首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exogenously administered vasopressors (sympathomimetics) were evaluated in halothane-anesthetized dogs to determine the effects of these drugs on cardiovascular function before and after hemorrhage. Six dogs were anesthetized with thiamylal sodium (20 mg/kg of body weight) and halothane (1.25 minimal alveolar concentration) in 100% oxygen. After instrumentation, cardiac output, systemic arterial blood pressure (SAP), heart rate (HR), left ventricular pressure, pulmonary arterial pressure, and an index of cardiac contractility (dP/dT) were measured. Stroke volume, cardiac index (CI), stroke index (SI), rate-pressure product, and systemic vascular resistance (SVR) were calculated. Epinephrine (0.1, 0.3, and 0.5 micrograms/kg/min [low, medium, and high doses, respectively]) and dobutamine (1, 5, and 10 micrograms/kg/min [low, medium, and high doses, respectively]) were infused. Methoxamine was given in a bolus of 0.22 mg/kg, IV. All measurements were taken at 2.5 minutes after infusion, and were repeated after removal of 40% of the estimated blood volume. Dobutamine administered at the low dose before hemorrhage increased SAP and dP/dT. At the high and medium dose, dobutamine significantly increased CI, dP/dT, and SAP, with no significant change in HR or SVR. The medium dose of epinephrine was the most effective dose of epinephrine at increasing key variables (CI, SI, dP/dT). The response of CI and SI to this dose was not significantly different from the changes seen with high-dose administration of dobutamine. The dP/dT was significantly lower with epinephrine than with dobutamine, and SVR and HR were unchanged with epinephrine, except at the low dose, which decreased SVR.  相似文献   

2.
OBJECTIVE: To determine the cardiovascular effects of dopamine and dobutamine infusions during nor-movolemia, hypovolemia (HV) through blood loss of 10 mL/kg (HV(10)), further loss to 25 mL/kg (HV(25)), and volume replacement (VR) in isoflurane-anesthetized dogs. ANIMALS: 7 healthy young dogs. PROCEDURES: Dogs were anesthetized with isoflurane 2 times (3 weeks apart). Cardiovascular measurements were obtained for each volume state. The cardiac index (CI) determined by the lithium dilution technique was compared with CI assessed by the arterial pulse contour technique. At each volume state, random treatment with dobutamine or dopamine was assessed (CI by the arterial pulse contour technique). Ten-minute treatments with 3 and 6 microg of dobutamine/kg/min or 7 and 14 microg of dopamine/kg/min (low and high doses, respectively) were administered sequentially. Differences from baseline were determined for volume, drug, and dose effects. RESULTS: Significant proportional changes in blood pressure (BP), stroke index (SI), and CI were evident with changes in volume state. Systemic vascular resistance (SVR) decreased after VR. Dobutamine induced little change in BP; increased heart rate (HR), SI, and CI; and decreased SVR (high dose). Dopamine increased BP and SI, did not change CI, and increased SVR (high dose). The arterial pulse contour technique underestimated changes in CI associated with volume changes. CONCLUSIONS AND CLINICAL RELEVANCE: Isoflurane eliminates clinically obvious compensatory increases in HR during HV. Dopamine is suitable for temporary management of blood loss in isoflurane-anesthetized dogs. Dobutamine increased CI without an associated improvement in BP. The arterial pulse contour monitor should be recalibrated when volume status changes.  相似文献   

