首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to the code and technical regulation,an irregular RC frame with specially shaped columns has been designed,which situated at the area of fortification intensity 8. Subsequently,the nonlinear dynamic analysis has been carried out for the structure by inputting ground motions in two directions. After summing up the calculation results,this paper has examined seismic performance of the structure under the rare seismic actions and given a primary evaluation on the structure to see if it could achieve the predetermined anti-seismic aims. It indicates that the structure designed according to the codes can achieve the predetermined anti-seismic aim under the rare earthquake.  相似文献   

2.
With the flexibility-based fiber model,the seismic behaviors of RC structures with specially shaped columns,designed according to the current code,are analyzed under unidirectional rare earthquakes using nonlinear dynamic analysis method.The beam strength is calculated with or without consideration of the diaphragm and its reinforcement.The results are compared and the conclusion has been drawn that the bending capacity of beams would be increased due to the effect of diaphragm and its reinforcement,and which would change the failure mechanism of RC frames under rare earthquake,especially in high intensity areas.Therefore the influence of the diaphragm should be considered during the seismic design of the type of structure.  相似文献   

3.
Earthquake induced dynamic axial force in reinforced concrete (RC) bridge bent columns will not only change the yield strength of the columns but also change their stiffness, which is seldom considered by the common lumped plasticity line model. Based on the fiber element model results that taking into account the influence of dynamic axial force on strength and stiffness simultaneously, the axial force stiffness interaction effect on the seismic responses of RC double column bridges was analyzed. The results show that, axial force stiffness interaction has a large effect on the seismic responses of the double column bridge in the elastic range, and it does not alter the ultimate capacity of the columns. Since the stiffness of the columns under compression and tension dynamic axial forces offset each other, the global displacement of bridge bent with equal columns is relatively unaffected by the axial force stiffness interaction, however, the differences of the column member forces are manifest. For the short column controls the global stiffness, the axial force stiffness interaction has significant influences on both the global displacement and member force responses. The influences become larger as the irregularity of the bridge bent increases, so the interaction between axial force and member stiffness should be sufficiently considered in seismic analyses.  相似文献   

4.
It provides several typical mega plane frame designs on condition that the variables are the combination of varying amplification factors of moment at bottom sections of ground floor columns of the minor frame on the major beams. The elastic-plastic dynamic analysis program Drain-2d+ of the plane structure is used to get elastic-plastic time-history analysis for each typical mega frame under the action of seism. The autuors obtain the information of the mechanical transmutation characteristics, the emergency of the plastic hinge and the weak point of the whole structure under the action of seism, from which the correct thinking of how to obtain the design value of amplification factors of moments at bottom sections of ground floor columns of the minor frame on the major beams is found. The reasonable design values are recommended in order to provide some suggestions for the design of the reinforced concrete mega-frame structure.  相似文献   

5.
6.
Seismic Assessment of RC Frame Structure Based on New Design Codes   总被引:1,自引:0,他引:1  
The national structural codes GB50010-2002 and GB 50011-2001 have been modified in many aspects compared with the old ones. To verify the effectiveness of structural capacity design provisions in the new codes, firstly, two typical RC frame structures of Grade 2 in intensity-category 8 and Grade 1 in intensity-category 9 are designed according to the new codes. Then, nonlinear dynamic analyses of the two structures are carried out under excitations of several ground motions with the fortification and rare intensity levels. With the analysis results the availability of strong column weak beam is checked carefully, which is desirable with capacity design measures of RC frame in Chinese new structural design code. The conclusions drawn from the analysis are helpful to structural design and local modification of the codes.  相似文献   

7.
The accurate calculation of the deformation capacity of structures is very important to performance-based seismic design, which satisfies the explicit deformation demands. The method to evaluate drift capacity of fiber reinforced polymer (FRP) confined reinforced concrete circular columns under simulated seismic loading is focused. Firstly, the moment-curvature relationship of FRP confined sections of reinforced concrete (RC) circular columns is simulated by numerical analysis. It is found that the calculated ultimate curvature is significantly less than the test result, and the difference is controlled by the axial load ratio of the tested columns. According to the numerical and the test results, an equation is proposed to modify the calculated ultimate curvature. Based on this, the drift capacity can be predicted with the equivalent plastic hinge method. The calculated result agrees well with the test result when FRP amount is low, but it is significantly larger when FRP amount increases. Finally, the main parameters exerting influences on the drift capacity of the FRP-confined RC circular column are analyzed.  相似文献   

