首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
For 2 weeks continuous imaging, photometry, and polarimetry observations were made of Jupiter and the Galilean satellites in red and blue light from Pioneer 11. Measurements of Jupiter's north and south polar regions were possible because the spacecraft trajectory was highly inclined to the planet's equatorial plane. One of the highest resolution images obtained is presented here along with a comparison of a sample of our photometric and polarimetric data with a simple model. The data seem consistent with increased molecular scattering at high latitudes.  相似文献   

2.
A 2.5-centimeter telescope aboard Pioneer 10 is capable of making two-dimensional spin-scan maps of intensity and polarization in red and blue light at high spatial resolution. During the recent flyby of Jupiter, a large quantity of imaging and polarimetric data was obtained on Jupiter and the Galilean satellites over a wide range of phase angles.  相似文献   

3.
The particle flux measured by the meteoroid detectors on Pioneer 11 increased greatly while the spacecraft was near the rings of Saturn. The data suggest that the particles were associated with the rings and were not interplanetary meteoroids concentrated near the planet by gravitational focusing. The data also suggest that the E ring may be 1800 kilometers thick with an optical thickness greater than 10(-8).  相似文献   

4.
Opp AG 《Science (New York, N.Y.)》1980,207(4429):401-403
An overview of the Pioneer encounter with Saturn is presented, including a brief discussion of the characteristics of the planet and a summary of the scientific results, which are described in detail in the following reports.  相似文献   

5.
The intrinsic magnetic field of Saturn measured by the high-field fluxgate magnetometer is much weaker than expected. An analysis of preliminary data combined with the preliminary trajectory yield a model for the main planetary field which is a simple centered dipole of moment 0.20 +/- 0.01 gauss-Rs(3) = 4.3 +/- 0.2 x 10(28) gauss-cm(3) (1 Rs = 1 Saturn radius = 60,000 km). The polarity is opposite that of Earth, and, surprisingly, the tilt is small, within 2 degrees +/- 1 degrees of the rotation axis. The equatorial field intensity at the cloud tops is 0.2 gauss, and the polar intensity is 0.56 gauss. The unique moon Titan is expected to be located within the magnetosheath of Saturn or the interplanetary medium about 50 percent of the time because the average subsolar point distance to the magnetosphere is estimated to be 20 Rs, the orbital distance to Titan.  相似文献   

6.
The Ames Research Center Pioneer 11 plasma analyzer experiment provided measurements of the solar wind interaction with Saturn and the character of the plasma environment within Saturn's magnetosphere. It is shown that Saturn has a detached bow shock wave and magnetopause quite similar to those at Earth and Jupiter. The scale size of the interaction region for Saturn is roughly one-third that at Jupiter, but Saturn's magnetosphere is equally responsive to changes in the solar wind dynamic pressure. Saturn's outer magnetosphere is inflated, as evidenced by the observation of large fluxes of corotating plasma. It is postulated that Saturn's magnetosphere may undergo a large expansion when the solar wind pressure is greatly diminished by the presence of Jupiter's extended magnetospheric tail when the two planets are approximately aligned along the same solar radial vector.  相似文献   

7.
Radio occultation measurements at S band (2.293 gigahertz) of the ionosphere and upper neutral atmosphere of Saturn were obtained during the flyby of the Pioneer 11 Saturn spacecraft on 5 September 1979. Preliminary analysis of the occultation exit data taken at a latitude of 9.5 degrees S and a solar zenith angle of 90.6 degrees revealed the presence of a rather thin ionosphere, having a main peak electron density of about 9.4 x 10/(3) per cubic centimeter at an altitude of about 2800 above the level of a neutral number density of 10(19) per cubic centimeter and a lower peak of about 7 x 10(3) per cubic centimeter at 2200 kilometers. Data in the neutral atmosphere were obtained to a pressure level of about 120 millibars. The temperature structure derived from these data is consistent with the results of the Pioneer 11 Saturn infrared radiometer experiment (for a helium fraction of 15 percent) and with models derived from Earth-based observations for a helium fraction by number of about 4 to 10 percent. The helium fraction will be further defined by mutual iteration with the infrared radiometer team.  相似文献   

8.
Pioneer saturn     
Dyer JW 《Science (New York, N.Y.)》1980,207(4429):400-401
After leaving the neighborhood of Jupiter in December 1974, the Pioneer 11 spacecraft headed toward Saturn; it encountered Saturn on 1 September 1979. Its trajectory and general features are described in this report.  相似文献   