3.
OBJECTIVE: To determine the cardiopulmonary effects of increasing doses of dopamine, dobutamine, epinephrine, and phenylephrine and measure plasma concentrations of norepinephrine, epinephrine, and dopamine in cats anesthetized with isoflurane. ANIMALS: 6 healthy adult cats. PROCEDURES: Each cat was anesthetized with isoflurane (1.5 X minimum alveolar concentration) on 4 occasions. Cardiopulmonary measurements were obtained after a 30-minute stabilization period; 20 minutes after the start of each infusion dose; and 30, 60, and 90 minutes after the infusion was discontinued. Cats received 5 progressively increasing infusions of epinephrine or phenylephrine (0.125, 0.25, 0.5, 1, and 2 microg/kg/min) or dobutamine or dopamine (2.5, 5, 10, 15, and 20 microg/kg/min). The order of treatment was randomly allocated. Results-All 4 treatments increased oxygen delivery. Heart rate (HR) increased during administration of all drugs except phenylephrine, and mean arterial pressure increased during administration of all drugs except dobutamine. A progressive metabolic acidosis was detected, but whole-blood lactate concentration only increased during administration of epinephrine and dobutamine. Systemic vascular resistance index increased during administration of phenylephrine, decreased during administration of dobutamine, and remained unchanged during administration of dopamine and epinephrine. A positive inotropic effect was detected with all treatments. CONCLUSIONS AND CLINICAL RELEVANCE: During anesthesia in cats, administration of dopamine, dobutamine, and epinephrine may be useful for increasing cardiac output, with dopamine having the most useful effects. Administration of phenylephrine increased cardiac and systemic vascular resistance indexes with minimal effect on HR and may be useful for increasing mean arterial pressure without increasing HR.  相似文献   

4.
OBJECTIVE: To compare sedative, analgesic, and cardiopulmonary effects after IV administration of medetomidine (20 microg/kg), medetomidine-hydromorphone (20 microg of medetomidine/kg and 0.1 mg of hydromorphone/kg), and medetomidine-butorphanol (20 microg of medetomidine/kg and 0.2 mg of butorphanol tartrate/kg) in dogs. ANIMALS: 6 dogs healthy mixed-breed dogs. PROCEDURE: Instruments were surgically inserted, and heart rate (HR), respiratory rate (RR), systolic arterial pressure (SAP), mean arterial pressure (MAP), diastolic arterial pressure (DAP), mean pulmonary arterial pressure (MPAP), pulmonary capillary wedge pressure (PCWP), central venous pressure (CVP), core body temperature, and cardiac output (CO) were measured 0, 5, 10, 15, 30, 45, and 60 minutes after injection. Cardiac index (CI), stroke volume (SV), stroke index (SI), systemic vascular resistance (SVR), and pulmonary vascular resistance (PVR) were calculated. Arterial samples for blood gas analysis were collected 0, 15, and 45 minutes after injection. Intensity of analgesia, degree of sedation, and degree of muscle relaxation were evaluated at aforementioned time points and 75, 90, 120, 150, 180, and 210 minutes after injection. RESULTS: Administration of medetomidine, medetomidine-hydromorphone, and medetomidine-butorphanol was associated with increases in SAP, MAP, DAP, MPAP, PCWP, CVP, SVR, PVR, core body temperature, and PaCO2 and decreases in HR, CO, CI, SV, SI, RR, pH, and PaO2. Clinically important differences were not detected among treatments. Medetomidine-hydromorphone and medetomidine-butorphanol provided a longer duration of sedation and better quality of analgesia, compared with medetomidine alone. CONCLUSIONS AND CLINICAL RELEVANCE: Medetomidine-hydromorphone or medetomidine-butorphanol is associated with improved analgesia and sedation but has cardiopulmonary effects comparable to those for medetomidine alone.  相似文献   

5.
Reasons for performing study: No studies have been reported on the effects of enoximone in anaesthetised colic horses. Objective: To examine whether enoximone improves cardiovascular function and reduces dobutamine requirement in anaesthetised colic horses. Methods: Forty‐eight mature colic horses were enrolled in this prospective, randomised clinical trial. After sedation (xylazine 0.7 mg/kg bwt) and induction (midazolam 0.06 mg/kg bwt, ketamine 2.2 mg/kg bwt), anaesthesia was maintained with isoflurane in oxygen and a lidocaine constant rate infusion (1.5 mg/kg bwt, 2 mg/kg/h). Horses were ventilated (PaCO2<8.00 kPa). If hypotension occurred, dobutamine and/or colloids were administered. Ten minutes after skin incision, horses randomly received an i.v. bolus of enoximone (0.5 mg/kg bwt) or saline. Monitoring included respiratory and arterial blood gases, heart rate (HR), arterial pressure and cardiac index (CI). Systemic vascular resistance (SVR), stroke index (SI) and oxygen delivery index (DO2I) were calculated. For each variable, changes between baseline and T10 within each treatment group and/or colic type (small intestines, large intestines or mixed) were analysed and compared between treatments in a fixed effects model. Differences between treatments until T30 were investigated using a mixed model (α= 0.05). Results: Ten minutes after enoximone treatment, CI (P = 0.0010), HR (P = 0.0033) and DO2I (P = 0.0007) were higher and SVR lower (P = 0.0043) than at baseline. The changes in CI, HR and SVR were significantly different from those after saline treatment. During the first 30 min after enoximone treatment, DO2I (P = 0.0224) and HR (P = 0.0003) were higher than after saline administration. Because the difference in HR between treatments was much clearer in large intestine colic cases, an interaction was detected between treatment and colic type in both analyses (P = 0.0076 and 0.0038, respectively). Conclusions: Enoximone produced significant, but short lasting, cardiovascular effects in colic horses. Potential relevance: Enoximone's cardiovascular effects in colic horses were of shorter duration than in healthy ponies.  相似文献   

