurements with ground-based geometric albedo determinations, phase integrals of 0.91 +/- 0.13 and 0.89 +/- 0.09 were derived for Tethys and Enceladus, respectively. The subsolar point temperature of dark material on Iapetus must exceed 110 K. Temperatures (and infrared optical depths) for the A and C rings and for the Cassini division are 69 +/- 1 K (0.40 +/- 0.05), 85 +/- 1 K (0.10 +/- 0.03), and 85 +/- 2 K (0.07 +/- 0.04), respectively.  相似文献   

5.
Our 31 August to 5 September 1979 observations together with those of the other Pioneer 11 investigators provide the first credible discovery of the magnetosphere of Saturn and many detailed characteristics thereof. In physical dimensions and energetic charged particle population, Saturn's magnetosphere is intermediate between those of Earth and Jupiter. In terms of planetary radii, the scale of Saturn's magnetosphere more nearly resembles that of Earth and there is much less inflation by entrapped plasma than in the case at Jupiter. The orbit of Titan lies in the outer fringes of the magnetosphere. Particle angular distributions on the inbound leg of the trajectory (sunward side) have a complex pattern but are everywhere consistent with a dipolar magnetic field approximately perpendicular to the planet's equator. On the outbound leg (dawnside) there are marked departures from this situation outside of 7 Saturn radii (Rs), suggesting an equatorial current sheet having both longitudinal and radial components. The particulate rings and inner satellites have a profound effect on the distribution of energetic particles. We find (i) clear absorption signatures of Dione and Mimas; (ii) a broad absorption region encompassing the orbital radii of Tethys and Enceladus but probably attributable, at least in part, to plasma physical effects; (iii) no evidence for Janus (1966 S 1) (S 10) at or near 2.66 Rs; (iv) a satellite of diameter greater, similar 170 kilometers at 2.534 R(s) (1979 S 2), probably the same object as that detected optically by Pioneer 11 (1979 S 1) and previously by groundbased telescopes (1966 S 2) (S 11); (v) a satellite of comparable diameter at 2.343 Rs (1979 S 5); (vi) confirmation of the F ring between 2.336 and 2.371 Rs; (vii) confirmation of the Pioneer division between 2.292 and 2.336 Rs; (viii) a suspected satellite at 2.82 Rs (1979 S 3); (ix) no clear evidence for the E ring though its influence may be obscured by stronger effects; and (x) the outer radius of the A ring at 2.292 Rs. Inside of 2.292 Rs there is a virtually total absence of magnetospheric particles and a marked reduction in cosmic-ray intensity. All distances are in units of the adopted equatorial radius of Saturn, 60,000 kilometers.  相似文献   

6.
We have detected in Cassini spacecraft data the signature of the periodic tidal stresses within Titan, driven by the eccentricity (e = 0.028) of its 16-day orbit around Saturn. Precise measurements of the acceleration of Cassini during six close flybys between 2006 and 2011 have revealed that Titan responds to the variable tidal field exerted by Saturn with periodic changes of its quadrupole gravity, at about 4% of the static value. Two independent determinations of the corresponding degree-2 Love number yield k(2) = 0.589 ± 0.150 and k(2) = 0.637 ± 0.224 (2σ). Such a large response to the tidal field requires that Titan's interior be deformable over time scales of the orbital period, in a way that is consistent with a global ocean at depth.  相似文献   

