首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 78 毫秒
1.
切断式甘蔗收割机排杂风机的作业质量对甘蔗的含杂率有重要影响.为提高排杂风机叶轮的性能,该研究首先针对排杂风机建立了计算流体力学模型,以叶片安装角(β)、叶片数(N)、间隙占比(G)为因素,以风机转速为1650 r/min时的空载风速为指标,设计了三因素三水平的Box-Behnken仿真试验,并对叶轮参数进行优化.结果表...  相似文献   

2.
为解决甘蔗联合收获机的排杂问题,设计了一种在甘蔗收获机排杂装置中使用的新型风机,并在试验台上进行了试验研究。以排杂风机出风口风速为试验指标,对风机转速、进风口方式和进风口面积进行了单因素试验。试验结果表明,风机最佳性能参数为:风机转速为1?800?r/min、进风口方式为轴向进风、进风口面积为16?475和19?119mm2、距离出风口为50?mm时,出风口风速最大。其5个测量点的风速平均值依次为:13.867、14、11.633、11.333、12.383?m/s。后期排杂试验表明,在此最佳参数下,风机排杂效果最佳。  相似文献   

3.
整秆式甘蔗收割机剥叶机构的作业质量对收获后甘蔗茎秆的蔗叶残留有重要影响,合理的作业参数可有效改善剥叶机构的剥叶质量。该研究通过建立甘蔗剥叶过程仿真模型分析茎秆和剥叶元件的相互作用过程及其应力变化以及茎秆的受力情况,采用单因素仿真试验研究喂入辊筒转速、剥叶辊筒转速及茎秆与剥叶元件搭接长度对茎秆和剥叶元件所受峰值应力的影响规律。在仿真分析的基础上建立甘蔗剥叶作业试验台,采用Box-Behnken试验方案研究关键作业参数对茎秆未剥净率(剥叶后残留蔗叶和叶鞘占剥叶前全部蔗叶和叶鞘的比值)的影响规律并获得最佳作业参数:喂入辊筒转速250 r/min,剥叶辊筒转速540 r/min,茎秆与剥叶元件搭接长度13.9 mm,甘蔗喂入根数1.68根,此时茎秆未剥净率为2.2%。验证试验结果表明,在单根和双根喂入时,甘蔗茎秆未剥净率分别为2.0%和3.1%。通过高速摄像分析叶鞘的剥离过程,并获得最优作业参数下茎秆的输送速度区间为2.3~2.9 m/s。该研究结果为改善甘蔗收割机剥叶效果、提高作业适应性提供参考。  相似文献   

4.
机械收获方式及籽粒含水率对玉米收获质量的影响   总被引:3,自引:4,他引:3  
该文选用13个玉米品种为研究对象,通过田间试验系统研究了常规玉米栽培模式下延缓收获期间玉米含水率的变化规律,分析了果穗收获和籽粒收获2种收获方式对玉米收获损失率、籽粒破碎率和含杂率的影响,初步研究了不同机械收获方式及籽粒含水率对不同品种玉米收获质量的影响,建立了含水率与籽粒含杂率之间的数学函数。结果表明,延缓收获期间不同品种玉米的含水率均有显著的降低(P0.05),但其变化率存在差异。同期进行的果穗收获和籽粒收获2种收获方式的收获总损失率之间没有显著差异(P0.05),机械收获方式仅显著影响落粒率(P0.05)。延缓收获使落粒率和落穗率都显著下降(P0.05)。采用果穗收获方式时,籽粒含水率与各损失率之间不存在显著相关性;而籽粒收获时,籽粒含水率与落粒率、总损失率、破碎率和含杂率之间存在显著相关性。延缓进行籽粒收获后,籽粒含杂率均值为1.32%,总损失率均值为1.74%,均低于国标要求;而平均籽粒破碎率达13.23%,高于国标要求。含杂率与籽粒含水率之间满足线性关系,根据二者之间关系预测可知,籽粒含水率低于32.40%的收获就可以保证含杂率满足国标要求。该研究可为玉米籽粒收获技术的研究与推广提供数据支撑和科学依据。  相似文献   