6.
Hemodynamic Effects of Intravenous Midazolam-Xylazine-Butorphanol in Dogs   总被引:1,自引:0,他引:1  
The hemodynamic effects of a mixture of midazolam (1.0 mg/kg), xylazine (0.44 mg/kg), and butorphanol (0.1 mg/kg) were evaluated in six adult dogs. The dogs were anesthetized with isoflurane for instrumentation. As the dogs returned to consciousness, baseline values were recorded and the midazolam-xylazine-butorphanol mixture and glycopyrrolate (0.01 mg/kg) were administered intravenously (IV). Hemodynamic data were recorded 3, 10, 20, 30, 40, 50, and 60 minutes after injection. Mean arterial pressure (AP), mean pulmonary arterial pressure (PAP), heart rate (HR), rate-pressure product (RPP), mean pulmonary capillary wedge pressure (PCWP), systemic vascular resistance (SVR), and right ventricular stroke work index (RVSWI) were increased significantly above baseline values. Cardiac output (CO), stroke volume (SV), cardiac index (CI), stroke index (SI), mean central venous pressure (CVP), and left ventricular stroke work index (LVSWI) were decreased significantly below baseline values. When administered IV at the dosages used in this study, midazolam-xylazine-butorphanol-glycopyrrolate induced profound acute alterations in several critical hemodynamic variables.  相似文献   

7.
Controlled cross circulation (CCC) was performed in six pairs of dogs for 45 minutes with aortic cross clamping and cardioplegia. Data were collected in donor dogs at 10 minute intervals three times before, three times during, and three times after CCC and included arterial blood pressure, pulmonary capillary wedge pressure (PCWP), central venous pressure (CVP), cardiac index (CI), heart rate (HR), blood gas analysis, temperature, maximum rate of rise of left ventricular pressure dP/dt max/End diastolic volume (EDV), blood volume (BV), complete blood count (CBC) and activated clotting times (ACT). Pulse pressure (PP), systemic vascular resistance (SVR), oxygen delivery (Do2), and left ventricular cardiac work (LVCW) were calculated. Arterial blood pressure, CVP, blood gas analysis, temperature, BV, CBC, and ACT were measured in recipient dogs. During CCC, donor hemodynamic changes resembled those observed in models of acute onset arteriovenous fistulas. Insidious BV shifts can occur despite the use of occlusive roller pumps. After CCC, donor hemodynamics resembled acute blood loss, characterized by decreases in mean arterial pressure (MAP), CVP, PCWP, and CI, and increases in SVR and dP/dt max/EDV. These changes were probably caused by pump imbalance and BV shift to the recipient dog.  相似文献   