7.
Voyager 1 radio occultation measurements of Titan's equatorial atmosphere successfully probed to the surface, which is provisionally placed at a radius of 2570 kilometers. Derived scale heights plus other experimental and theoretical results indicate that molecular nitrogen is the predominant atmospheric constituent. The surface pressure and temperature appear to be about 1.6 bars and 93 K, respectively. The main clouds are probably methane ice, although some condensation of nitrogen cannot be ruled out. Solar abundance arguments suggest and the measurements allow large quantities of surface methane near its triple-point temperature, so that the three phases of methane could play roles in the atmosphere and on the surface of Titan similar to those of water on Earth. Radio occultation measurements of Saturn's atmosphere near 75 degrees south latitude reached a maximum pressure of 1.4 bars, where the temperature is about 156 K. The minimum temperature is about 91 K near the 60-millibar pressure level. The measured part of the polar ionosphere of Saturn has a peak electron concentration of 2.3 x 10(4) per cubic centimeter at an altitude of 2500 kilometers above the 1-bar level in the atmosphere, and a plasma scale height at the top of the ionosphere of 560 kilometers. Attenuation of monochromatic radiation at a wavelength of 3.6 centimeters propagating obliquely through Saturn's rings is consistent with traditional values for the normal optical depth of the rings, but the near-forward scattering of this radiation by the rings indicates effective scattering particles with larger than expected diameters of 10, 8, and 2 meters in the A ring, the outer Cassini division, and the C ring, respectively. Preliminary analysis of the radio tracking data yields new values for the masses of Rhea and Titan of 4.4 +/- 0.3 x 10(-6) and 236.64 +/- 0.08 x 10(-6) times the mass of Saturn. Corresponding values for the mean densities of these objects are 1.33 +/- 0.10 and about 1.89 grams per cubic centimeter. The density of Rhea is consistent with a solar-composition mix of anhydrous rock and volatiles, while Titan is apparently enriched in silicates relative to the solar composition.  相似文献   

8.
The low-energy charged particle instrument on Voyager 1 measured low-energy electrons and ions (energies >/= 26 and >/= 40 kiloelectron volts, respectively) in Saturn's magnetosphere. The first-order ion anisotropies on the dayside are generally in the corotation direction with the amplitude decreasing with decreasing distance to the planet. The ion pitch-angle distributions generally peak at 90 degrees , whereas the electron distributions tend to have field-aligned bidirectional maxima outside the L shell of Rhea. A large decrease in particle fluxes is seen near the L shell of Titan, while selective particle absorption (least affecting the lowest energy ions) is observed at the L shells of Rhea, Dione, and Tethys. The phase space density of ions with values of the first invariant in the range approximately 300 to 1000 million electron volts per gauss is consistent with a source in the outer magnetosphere. The ion population at higher energies (>/= 200 kiloelectron volts per nucleon) consists primarily of protons, molecular hydrogen, and helium. Spectra of all ion species exhibit an energy cutoff at energies >/= 2 million electron volts. The proton-to-helium ratio at equal energy per nucleon is larger (up to approximately 5 x 10(3)) than seen in other magnetospheres and is consistent with a local (nonsolar wind) proton source. In contrast to the magnetospheres of Jupiter and Earth, there are no lobe regions essentially devoid of particles in Saturn's nighttime magnetosphere. Electron pitch-angle distributions are generally bidirectional andfield-aligned, indicating closed field lines at high latitudes. Ions in this region are generally moving toward Saturn, while in the magnetosheath they exhibit strong antisunward streaming which is inconsistent with purely convective flows. Fluxes of magnetospheric ions downstream from the bow shock are present over distances >/= 200 Saturn radii from the planet. Novel features identified in the Saturnian magnetosphere include a mantle of low-energy particles extending inward from the dayside magnetopause to approximately 17 Saturn radii, at least two intensity dropouts occurring approximately 11 hours apart in the nighttime magnetosphere, and a pervasive population of energetic molecular hydrogen.  相似文献   

9.
During the passage of Voyager 1 through the Saturn system, the infrared instrument acquired spectral and radiometric data on Saturn, the rings, and Titan and other satellites. Infrared spectra of Saturn indicate the presence of H(2), CH(4), NH(3), PH(3), C(2)H(2), C(2)H(6), and possibly C(3)H(4) and C(3)H(8). A hydrogen mole fraction of 0.94 is inferred with an uncertainty of a few percent, implying a depletion of helium in the atmosphere of Saturn relative to that of Jupiter. The atmospheric thermal structure of Saturn shows hemisphere asymmetries that are consistent with a response to the seasonally varying insolation. Extensive small-scale latitudinal structure is also observed. On Titan, positive identifications of infrared spectral features are made for CH(4), C(2)H(2), C(2)H(4), C(2)H(6), and HCN; tentative identifications are made for C(3)H(4) and C(3)H(8). The infrared continuum opacity on Titan appears to be quite small between 500 and 600 cm(-1), implying that the solid surface is a major contributor to the observed emission over this spectral range; between 500 and 200 cm(-1) theopacity increases with decreasing wave number, attaining an optical thickness in excess of 2 at 200 cm(-1). Temperatures near the 1-millibar level are independent of longitude and local time but show a decrease of approximately 20 K between the equator and north pole, which suggests a seasonally dependent cyclostrophic zonal flow in the stratosphere of approximately 100 meters per second. Measurements of the C ring of Saturn yield a temperature of 85 +/- 1 K and an infrared optical depth of 0.09 +/- 0.01. Radiometer observations of sunlight transmitted through the ring system indicate an optical depth of 10(-1.3 +/-0.3) for the Cassini division. A phase integral of 1.02 +/- 0.06 is inferred for Rhea, which agrees with values for other icy bodies in the solar system. Rhea eclipse observations indicate the presence of surface materials with both high and low thermal inertias, the former most likely a blocky component and the latter a frost.  相似文献   

