首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
About half the biogenic sulfur flux to the earth's atmosphere each year arises from the oceans. Dimethylsulfide (DMS), which constitutes about 90% of this marine sulfur flux, is presumed to originate from the decomposition of dimethylsulfoniopropionate produced by marine organisms, particularly phytoplankton. The rate of DMS release by phytoplankton is greatly increased when the phytoplankton are subjected to grazing by zooplankton. DMS production associated with such grazing may be the major mechanism of DMS production in many marine settings.  相似文献   

2.
Flux of dimethylsulfide (DMS) from ocean surface waters is the predominant natural source of sulfur to the atmosphere and influences climate by aerosol formation. Marine bacterioplankton regulate sulfur flux by converting the precursor dimethylsulfoniopropionate (DMSP) either to DMS or to sulfur compounds that are not climatically active. Through the discovery of a glycine cleavage T-family protein with DMSP methyltransferase activity, marine bacterioplankton in the Roseobacter and SAR11 taxa were identified as primary mediators of DMSP demethylation to methylmercaptopropionate. One-third of surface ocean bacteria harbor a DMSP demethylase homolog and thereby route a substantial fraction of global marine primary production away from DMS formation and into the marine microbial food web.  相似文献   

3.
Filaments and extracellular material from colorless sulfur bacteria (Beggiatoa spp.) form extensive white sulfur mats on surface sediments of coastal, oceanic, and even deep-sea environments. These chemoautotrophic bacteria oxidize soluble reduced sulfur compounds and deposit elemental sulfur, enriching the sulfur content of surface sediment fivefold over that of deeper sediments. Laboratory flume experiments with Beggiatoa mats from an intertidal sandflat (Nova Scotia) demonstrated that even slight erosion of sediment causes a flux of 160 millimoles of sulfur per square meter per hour, two orders of magnitude greater than the flux produced by sulfur transformations involving either sulfate reduction or sulfide oxidation by benthic bacteria. These experiments indicate that resuspension of sulfur bacterial mats by waves and currents is a rapid mechanism by which sediment sulfur is recycled to the water column. Benthic communities thus lose an important storage intermediate for reduced sulfur as well as a high-quality bacterial food source for benthic grazers.  相似文献   

4.
Aerosol samples collected from eight geographically distinct locations in South America during the austral winter of 1976 and summer of 1977 with six-stage cascade impactors show a tropospheric sulfur background concentration of about 50 nanograms per cubic meter of air in the fine-particle mode (1 micrometer in aerodynamic diameter). Time-sequence filter samples, taken concurrently at most locations, show an average non-sea spray related sulfur concentration of about 85 nanograms per cubic meter. These concentrations are substantially lower than most published nonurban values for the Northern Hemisphere obtained by similar sampling and analysis techniques and may represent a natural tropospheric background level of aerosol sulfur.  相似文献   

5.
The sulfur cycle influences the respiration of sedimentary organic matter, the oxidation state of the atmosphere and oceans, and the composition of seawater. However, the factors governing the major sulfur fluxes between seawater and sedimentary reservoirs remain incompletely understood. Using macrostratigraphic data, we quantified sulfate evaporite burial fluxes through Phanerozoic time. Approximately half of the modern riverine sulfate flux comes from weathering of recently deposited evaporites. Rates of sulfate burial are unsteady and linked to changes in the area of marine environments suitable for evaporite formation and preservation. By contrast, rates of pyrite burial and weathering are higher, less variable, and largely balanced, highlighting a greater role of the sulfur cycle in regulating atmospheric oxygen.  相似文献   

6.
Atmospheric dimethyl sulfide (DMS) measurements were made on the Atlantic Coast of the United States at Wallops Island and Cape Henry, Virginia, during June 1975. The very low concentrations, typically less than 30 parts per trillion observed at the Cape Henry site, were thought to result from the smog chemistry associated with the Norfolk metropolitan area. Atmospheric DMS concentrations at the Wallops Island site were much higher, having a geometric mean of 58 parts per trillion and a geometric standard deviation of 2.1. At this site the DMS source strength was estimated to be 6 milligrams of sulfur per square meter per year. Because of wind conditions during this experiment, the DMS source strength is thought to be representative of the DMS source strength of the ocean in the Wallops Island area and is much less than the 130 milligrams of sulfur per square meter per year needed to balance the ocean-atmosphere portion of the global sulfur budget.  相似文献   

7.
Kyte FT  Wasson JT 《Science (New York, N.Y.)》1986,232(4755):1225-1229
Iridium measured in 149 samples of a continuous 9-meter section of Pacific abyssal clay covering the time span 33 to 67 million years ago shows a well-defined peak only at the Cretaceous/Tertiary boundary. In the rest of the section iridium ranges from a minimum concentration near 0.35 nanograms per gram in the Paleocene to a maximum near 1.7 in the Eocene; between 63 and 33 million years ago the mean iridium accumulation rate is approximately 13 nanograms per square centimeter per million years. Correction for terrestrial iridium leads to an extraterrestrial flux of9 +/- 3 nanograms of iridium per square centimeter per million years, and an estimated annual global influx of 78 billion grams of chondritic matter, consistent with recent estimates of the influx of dust, meteorites, and crater-producing bodies with masses ranging from 10(-13) to 10(18 )grams. Combining the recent flux of objects ranging in mass from 10(6) to 10(7) grams with the flux of 10(14) - to 10(15) -gram objects indicates that the number of objects is equal to 0.54 divided by the radius (in kilometers) to the 2.1 power. Periodic comet showers should increase the cometary iridium flux by a factor of 200 to 600 on a time scale of 1 to 3 million years; the predicted iridium maxima (more than 30 times background) are not present in the intervals associated with the Cretaceous/Tertiary boundary or the tektiteproducing late Eocene events.  相似文献   