8.
Background: Norepinephrine increases arterial blood pressure but may have adverse effects on renal blood flow. Fenoldopam, a dopamine-1 receptor agonist, increases urine output in normotensive foals. The combination of norepinephrine and fenoldopam may lead to improved renal perfusion compared with an infusion of norepinephrine alone. The combined effects of these drugs have not been reported in the horse.
Hypothesis: Norepinephrine will alter the hemodynamic profile of foals without affecting renal function. Addition of fenoldopam will change the renal profile during the infusions without changing the hemodynamic profile.
Animals: Five conscious pony foals.
Methods: Each foal received norepinephrine (0.3 μg/kg/min), combined norepinephrine (0.3 μg/kg/min) and fenoldopam (0.04 μg/kg/min), and a control dose of saline in a masked, placebo-controlled study. Heart rate (HR), arterial blood pressure (direct), and cardiac output (lithium dilution) were measured, and systemic vascular resistance (SVR), stroke volume, cardiac index (CI), and stroke volume index were calculated. Urine output, creatinine clearance, and fractional excretion of electrolytes were measured.
Results: Norepinephrine and a combined norepinephrine and fenoldopam infusion increased arterial blood pressure, SVR, urine output, and creatinine clearance and decreased HR and CI compared with saline. The combination resulted in higher HR and lower arterial blood pressure than norepinephrine alone.
Conclusions and Clinical Importance: Norepinephrine might be useful for hypotensive foals, because in normal foals, this infusion rate increases SVR without negatively affecting renal function (creatinine clearance increased). Fenoldopam does not provide additional benefit to renal function. These findings warrant further investigation.  相似文献   

9.
The cardiovascular and respiratory effects of 3 rapidly acting barbiturates, thiopental sodium, thiamylal sodium, and methohexital sodium, were studied in dogs from completion of injection until 12.5 minutes after injection. The doses administered were 19.4 mg of thiopental/kg of body weight, 18.4 mg of thiamylal/kg, and 9.7 mg of methohexital/kg, which were chosen as equipotent doses necessary to inhibit the laryngoscopic reflex in 50% of the population. To determine the cardiovascular and respiratory effects for each drug, the values at each measurement time following injection were compared with baseline values (T0). At the 15- and 30-second measurement times following thiopental administration, stroke volume (SV) decreased; heart rate (HR), left atrial pressure, and mean pulmonary arterial pressure increased; and cardiac index (CI), myocardial contractility, and systemic and pulmonary vascular resistances were not different from baseline values. Mean arterial pressure (MAP) was not different from the baseline value at 15 seconds, but was increased from 30 seconds to 2 minutes. All values except HR had returned to baseline values by 7.5 minutes. At all measurement times, arterial oxygen tension and arterial pH were decreased, and arterial carbon dioxide tension increased from baseline values. Although the cardiovascular and respiratory changes following administration of thiamylal and methohexital were similar to those described for thiopental, some differences were found. Following thiamylal administration, systemic vascular resistance increased at 1 minute, pulmonary vascular resistance increased at 1 and 2 minutes, and myocardial contractility increased at 1 and 2 minutes. Following methohexital administration, MAP decreased at 15 seconds, and SV decreased at all measurement times.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
OBJECTIVE: To evaluate cardiovascular effects of epidurally administered oxymorphone (OXY) and an OXY-bupivacaine combination (O/B) in halothane-anesthetized dogs. ANIMALS: 6 dogs. PROCEDURE: In a randomized crossover design study, dogs were anesthetized with halothane and given OXY, O/B, and saline solution (SAL). Eucapnia and end-tidal halothane concentration of 1.2% were established. Heart rate (HR), systemic and pulmonary arterial pressures, central venous pressure (CVP), and cardiac output were measured at baseline and 5, 15, 30, 45, 60, and 75 minutes after treatment. At 90 minutes, glycopyrrolate was administered IV, and measurements were repeated at 95 minutes. Cardiac index (CI), stroke volume, stroke index, systemic vascular resistance (SVR), and left ventricular work were calculated. End-tidal halothane concentration was decreased to 0.8% from 17 to 45 minutes and to 0.5% from 47 to 95 minutes for OXY and O/B, whereas for SAL, it was maintained at 1.5 and 1.2%, respectively. Samples were obtained at 0, 2, 5, 15, 30, 45, 60, and 95 minutes for measurement of serum opiate concentration and comparison with values after IM administration of OXY. RESULTS: HR decreased, but CVP and SVR increased in response to OXY and O/B. These changes were reversed after IV administration of glycopyrrolate, resulting in significant increase in CI, compared with that in response to SAL. Serum opiate concentration increased markedly and peaked within 15 minutes after OXY and O/B administration but did not differ from values after IM administration. CONCLUSIONS: Epidural administration of OXY results in rapid systemic uptake and decreased HR. Glycopyrrolate administration improves HR, resulting in improved CI at equipotent halothane concentrations.  相似文献   