5.
针对纵轴流联合收获机在收获稻麦时出现的脱粒不彻底、分离不完全等问题,该研究设计了一种分段式纵轴流脱粒分离装置。该装置主要由锥形脱粒滚筒、脱粒强度可调式凹板筛、360°分离式凹板筛、作业参数电控调节系统等构成。通过单因素试验,分别获得了脱粒强度可调式凹板筛的开关板针对小麦和水稻脱粒的最佳开关状态。为寻求装置作业参数对脱粒效果的影响规律及最优参数组合,进行了多目标优化试验。以滚筒转速、导流板角度、凹板筛脱粒间隙、凹板筛分离间隙及喂入量作为影响因素,以破碎率、损失率、脱出物含杂率为试验指标,建立了破碎率、损失率、脱出物含杂率的数学模型。试验结果表明:各因素对破碎率影响的显著性大小顺序为滚筒转速、凹板筛脱粒间隙、导流板角度、喂入量、凹板筛分离间隙;对脱出物含杂率影响的显著性大小顺序为滚筒转速、导流板角度、凹板筛脱粒间隙、喂入量、凹板筛分离间隙;对损失率影响的显著性大小顺序为滚筒转速、导流板角度、凹板筛脱粒间隙、喂入量、凹板筛分离间隙。通过多目标参数优化分析,确定装置进行小麦脱粒的最优作业参数组合为脱粒滚筒转速905 r/min、导流板角度69°、凹板筛脱粒间隙18 mm、凹板筛分离间隙19 m...  相似文献   

6.
整秆式甘蔗联合收获机降低含杂率的技术改进与试验   总被引:2,自引:5,他引:2  
为了降低整杆式甘蔗联合收获机的含杂率,满足糖厂对原料蔗的进厂要求,该文对SJ-1600型整杆式甘蔗联合收割机的割台、剥叶、断尾等装置进行了改进,在原机型尾部增加蔗叶分离装置。按照改进技术加工出样机,并对其进行田间试验。试验结果表明,收获时输送轮转速280?r/min,剥叶轮转速为750?r/min时剥叶效果最佳;改进后含杂率为4.0%,比改进前降低了3.2%,满足糖厂对原料蔗的进厂要求。该文为整杆式甘蔗联合收获机的机械设计提供了参考依据。  相似文献   

7.
针对现有切段式甘蔗联合收割机输送通道易堵塞、含杂率与损失率高等问题,该研究设计了一种切段刀辊中置式两级通道甘蔗联合收割机。该机采用短路径整秆输送通道和刮板筛网式蔗段输送通道,采用中置+后置风机组成的双风机除杂系统,实现甘蔗根切、喂入、输送、切段、风选除杂和卸料等联合作业。通过计算确定了整秆输送通道安装角度与宽度、喂入与输送辊筒直径、切段刀辊外圆直径、蔗段输送通道刮板高度、风机位置等关键结构参数,以及喂入与输送辊筒转速、切段刀辊转速、除杂风机转速等关键作业参数,并研制了4GDZ-132型切段式甘蔗联合收割机样机。样机田间试验结果表明:在作业速度2 km/h、风机转速1 100 r/min时,含杂率为4.42%、总损失率为3.08%、蔗段合格率为92.10%、切割高度合格率为96.20%、宿根破头率为9.60%,整机作业性能指标满足切段式甘蔗联合收割机技术标准要求。  相似文献   

8.
统收式采棉机载籽棉预处理装置的优化试验   总被引:1,自引:2,他引:1  
为寻求统收式采棉机载籽棉预处理装置结构与工作参数的最优组合,对其进行了参数优化试验。采用正交试验以及Box-Behnken响应面试验方法,以行进速度、辊筒线速度、排杂间距为影响因素,以籽棉含杂率、清杂损失率为评价指标,对影响该机采收性能的结构与工作参数进行优化试验研究。结果表明:当行进速度为1.3 km/h,辊筒线速度为9.83 m/s,排杂间距为13.23 mm时,优化后籽棉含杂率5.56%,清杂损失率0.84%。棉花纤维检测显示,机采籽棉纤维各项指标等级与手采棉持平,满足生产需求,验证了该装置的合理性与实用性。该研究可为机载籽棉预处理装置的进一步发展提供理论依据,同时为统收式采棉机的推广与发展奠定基础。  相似文献   