8.
Marine biogenic dimethylsulfide (DMS) is the main natural source of tropospheric sulfur, which may play a key role in cloud formation and albedo over the remote ocean. Through a global data analysis, we found that DMS concentrations are highly positively correlated with the solar radiation dose in the upper mixed layer of the open ocean, irrespective of latitude, plankton biomass, or temperature. This is a necessary condition for the feasibility of a negative feedback in which light-attenuating DMS emissions are in turn driven by the light dose received by the pelagic ecosystem.  相似文献   

9.
Sulfur released from any given natural or anthropogenic source carries an isotopic signature that can be used to trace its flow through the environment. Measurements of the concentration and isotopic composition of sulfur in weekly bulk precipitation samples collected over a 4-year period at a remote location in northern Ontario were recorded. The long-term isotopic data and the measurement on the production and release of dimethyl sulfide from boreal wetlands show that biogenic sources can account for up to 30 percent of the acidifying sulfur burden in the atmosphere in remote areas of Canada. The data suggest that significant biological reemission of anthropogenic sulfur is occurring. The role of this process in the continuing acidification of the environment for years to come must be a matter of concern.  相似文献   

10.
The silica balance in the world ocean: a reestimate   总被引:8,自引:0,他引:8  
The net inputs of silicic acid (dissolved silica) to the world ocean have been revised to 6.1 +/- 2.0 teramoles of silicon per year (1 teramole = 10(12) moles). The major contribution (about 80 percent) comes from rivers, whose world average silicic acid concentration is 150 micromolar. These inputs are reasonably balanced by the net ouputs of biogenic silica of 7.1 +/- 1.8 teramoles of silicon per year in modern marine sediments. The gross production of biogenic silica (the transformation of dissolved silicate to particulate skeletal material) in surface waters was estimated to be 240 +/- 40 teramoles of silicon per year, and the preservation ratio (opal accumulation in sediment/gross production in surface waters) averages 3 percent. In the world ocean the residence time of silicon, relative to total biological uptake in surface waters, is about 400 years.  相似文献   

11.
Acetylcholine liberation from cerebral cortex during paradoxical (REM) sleep   总被引:16,自引:0,他引:16  
The rate of liberation of free acetylcholine from the surface of prostigmin-treated cerebral cortex in the freely moving cat has been determined in states of slow wave sleep, paradoxical or activated sleep, and waking. The average rate during slow wave sleep (1.2 nanograms per minute per square centimeter of cortical surface) increased during paradoxical sleep (2.2 nanograms per minute) and during waking (2.1 nanograms per minute). The rate of acetylcholine release is thus related to the electroencephalogram pattern of desynchronized activatin of the cortex rahter than to the behavioral responsiveness of the animals.  相似文献   

12.
The strontium isotopic composition of biogenic precipitates that occur in estuarine sediments can be used as proxy indicator of paleosalinity and for assessing precipitation and river discharge rates over thousands of years. In the San Francisco Bay estuary, river water with low (87)Sr/(86)Sr ratio (average, 0.7065) and low Sr concentration (0.13 parts per million) mixes with seawater with a higher (87)Sr/(86)Sr ratio (0.7092) and Sr concentration (7.9 parts per million). The predicted mixing relation between salinity and Sr isotopic composition is confirmed by measurements of modern estuarine surface waters. A paleosalinity record obtained from foraminifera for the ancestral San Francisco Bay during oxygen isotope substage 5e of the last interglacial reflects a global rise and fall of sea level, and short time-scale variations related to fluctuations in discharge rates of the Sacramento and San Joaquin rivers.  相似文献   

13.
Volatile halogenated organic compounds synthesized by various industrial processes are troublesome pollutants because they are persistent in terrestrial ecosystems and because they may be present in sufficient quantities to alter the natural atmospheric cycles of the halogens. Certain of these compounds, including polybromomethanes and several previously unobserved alkyl monohalides and dihalides, appear to be natural products of the marine environment. A variety of temperate marine macroalgae (the brown algae Ascophyllum nodosum and Fucus vesiculosis, the green algae Enteromorpha linza and Ulva lacta, and the red alga Gigartina stellata) not only contain volatile halogenated organic compounds but also release them to seawater at rates of nanograms to micrograms of each compound per gram of dry algae per day. The macroalgae may be an important source of bromine-containing material released to the atmosphere.  相似文献   