11.
OBJECTIVE: To evaluate the effects of a hemoglobin-based oxygen carrier (HBOC-301) on left ventricular preload, afterload, contractility, and ventriculo-arterial coupling in anesthetized dogs. STUDY DESIGN: A prospective experimental study. ANIMALS: Seven adult male dogs weighing 2.3 to 2.7 kg. METHODS: The study was performed on intact, closed-chest, chloralose-anesthetized dogs. Heart rate, left ventricular end-systolic and end-diastolic volume and pressure, cardiac output, stroke volume, blood resistivity, mean arterial pressure (MAP), dP/dtmax, end-systolic elastance (Ees), systemic vascular resistance (SVR), effective arterial elastance (Ea), left ventricular-arterial coupling (Ees/Ea), and myocardial oxygen consumption (MVO2) were determined during a 90-minute infusion of 30 mL/kg (20 mL/kg/h) of HBOC-301 and for 90 minutes thereafter. RESULTS: The administration of HBOC-301 significantly decreased packed cell volume, blood resistivity, heart rate, cardiac output, and dP/dtmax and significantly increased left ventricular end-diastolic and end-systolic pressure, MAP, and SVR. The Ea, Ees, Ees/Ea and MVO2 did not change. CONCLUSIONS: HBOC-301 produced insignificant changes in load independent indexes of cardiac performance (Ees, E, Ees/Ea) in anesthetized dogs. The collective directional changes in these variables, however, in conjunction with significant increases in SVR were most likely responsible for a decrease in cardiac output. Increases in SVR and the volume load (30 mL/kg) contributed to increases in left ventricular end-diastolic pressure. CLINICAL RELEVANCE: HBOC-301 infusion should be monitored and administered cautiously to dogs with poor ventricular function.  相似文献   

12.
The aim of this study was to determine whether dobutamine, dopamine, or milrinone (a phosphodiesterase [PDE] III inhibitor) would support cardiac function that had been attenuated by administration of the beta-blocker, carvedilol (0.2, 0.4, or 0.8 mg/kg). Hemodynamic and cardiac parameters including the heart rate (HR), left-ventricular fractional shortening (FS), and arterial pressure were measured in six healthy dogs without cardiac disease. Carvedilol did not affect FS or arterial pressure, but decreased the HR significantly. The positive inotropic and chronotropic responses to dobutamine and dopamine were attenuated by carvedilol, whereas arterial pressure was unaffected. Milrinone did not affect the HR and decreased arterial pressure, whereas FS was significantly greater both in the control and carvedilol-treated groups. Although milrinone affect the negative chronotropic effects of carvedilol, milrinone increased FS and prevented the decrease in arterial pressure. These results suggest that inhibition of PDE III preserves cardiac contractility and hemodynamic function in the presence of carvedilol.  相似文献   

13.
The purpose of the present study was to investigate the effects of two different dobutamine concentrations on pulmonary artery wedge pressure (PAWP) and on mean systemic arterial blood pressure (MAP) in horses anaesthetized with isoflurane, after induction of general anaesthesia with xylazine, ketamine and diazepam. Eight healthy warm-blood horses were included in the study. Each horse was subjected to general anaesthesia twice with two different dosages of dobutamine, 3 and 5 microg/kg bw/min, being infused over 15 min, starting 50 min after induction of general anaesthesia (T(0)). The heart rate, the PAWP and the MAP were recorded after 10 min (T(1)) and then every 5 min until 15 min after cessation of intravenous dobutamine administration (T(3)-T(5)). The PAWP was measured by a right heart catheter, which was positioned in the pulmonary capillaries. Mean systemic arterial blood pressure was monitored at the facial artery for the duration of general anaesthesia. All parameters increased at both dosage rates of dobutamine and decreased significantly when dobutamine administration ceased. The increase in heart rate was significantly higher after administration of 3 microg/kg bw/min dobutamine compared with the dosage of 5 microg/kg bw/min dobutamine. The increase in MAP was also higher at this dosage, but not significantly different to the dosage of 5 microg/kg bw/min dobutamine. During both dosages the MAP was above a value considered to be compatible with good peripheral circulation. The greater increase in PAWP was observed during administration of 5 g/kg bw/min dobutamine, but PAWP was not significantly different with the dosage of 3 microg/kg bw/min dobutamine. In conclusion, the administration of dobutamine led to an increase in MAP and PAWP above a value considered to be compatible with a good peripheral circulation. The results of the present study indicate that dobutamine improves circulation, in addition to its well-known effect on the periphery.  相似文献   