9.
针对往复双动式采茶切割器碎茶率高的问题,该研究对切割器进行了优化。首先,分析了切割器的结构及工作原理,通过切割图分析得到影响采摘质量的主因子为机速、刀机速比、刀齿高度、往复运动行程。并基于设计的轨道式采茶试验台,进行了采摘质量因素二次回归正交旋转中心组合试验,建立了以芽叶完整率、漏采率、割茬不平度为评价指标的参数优化模型。运用遗传算法解得最佳参数分别约为机速0.4 m/s,刀机速比1.2,行程23 mm,齿高25 mm,芽叶完整率模型的估计值为86.895%。根据优化结果设计刀具,试验验证得:芽叶完整率82.6%,漏采率0.24%,割茬不平度2.8 mm,与优化结果相符合。优化后采摘芽叶完整率提高了20%以上,提升了茶叶采摘质量,为“机采+分级”的名、优质茶叶高效采收技术奠定了基础。  相似文献   

10.
为满足甘蔗收获作业中减少原料蔗夹杂物,提高原料蔗质量,满足糖厂对机械化收获时原料蔗的进厂要求,该文在分析已有SL-1600型整杆式甘蔗收割机工作时存在问题基础上优化了切割装置、剥叶刷装置,增加了碎叶装置、断尾装置等,形成了新型的4ZL-1型整杆式甘蔗收割机,并进行了对比试验。与SL-1600型整杆式甘蔗收割机相比,4ZL-1型整杆式甘蔗收割机的切茬合格率提高了5.9个百分点、宿根破头率降低了6.3个百分点、蔗茎合格率提高了3.2个百分点、断尾合格率提高了5.1个百分点、总损失率降低了2.6个百分点、未剥净率提高了3.0个百分点。切割刀上增加了扶接板,减少破头率;设计了碎叶装置,让甘蔗先碎叶后剥叶,提高了剥叶效果;增设了断尾装置,解决了以前甘蔗高度不一、切尾损失多的问题。  相似文献   

11.
风筛选式油菜联合收割机清选机构参数优化与试验   总被引:2,自引:8,他引:2  
为分析油菜田间实际收获作业状态时风筛选式油菜联合收割机清选机构参数对清选损失率和籽粒含杂率的影响,基于双滚筒风筛选式可移动田间联合收获试验平台,对振动筛振幅、曲柄转速、风机转速和风机倾角4个参数进行了Plackett-Burman试验和响应面回归试验,试验分析表明振动筛振幅和曲柄转速是影响清选损失率的主要因素,风机转速是影响籽粒含杂率的主要因素。采用响应面试验方法分析了单因素和双因素对清选效果的影响,建立了清选损失率和籽粒含杂率的回归数学模型并优化求解了一组最优参数组合,以一组接近最优参数组合:振动筛振幅35 mm,曲柄转速392 r/min,风机转速1 750 r/min,风机倾角29°进行了试验验证,清选损失率和籽粒含杂率分别为0.90%和0.45%。理论求解的清选损失率和籽粒含杂率分别为0.38%和0.48%,与试验值的绝对误差分别为0.52%和-0.03%,籽粒含杂率误差较小,清选损失率误差较大。与该清选机构常用工作参数时的清选损失率和籽粒含杂率对比,清选损失率降低了61%,籽粒含杂率降低了58%。该研究结果和优化方法可为风筛选式油菜联合收割机清选机构的参数选择和优化提供参考。  相似文献   

12.
偏心式林果振动采收机的研制与试验   总被引:3,自引:15,他引:3  
为提高林果采收效率,降低采收成本,针对中国果园矮化密植模式下机械化作业条件差的特点,设计了偏心式林果振动采收机。该机安装在电控履带车上,通过偏心块旋转产生的离心力激振树干实现林果振动采收。建立了偏心式振动采收动力学模型,得出了采收机—果树系统稳态响应振幅表达式并分析了主要影响因素。利用该采收机对核桃(新新2号)进行了采收试验,结果表明:激振频率对树干全振幅和果实采净率具有显著性影响(P=0.05),树干全振幅和果实采净率随激振频率的增大而增大,激振频率20Hz时达到最大值,分别为8.83mm和92.6%;落果和树干夹持处均未见破坏性损伤,但激振频率越大,夹持处痕迹越明显,建议控制激振频率于19~20Hz,平均采净率约达到89.5%~92.6%,而且果实和树干没有破坏性损伤。该研究为实际生产提供指导。  相似文献   