10.
An imaging photopolarimeter aboard Pioneer 11, including a 2.5-centimeter telescope, was used for 2 weeks continuously in August and September 1979 for imaging, photometry, and polarimetry observations of Saturn, its rings, and Titan. A new ring of optical depth < 2 x 10(-3) was discovered at 2.33 Saturn radii and is provisionally named the F ring; it is separated from the A ring by the provisionally named Pioneer division. A division between the B and C rings, a gap near the center of the Cassini division, and detail in the A, B, and C rings have been seen; the nomenclature of divisions and gaps is redefined. The width of the Encke gap is 876 +/- 35 kilometers. The intensity profile and colors are given for the light transmitted by the rings. A mean particle size less, similar 15 meters is indicated; this estimate is model-dependent. The D ring was not seen in any viewing geometry and its existence is doubtful. A satellite, 1979 S 1, was found at 2.53 +/- 0.01 Saturn radii; the same object was observed approximately 16 hours later by other experiments on Pioneer 11. The equatorial radius of Saturn is 60,000 +/- 500 kilometers, and the ratio of the polar to the equatorial radius is 0.912 +/- 0.006. A sample of polarimetric data is compared with models of the vertical structure of Saturn's atmosphere. The variation of the polarization from the center of the disk to the limb in blue light at 88 degrees phase indicates that the density of cloud particles decreases as a function of altitude with a scale height about one-fourth that of the gas. The pressure level at which an optical depth of 1 is reached in the clouds depends on the single-scattering polarizing properties of the clouds; a value similar to that found for the Jovian clouds yields an optical depth of 1 at about 750 millibars.  相似文献   

11.
Electrons and protons accelerated and trapped in a Saturnian magnetic field have been found by the University of Chicago experiments on Pioneer 11 within 20 Saturn radii (Rs) of the planet. In the innermost regions, strong absorption effects due to satellites and ring material were observed, and from approximately 4 Rs inwards to the outer edge of the A ring at 2.30 Rs (where the radiation is absorbed), the intensity distributions of protons (>/= 0.5 million electron volts) and electrons (2 to 20 million electron volts) were axially symmetric, consistent with a centered dipole aligned with the planetary rotation axis. The maximum fluxes observed for protons (> 35 million electron volts and for electrons < 3.4 million electron volts) were 3 x 10(4) and 3 x 10(6) per square centimeter per second, respectively. Absorption of radiation by Mimas provides a means of estimating the radial diffusion coefficient for charged particle transport. However, the rapid flux increases observed between absorption features raise new questions concerning the physics of charged particle transport and acceleration. An absorption feature near 2.5 Rs has led to the discovery of a previously unknown satellite with a diameter of approximately 200 kilometers, semimajor axis of 2.51 Rs, and eccentricity of 0.013. Radiation absorption features that suggest a nonuniform distribution of matter around Saturn have also been found from 2.34 to 2.36 Rs, near the position of the F ring discovered by the Pioneer imaging experiment. Beneath the A, B, and C rings we continued to observe a low flux of high-energy electrons. We conclude that the inner Saturn magnetosphere, because of its near-axial symmetry and the many discrete radiation absorption regions, offers a unique opportunity to study the acceleration and transport of charged particles in a planetary magnetic field.  相似文献   