14.
Xylazine (XYL) administration in horses is accompanied by significant cardiovascular depression characterized by a 25-35% decrease in cardiac output (CO) which is likely to compromise tissue oxygen delivery (DO2), and usually vagally mediated bradycardia is an important cause of this reduced cardiovascular performance. To examine the possible benefit of preventing the bradycardiac response, 6 healthy horses were treated with intravenous (IV) saline (SAL) or 2.5 micrograms/kg glycopyrrolate (GLY) in a blinded, randomized, crossover trial. Fifteen minutes later, 1 mg/kg XYL was administered IV and systolic, diastolic and mean blood pressures (SBP, DBP, and MBP, respectively), central venous pressure (CVP), mean pulmonary artery pressure, heart rate (HR), CO, and arterial and mixed venous blood gases were measured at the following times: baseline, 2, 5, and 10 min post-SAL or GLY; and 2, 5, 10, 15, 30, 45 and 60 min post-XYL. Determination of cardiac index (CI), stroke index (SI), left ventricular work, systemic vascular resistance (SVR), DO2, oxygen uptake, and oxygen extraction ratio were made at the same time. Gastrointestinal (GI) motility was evaluated by four-quadrant auscultation for 24 h post-XYL. Statistical analysis of continuous variables was carried out using ANOVA for repeated measures and Wilcoxon's rank-sum test for non-parametric data. In GLY treated horses, HR, SBP, MBP, DBP, CI, DO2 and mixed venous oxygen tension were significantly higher up to 30 min after XYL (P < or = 0.02) while CVP and SI were significantly lower 2 and 5 min post-XYL, respectively. In both groups, GI motility as assessed by auscultation was virtually abolished for an hour, with a non-significant tendency for the decrease in motility to last longer in the GLY/XYL group. None of the treated horses developed abdominal discomfort. No significant difference was observed in the other variables. The study shows that 2.5 micrograms/kg GLY premedication reduces the cardiovascular depression caused by 1 mg/kg XYL, without adversely affecting GI motility.  相似文献   

15.
The effect of vasopressin was compared with that of the established vasopressor epinephrine in experimentally induced hemorrhagic shock. After rapid crystalloid resuscitation in a ratio of three volumes of 0.9% saline to one volume of blood (3:1 crystalloid resuscitation), six dogs were given 0.4 IU/kg vasopressin and another six dogs were given 0.1 mg/kg epinephrine. Five dogs in the control group were given fluid resuscitation in the same manner as above without administration of any drugs. Administration of vasopressin increased diastolic arterial pressure (DAP) from 45.0 +/- 4.9 to 91.2 +/- 9.6 mmHg within 5 min, compared with epinephrine from 46 +/- 4.0 to 51.8 +/- 7.7, and control from 47.3 +/- 7.5 to 46.3 +/- 7.3. Systolic arterial pressure (SAP) did not increase significantly following vasopressin compared with epinephrine and control group. Results of DAP and systemic vascular resistance index (SVRI) suggested that vasopressin administration was vasoconstrictive after fluid resuscitation in decompensatory hemorrhagic shock in dogs, whereas epinephrine did not compared with control. In addition, epinephrine did not affect the cardiac index (CI) and SVRI, while a significant decrease in CI and increase in SVRI were observed in vasopressin group. The pressor effect of epinephrine in the vascular system was abrupt and only lasted a short period of time (within 5 min), while that of vasopressin was steady and lasted for more than 1 hr, especially regard to in DAP. When compared with epinephrine, vasopressin can be a more effective and safer choice in patients with severe hemorrhagic shock.  相似文献   