14.
Dauphas N  Marty B 《Science (New York, N.Y.)》1999,286(5449):2488-2490
Nitrogen and argon isotopes were measured in carbonatites and associated rocks from the Kola Peninsula in Russia. The Kola mantle source, which is thought to be located in the deep mantle, is enriched in heavy nitrogen (+3 per mil relative to air) as compared to Earth's surface (atmosphere and crust, +2 per mil) and the shallow mantle (-4 per mil). Recycling of oceanic crust (+6 per mil) or metal-silicate partitioning may account for the nitrogen isotopic composition of the deep mantle.  相似文献   

15.
Chlorine stable isotope compositions (delta37Cl) of 22 mid-ocean ridge basalts (MORBs) correlate with Cl content. The high-delta37Cl, Cl-rich basalts are highly contaminated by Cl-rich materials (seawater, brines, or altered rocks). The low-delta37Cl, Cl-poor basalts approach the composition of uncontaminated, mantle-derived magmas. Thus, most or all oceanic lavas are contaminated to some extent during their emplacement. MORB-source mantle has delta37Cl 相似文献   

16.
The sulfur cycle   总被引:9,自引:0,他引:9  
Even granting our uncertainties about parts of our model of the sulfur cycle, we can draw some conclusions from it: 1) Man is now contributing about one half as much as nature to the total atmospheric burden of sulfur compounds, but by A.D. 2000 he will be contributing about as much, and in the Northern Hemisphere alone he will be more than matching nature. 2) In industrialized regions he is overwhelming natural processes, and the removal processes are slow enough (several days, at least) so that the increased concentration is marked for hundreds to thousands of kilometers downwind. 3) Our main areas of uncertainty, and ones that demand immediate attention because of their importance to the regional air pollution question, are: (i) the rates of conversion of H(2)S and SO(2) to sulfate particles in polluted as well as unpolluted atmospheres; (ii) the efficiency of removal of sulfur compounds by precipitation in polluted air. And for a better understanding of the global model we need to know: (i) the amount of biogenic H(2)S that enters the atmosphere over the continents and coastal areas; (ii) means of distinguishing man-made and biogenic contributions to excess sulfate in air and precipitation; (iii) the volcanic production of sulfur compounds, and their influence on the particle concentration in the stratosphere; (iv) the large-scale atmospheric circulation patterns that exchange air between stratosphere and troposphere (although absolute amounts of sulfate particles involved are small relative to the lower tropospheric burden); (v) the role of the oceans as sources or sinks for SO(2).  相似文献   

17.
Exchange of materials between terrestrial ecosystems and the atmosphere   总被引:3,自引:0,他引:3  
Many biogenic trace gases are increasing in concentration or flux or both in the atmosphere as a consequence of human activities. Most of these gases have demonstrated or potential effects on atmospheric chemistry, climate, and the functioning of terrestrial ecosystems. Focused studies of the interactions between the atmosphere and the biosphere that regulate trace gases can improve both our understanding of terrestrial ecosystems and our ability to predict regional-and global-scale canges in atmospheric chemistry.  相似文献   

18.
Measured concentrations of CO(2), O(2), and related chemical species in a section across the Florida Straits and in the open Atlantic Ocean at approximately 25 degrees N, have been combined with estimates of oceanic mass transport to estimate both the gross transport of CO(2) by the ocean at this latitude and the net CO(2) flux from exchange with the atmosphere. The northward flux was 63.9 x 10(6) moles per second(mol/s); the southward flux was 64.6 x 10(6) mol/s. These values yield a net CO(2) flux of 0.7 x 10(6) mol/s (0.26 +/- 0.03 gigaton of C per year) southward. The North Atlantic Ocean has been considered to be a strong sink for atmospheric CO(2), yet these results show that the net flux in 1988 across 25 degrees N was small. For O(2) the equivalent signal is 4.89 x 10(6) mol/s northward and 6.97 x 10(6) mol/s southward, and the net transport is 2.08 x 10(6) mol/s or three times the net CO(2) flux. These data suggest that the North Atlantic Ocean is today a relatively small sink for atmospheric CO(2), in spite of its large heat loss, but a larger sink for O(2) because of the additive effects of chemical and thermal pumping on the CO(2) cycle but their near equal and opposite effects on the CO(2) cycle.  相似文献   

19.
Sulfur isotopic composition of cenozoic seawater sulfate   总被引:2,自引:0,他引:2  
A continuous seawater sulfate sulfur isotope curve for the Cenozoic with a resolution of approximately 1 million years was generated using marine barite. The sulfur isotopic composition decreased from 19 to 17 per mil between 65 and 55 million years ago, increased abruptly from 17 to 22 per mil between 55 and 45 million years ago, remained nearly constant from 35 to approximately 2 million years ago, and has decreased by 0.8 per mil during the past 2 million years. A comparison between seawater sulfate and marine carbonate carbon isotope records reveals no clear systematic coupling between the sulfur and carbon cycles over one to several millions of years, indicating that changes in the burial rate of pyrite sulfur and organic carbon did not singularly control the atmospheric oxygen content over short time intervals in the Cenozoic. This finding has implications for the modeling of controls on atmospheric oxygen concentration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号