12.
During the Pioneer Saturn encounter, a continuous round-trip radio link at S band ( approximately 2.2 gigahertz) was maintained between stations of the Deep Space Network and the spacecraft. From an analysis of the Doppler shift in the radio carrier frequency, it was possible to determine a number of gravitational effects on the trajectory. Gravitational moments ( J(2) and J(4)) for Saturn have been determined from preliminary analysis, and preliminary mass values have been determined for the Saturn satellites Rhea, Iapetus, and Titan. For all three satellites the densities are low, consistent with the compositions of ices. The rings have not been detected in the Doppler data, and hence the best preliminary estimate of their total mass is zero with a standard error of 3 x 10(-6) Saturn mass. New theoretical calculations for the Saturn interior are described which use the latest observational data, including Pioneer Saturn, and state-of-the-art physics for the internal composition. Probably liquid H(2)O and possibly NH(3) and CH(4) are primarily confined in Saturn to the vicinity of a core of approximately 15 to 20 Earth masses. There is a slight indication that helium may likewise be fractionated to the central regions.  相似文献   

13.
Analysis of the Mariner 9 radio-tracking data shows that the Martian gravity field is rougher than that of Earth or the moon, and that the accepted direction of Mars's rotation axis is in error by about 0.5 degrees . The new value for the pole direction for the epoch 1971.9, referred to the mean equatorial system of 1950.0, is right ascension alpha= 317.3 degrees +/- 0.3 degrees , declination delta = 52.6 degrees +/- 0.2 degrees . The values found for the coefficients of the low-order harmonics of Mars's gravity field are as follows: J(2)=(1.96+/-0.01)x10(-3), referred to an equatorial radius of 3394 kilometers; C(22) = -(5 +/- 1) x 10(-5); and S(22) = (3 +/- 1) x 10(-5). The value for J(2) is in excellent agreement with the result from, Wilkins' analysis of the observations of Phobos. The other two coefficients imply a value of (2.5 +/- 0.5) x 10(-4) for the fractional difference in the principal equatorial moments of inertia; the axis of the minimum moment passes near 105 degrees W.  相似文献   

14.
The global hydrogen Lyman alpha, helium (584 angstroms), and molecular hydrogen band emissions from Saturn are qualitatively similar to those of Jupiter, but the Saturn observations emphasize that the H(2) band excitation mechanism is closely related to the solar flux. Auroras occur near 80 degrees latitude, suggesting Earth-like magnetotail activity, quite different from the dominant Io plasma torus mechanism at Jupiter. No ion emissions have been detected from the magnetosphere of Saturn, but the rings have a hydrogen atmosphere; atomic hydrogen is also present in a torus between 8 and 25 Saturn radii. Nitrogen emission excited by particles has been detected in the Titan dayglow and bright limb scans. Enhancement of the nitrogen emission is observed in the region of interaction between Titan's atmosphere and the corotating plasma in Saturn's plasmasphere. No particle-excited emission has been detected from the dark atmosphere of Titan. The absorption profile of the atmosphere determined by the solar occultation experiment, combined with constraints from the dayglow observations and temperature information, indicate that N(2) is the dominant species. A double layer structure has been detected above Titan's limb. One of the layers may be related to visible layers in the images of Titan.  相似文献   

15.
The Voyager 2 photopolarimeter was reprogrammed prior to the August 1981 Saturn encounter to perform orthogonal-polarization, two-color measurements on Saturn, Titan, and the rings. Saturn's atmosphere has ultraviolet limb brightening in the mid-latitudes and pronounced polar darkening north of 65 degrees N. Titan's opaque atmosphere shows strong positive polarization at all phase angles (2.7 degrees to 154 degrees ), and no single-size spherical particle model appears to fit the data. A single radial stellar occultation of the darkened, shadowed rings indicated a ring thickness of less than 200 meters at several locations and clear evidence for density waves caused by satellite resonances. Multiple, very narrow strands of material were found in the Encke division and within the brightest single strand of the F ring.  相似文献   