13.
为了分析籽粒损失监测传感器敏感板结构对籽粒碰撞信号的影响,该文通过ANSYS软件对籽粒损失监测传感器不同结构形式的敏感板进行模态分析,研究了敏感板振动特性与籽粒损失监测传感器检测性能之间的关系,并在实验室内进行了籽粒碰撞试验。试验结果表明,一阶固有频率p越高,信号衰减时间t越短;相对变形率越大,籽粒损失监测传感器整体灵敏度越高;在敏感板长度l=150mm、宽度b=40mm、厚度h=1.0mm时籽粒损失监测传感器的检测频率和整体灵敏度较高;以20~120粒/s的籽粒流量对此结构形式下的籽粒损失监测传感器进行检测误差试验,最大检测误差为2.7%。在自制的标定试验台上利用饱满水稻籽粒、不饱满水稻籽粒、不同长度茎秆组成的混合物料对该籽粒损失监测传感器进行标定,结果表明,该籽粒损失监测传感器能从混合物料中有效地识别出饱满籽粒,最大检测误差为2.3%,该文的研究对提高籽粒损失监测传感器的检测频率和测量精度具有重要意义。  相似文献   

14.
为深入研究青毛豆作物荚-柄脱离分离特性,寻求影响分离效果因素的最优组合,设计了立式辊结构青毛豆分离试验装置。该试验装置由脱荚辊、输送机构、角度调节机构、间距调节机构、传动调速电机、脱荚调速电机等组成,采用电机驱动,链传动输送喂料,角度调节机构、间距调节机构、调速电机完成对脱荚角度、辊间距、辊转速无级调节。该文基于青毛豆受碰后产生冲击力克服青毛豆荚-柄连接力实现分离的原理,通过能量守恒原理建立了分离过程的碰撞能量模型,构建了荚-柄分离力学模型,基于此方程进行了定量分析,确定脱荚辊转速、喂料速度、辊间距为主要影响因素,并针对"萧农秋艳"、"豆通六号"品种开展试验研究。结果表明:作物品种对脱荚率与破损率影响较小,影响综合指标的主次因素排列顺序为:脱荚辊转速喂料速度辊间距,最优参数组合为脱荚辊转速600 r/min,辊间距18 mm,喂料速度0.3 m/s,此时脱荚率为99.0%,破损率为2.4%,综合性能明显改善。该文研究结果可为青毛豆收获装置的设计提供参考。  相似文献   

15.
先将秧蔓切割再进行收获可较好地实现覆膜种植花生秧蔓饲料化利用。该研究针对割秧后花生植株变短、横向尺寸变小、荚果-秧蔓比增加,原有收获机捡拾装置适应性差的问题,在已有花生捡拾收获技术基础上,对捡拾弹齿间距、弹齿转速、折弯角度、弹齿排数等关键结构和运动参数进行改进,研制了一种适于割秧后收获的弹齿式花生捡拾装置。运用SPSS软件对割秧后花生植株横向尺寸进行统计分析,确定了弹齿间距为7 cm;通过对花生植株低损捡拾和顺畅抛送条件的理论分析,在回转半径为21 cm的条件下,确定捡拾弹齿转速为60 r/min;通过对花生植株被弹齿捡起时的受力情况分析,确定捡拾弹齿折弯角度为102°,并根据铺放厚度,确定捡拾弹齿折弯部分长度为4 cm;建立捡拾弹齿齿尖运动方程,运用Matlab软件对不同排数弹齿齿尖运动轨迹进行分析,确定捡拾弹齿排数为6排。田间试验结果表明,弹齿式花生捡拾装置的平均捡拾率为98.07%,捡拾装置造成的平均落果率为1.23%;满足割秧后花生捡拾收获作业需求。该研究可为割秧后花生以及其他作物捡拾收获机具研发和改进提供借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号