16.
REASONS FOR PERFORMING STUDY: High-dose dobutamine stress echocardiography has been shown to be cardiotoxic and arrhythmogenic in horses. However, the test may have benefit in practice as a pharmacological challenge of exercise without the treadmill being required. OBJECTIVES: To investigate the effect of low-dose dobutamine on cardiac performance in ponies previously treated with atropine, in order to develop a pharmacological protocol that allows examination of the equine heart under stimulation. METHODS: In 13 healthy Shetland ponies, heart rate (HR), stroke index (SI) and cardiac index (CI) were calculated from pulsed-wave Doppler ultrasound measurements performed at rest and during incremental steps of dobutamine infusion. Group 1 (n = 7) received dobutamine infusion at 2 microg/kg bwt/min for 5 mins followed by incremental rates of 5 microg/kg bwt/min every 5 mins, from 5 to 40 microg/kg bwt/min. Group 2 (n = 6) received dobutamine infusion in incremental rates of 1 microg/kg bwt/min, every 5 mins, from 2 microg/kg bwt/min to 5 microg/kg bwt/min, after premedication with 2 injections of 25 microg/kg bwt of atropine 5 mins apart. RESULTS: The increase in CI during the pharmacological challenge was higher in Group 2 and reached about 2.5 times the resting value. This increase in CI was mediated by a significant increase in HR in both groups, while SI significantly decreased in Group 1 and did not change significantly in Group 2. Ponies of Group 1, but not those of Group 2, showed excessive restlessness and cardiac arrhythmias during the pharmacological challenge and a high intragroup variability in cardiac response. CONCLUSIONS: The results of this study suggest that a low dose of dobutamine in ponies previously given atropine could be a helpful pharmacological protocol to perform stress echocardiography in equids. POTENTIAL RELEVANCE: Further studies should evaluate left ventricular wall motion in horses undergoing low-dose dobutamine protocol after pretreatment with atropine.  相似文献   

17.
To clarify time-related changes in equine cardiovascular system during maintenance anesthesia (180 min, 1.2 minimum alveolar concentration) with sevoflurane (Sev-group) compared to isoflurane (Iso-group) as the basis for clinical use of Sev, horses were examined for the heart rate (HR), mean arterial pressure (MAP), cardiac index (CI), systemic vascular resistance (SVR) and pre-ejection period (PEP)/ejection time (ET) that is an index of the cardiac contractility. The HR was almost 30 beats/min in both groups without significant temporal change. MAP was significantly elevated with time but there was no significant difference between the groups. In the Sev-group, CI remained unchanged but the significant increase of CI with time was observed in the Iso-group. In the Sev-group SVR was significantly higher than that of the Iso-group and increased with time. No significant difference of PEP/ET was seen between the groups, but PEP/ET lowered with time in the Iso-group in association with prolonged ET. The results indicated that the time-dependent elevation of MAP in the Sev-group reflected increased SVR without increase of CI and that it reflected increased CI resulting from increased stroke volume in the Iso-group in association with lowered PEP/ET, that is, increased cardiac contractility.  相似文献   