16.
Magnetic fields at uranus   总被引:1,自引:0,他引:1  
The magnetic field experiment on the Voyager 2 spacecraft revealed a strong planetary magnetic field of Uranus and an associated magnetosphere and fully developed bipolar masnetic tail. The detached bow shock wave in the solar wind supersonic flow was observed upstream at 23.7 Uranus radii (1 R(U) = 25,600 km) and the magnetopause boundary at 18.0 R(U), near the planet-sun line. A miaximum magnetic field of 413 nanotesla was observed at 4.19 R(U ), just before closest approach. Initial analyses reveal that the planetary magnetic field is well represented by that of a dipole offset from the center of the planet by 0.3 R(U). The angle between Uranus' angular momentum vector and the dipole moment vector has the surprisingly large value of 60 degrees. Thus, in an astrophysical context, the field of Uranus may be described as that of an oblique rotator. The dipole moment of 0.23 gauss R(3)(U), combined with the large spatial offset, leads to minimum and maximum magnetic fields on the surface of the planet of approximately 0.1 and 1.1 gauss, respectively. The rotation period of the magnetic field and hence that of the interior of the planet is estimated to be 17.29+/- 0.10 hours; the magnetotail rotates about the planet-sun line with the same period. Thelarge offset and tilt lead to auroral zones far from the planetary rotation axis poles. The rings and the moons are embedded deep within the magnetosphere, and, because of the large dipole tilt, they will have a profound and diurnally varying influence as absorbers of the trapped radiation belt particles.  相似文献   

17.
The Voyager 1 plasma wave instrument detected many familiar types of plasma waves during the encounter with Saturn, including ion-acoustic waves and electron plasma oscillations upstream of the bow shock, an intense burst of electrostatic noise at the shock, and chorus, hiss, electrostatic electron cyclotron waves, and upper hybrid resonance emissions in the inner magnetosphere. A clocklike Saturn rotational control of low-frequency radio emissions was observed, and evidence was obtained of possible control by the moon Dione. Strong plasma wave emissions were detected at the Titan encounter indicating the presence of a turbulent sheath extending around Titan, and upper hybrid resonance measurements of the electron density show the existence of a dense plume of plasma being carried downstream of Titan by the interaction with the rapidly rotating magnetosphere of Saturn.  相似文献   

18.
The Cassini Orbiter spacecraft first skimmed through the tenuous upper atmosphere of Titan on 26 October 2004. This moon of Saturn is unique in our solar system, with a dense nitrogen atmosphere that is cold enough in places to rain methane, the feedstock for the atmospheric chemistry that produces hydrocarbons, nitrile compounds, and Titan's orange haze. The data returned from this flyby supply new information on the magnetic field and plasma environment around Titan, expose new facets of the dynamics and chemistry of Titan's atmosphere, and provide the first glimpses of what appears to be a complex, fluid-processed, geologically young Titan surface.  相似文献   

19.
Temperatures obtained from early Cassini infrared observations of Titan show a stratopause at an altitude of 310 kilometers (and 186 kelvin at 15 degrees S). Stratospheric temperatures are coldest in the winter northern hemisphere, with zonal winds reaching 160 meters per second. The concentrations of several stratospheric organic compounds are enhanced at mid- and high northern latitudes, and the strong zonal winds may inhibit mixing between these latitudes and the rest of Titan. Above the south pole, temperatures in the stratosphere are 4 to 5 kelvin cooler than at the equator. The stratospheric mole fractions of methane and carbon monoxide are (1.6 +/- 0.5) x 10(-2) and (4.5 +/- 1.5) x 10(-5), respectively.  相似文献   

20.
Jupiter's magnetic field and its interaction with the magnetized solar wind were observed with the Pioneer 10 vector helium magnetometer. The magnetic dipole is directed opposite to that of the earth with a moment of 4.0 gauss R(J)(3) (R(J), Jupiter radius), and an inclination of 15 degrees lying in a system III meridian of 230 degrees . The dipole is offset about 0.1 R(J) north of the equatorial plane and about 0.2 R(J) toward longitude 170 degrees . There is severe stretching of the planetary field parallel to the equator throughout the outer magnetosphere, accompanied by a systematic departure from meridian planes. The field configuration implies substantial plasma effects inside the magnetosphere, such as thermal pressure, centrifugal forces, and differential rotation. As at the earth, the outer boundary is thin, nor diffuse, and there is a detached bow shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号