9.
Absorptions for the V(2) band of deuterated methane (CH(3)D) have been observed in the 5-micron spectrum of Saturn, obtained with a Fourier transform spectrometer. Analysis of the band yields a CH(3)D abundance of 2.6 +/- 0.8 centimeter-amagat and a temperature of 175 +/- 30 K for the mean level of spectroscopic line formation. This temperature indicates that a substantial portion of Saturn's flux at 5 microns is due to thermal radiation, and that we are therefore looking fairly deep into its atmosphere, as is the case for the Jupiter 5-micron window. This CH(3)D abundance leads to a deuteriumlhydrogen ratio of about 2 x 10(-5) in Saturn's atmosphere. This ratio is much lower than the terrestrial value but comparable to that determined for Jupiter and may be taken as representative of the deuteriumlhydrogen ratio in the solar system at the time of its formation.  相似文献   

10.
The first polarization measurements of the orbiter cloud photopolarimeter have detected a planet-wide layer of submicrometer aerosols of substantial visible optical thickness, of the order of 0.05 to 0.1, in the lower stratosphere well above the main visible sulfuric acid cloud layer. Early images show a number of features observed by Mariner 10 in 1974, including planetary scale markings that propagate around the planet in the retrograde sense at roughly 100 meters per second and bright- and dark-rimmed cells suggesting convective activity at low latitudes. The polar regions are covered by bright clouds down to latitudes aproximately 50 degrees, with both caps significantly brighter (relative to low latitudes) than the south polar cloud observed by Mariner 10. The cellular features, often organized into clusters with large horizontal scale, exist also at mid-latitudes, and include at least one case in which a cell cuts across the edge of the bright polar cloud of the northern hemisphere.  相似文献   

11.
12.
13.
An analysis of high-resolution microwave images of Saturn and Saturn's individual rings is presented. Radio interferometric observations of Saturn taken at the Very Large Array in New Mexico at wavelengths of 2 and 6 centimeters reveal interesting new features in both the atmosphere and rings. The resulting maps show an increase in brightness temperature of about 3 K from equator to pole at both wavelengths, while the 6-centimeter map shows a bright band at northern mid-latitudes. The data are consistent with a radiative transfer model of the atmosphere that constrains the well-mixed, fully saturated, NH(3) mixing ratio to be 1.2 x 10(-4) in a region just below the NH(3) clouds, while the observed bright band indicates a 25 percent relative decrease of NH(3) in northern mid-latitudes. Brightness temperatures for the classical rings are presented. Ring brightness shows a variation with azimuth and is linearly polarized at an average value of about 5 percent. The variations in ring polarization suggest that at least 20 percent of the ring brightness is the result of a single scattering process.  相似文献   

14.
15.
16.
17.
During the Pioneer Saturn encounter, a continuous round-trip radio link at S band ( approximately 2.2 gigahertz) was maintained between stations of the Deep Space Network and the spacecraft. From an analysis of the Doppler shift in the radio carrier frequency, it was possible to determine a number of gravitational effects on the trajectory. Gravitational moments ( J(2) and J(4)) for Saturn have been determined from preliminary analysis, and preliminary mass values have been determined for the Saturn satellites Rhea, Iapetus, and Titan. For all three satellites the densities are low, consistent with the compositions of ices. The rings have not been detected in the Doppler data, and hence the best preliminary estimate of their total mass is zero with a standard error of 3 x 10(-6) Saturn mass. New theoretical calculations for the Saturn interior are described which use the latest observational data, including Pioneer Saturn, and state-of-the-art physics for the internal composition. Probably liquid H(2)O and possibly NH(3) and CH(4) are primarily confined in Saturn to the vicinity of a core of approximately 15 to 20 Earth masses. There is a slight indication that helium may likewise be fractionated to the central regions.  相似文献   

18.
19.
The Voyager observation of high zonal flow speeds (about 400 meters per second) in the atmosphere of Saturn has raised fundamental questions about the flow on both Jupiter and Saturn. One possibility is that the flow is extremely deep, perhaps extending through the planet. Another is that the flow is confined near the cloud tops and is associated with very strong buoyancy contrasts. It is demonstrated that the heat of conversion from parahydrogen to orthohydrogen can provide buoyancy contrasts of the required magnitude, and a feedback mechanism is proposed to couple the heat of conversion to the flow dynamics.  相似文献   

20.
The effective temperature of Saturn, 94.4 + 3 K, implies a total emission greater than two times the absorbed sunlight. The infrared data alone give an atmospheric abundance of H(2) relative to H(2) + He of 0.85 +/- 0.15. Comparison of infrared and radio occultation data will give a more precise estimate. Temperature at the 1-bar level is 137 to 140 K, and 2.5 K differences exist between belts and zones up to the 0.06-bar level. Ring temperatures range from 60 to 70 K on the south (illuminated) side and from < 60 to 67 K in the planet's shadow. The average temperature of the north (unilluminated) side is approximately 55 K. Titan's 45-micrometer brightness temperature is 80 +/- 10 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号