18.
OBJECTIVE: To evaluate the cardiovascular effects of norepinephrine (NE) and dobutamine (DB) in isoflurane-anesthetized foals. STUDY DESIGN: Prospective laboratory study. METHODS: Norepinephrine (0.05, 0.10, 0.20, and 0.40 microg kg(-1) minute(-1)) and dobutamine (2.5, 5.0, and 10 microg kg(-1) minute(-1)) were alternately administered to seven healthy, 1- to 2-week-old isoflurane-anesthetized foals. Arterial and pulmonary arterial blood pressure, right atrial pressure, pulmonary artery occlusion pressure, heart rate, body temperature, cardiac output, arterial and mixed venous blood pH, partial pressure of carbon dioxide, partial pressure of oxygen [arterial partial pressure of oxygen (PaO(2)) and mixed venous partial pressure of oxygen (PvO(2))], and packed cell volume were measured. Standard base excess, bicarbonate concentration, systemic and pulmonary vascular resistance, cardiac index (CI), stroke volume, left and right stroke work indices, oxygen delivery (DO(2)), consumption, and extraction were calculated. Results Norepinephrine infusion resulted in significant increases in arterial and pulmonary arterial pressure, systemic and pulmonary vascular resistance indices, and PaO(2); heart rate was decreased. Dobutamine infusion resulted in significant increases in heart rate, stroke volume index, CI, and arterial and pulmonary arterial blood pressure. Systemic and pulmonary vascular resistance indices were decreased while the ventricular stroke work indices increased. The PaO(2) decreased while DO(2) and oxygen consumption increased. Oxygen extraction decreased and PvO(2) increased. CONCLUSIONS AND CLINICAL RELEVANCE: Norepinephrine primarily augments arterial blood pressure while decreasing CI. Dobutamine primarily augments CI with only modest increases in arterial blood pressure. Both NE and DB could be useful in the hemodynamic management of anesthetized foals.  相似文献   

19.
The cardiopulmonary effects of eucapnia (arterial CO2 tension [PaCO2] 40.4 +/- 2.9 mm Hg, mean +/- SD), mild hypercapnia (PaCO2, 59.1 +/- 3.5 mm Hg), moderate hypercapnia (PaCO2, 82.6 +/- 4.9 mm Hg), and severe hypercapnia (PaCO2, 110.3 +/- 12.2 mm Hg) were studied in 8 horses during isoflurane anesthesia with volume controlled intermittent positive pressure ventilation (IPPV) and neuromuscular blockade. The sequence of changes in PaCO2 was randomized. Mild hypercapnia produced bradycardia resulting in a significant (P < 0.05) decrease in cardiac index (CI) and oxygen delivery (DO2), while hemoglobin concentration (Hb), the hematocrit (Hct), systolic blood pressure (SBP), mean blood pressure (MBP), systemic vascular resistance (SVR), and venous admixture (QS/QT) increased significantly. Moderate hypercapnia resulted in a significant rise in CI, stroke index (SI), SBP, MBP, mean pulmonary artery pressure (PAP), Hct, Hb, arterial oxygen content (CaO2), mixed venous oxygen content (CvO2), and DO2, with heart rate (HR) staying below eucapnic levels. Severe hypercapnia resulted in a marked rise in HR, CI, SI, SBP, PAP, Hct, Hb, CaO2, CvO2, and DO2. Systemic vascular resistance was significantly decreased, while MBP levels were not different from those during moderate hypercapnia. No cardiac arrhythmias were recorded with any of the ranges of PaCO2. Norepinephrine levels increased progressively with each increase in PaCO2, whereas plasma cortisol levels remained unchanged. It was concluded that hypercapnia in isoflurane-anesthetized horses elicits a biphasic cardiopulmonary response, with mild hypercapnia producing a fall in CI and DO2 despite an increase in MBP, while moderate and severe hypercapnia produce an augmentation of the cardiopulmonary performance and DO2.  相似文献   

20.
The authors investigated the cardiovascular effects of low doses of nitroprusside, dobutamine, and phenylephrine and a beta-adrenergic blocking dose of propranolol in conscious, healthy horses with and without prior atropine administration. A parasympathetic blocking dose of atropine produced significant increases in heart rate and arterial pressures, and decreased stroke volume, ejection fraction, pulse pressure, and right-ventricular end-diastolic pressure and volume. Cardiac output was not changed by atropine administration. Nitroprusside reduced arterial pressures to a greater extent in atropinized horses but increased heart rate in both atropinized and non-atropinized horses. Dobutamine increased mean arterial pressure in both non-atropinized and atropinized horses but increased heart rate, diastolic arterial pressure, and systemic vascular resistance only in atropinized horses. Propranolol did not affect any of the hemodynamic variables that were measured. Phenylephrine, in the presence of beta-adrenergic blockade, increased mean arterial pressure and reduced cardiac output. This study showed that low doses of nitroprusside, dobutamine, and phenylephrine produce significant hemodynamic effects in conscious, healthy horses and that these effects are modified by prevailing parasympathetic tone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号