8.
The current analytical method on bi-directional shearing capacity of RC framed columns, the so called "over strength factor method", in the drafting "Design Code of RC structures", is carefully investigated. Limits of this method are presented and suggestions are put forward to modify it. On this basis, the simplified tri linear analytical method to determine bi directional shearing capacity is presented afterwards and the error of this method is given. Finally, the cases of design and check of the two methods are illustrated.  相似文献   

9.
With examples of three 6-storey RC frames by using an elasto-plastic dynamic analysis program PL-AFJD of plane frame, developed by the second author of this paper, the frames designed for different earthquake-intensity regions (intensity category 7, 8, 9 respectively) are analyzed nonlinearly under four ground motions at the action of rare earthquake. Three frames strictly conform to the National Standard GBJ10-89 and the dimensions of columns are changed once along the height. The structure designed on intensity category 7 shows a relatively small response, which could be sustained by the structure. Though the hinge formation in columns can not be prevented, the inelastic deformation of columns is not serious, the structure at intensity category 9 exhibits a relative strong response, but the deformation of most columns is within the capacity and the trend to form a soft-storey does not appear. It is the structure at intensity category 8 that shows a severe response. Though the visible soft-storey can not be found, the deformation of some columns is beyond the capacity of inelastic hysteretic deformation under certain inputs, which indicate the possibility of local collapse.The elementary analysis results demonstrate the different effectiveness of seismic provisions for three different earthquake-intensity regions, which may be a reference to the amendment of National Design Standard.  相似文献   

10.
Referring to the criterion of seismic fortification intensity 8 specified by national seismic design code, a /2 scaled model of single span and two story frame composed of RC beams and T shaped steel reinforced concrete (SRC) columns has been made. A seismic evaluation was performed by the quasi static testing, including failure pattern, stiffness degradation, ductility and energy dissipation. The experimental results show that the frame has good seismic behavior, and section steel in the columns plays an important role in earthquake resistance. On the basis of experimental study and analysis, it concludes that the seismic behavior of frame with SRC special shaped columns can satisfy the requirements of seismic fortification.   相似文献   

11.
In order to improve the deformation capacity and damage tolerance of the reinforced concrete columns, six reinforced concrete column specimens with fiber reinforced concrete (FRC) in the bottom region instead of ordinary concrete were tested under reversed cyclic lateral loading. The specimens’ shear span ratio is three and its configuration of stirrups are relatively few. The test results show that these columns exhibit shear failures after the longitudinal reinforcement yielding, and they have better deformation capacity and damage tolerance. The column with FRC in the bottom region can reduce the amount of constraint stirrup and shear stirrup. According to the test results, bending bearing capacity calculation method considering FRC tension action and shear capacity formula were established. The shear capacity calculated by the adopted formula are in good agreement with the test results.  相似文献   

12.
In order to investigate the effective seismic capacity design measures of shear wall and to realize expected failure modes under strong earthquake,the existing problems in current seismic capacity design measures are pointed out through theoretical analysis.The effectiveness of the measures of Chinese seismic design code is verified by fine finite element dynamic time-history analysis of examples.Improving measures are then put forward and are verified through example analysis.It is shown the bending ductile demand of bottom section of shear wall increases too much based on moment capacity design measures of Chinese seismic design code 2001 in the rigid foundation assumption under rare earthquake action,and its bearing capacity for vertical axis force loses;the shear capacity design measures of current seismic design code would lead to shear failure in the stores above the bottom ductility strengthening area.Some improved bending and shear seismic capacity design measures of shear wall are proposed and are verified to be effective.  相似文献   

13.
For a reinforce concrete frame structures which is not satisfied the standard for seismic appraiser of building, viscidity dampers are used to retrofit the structure. Four reinforce schemes are selected in which six same viscidity dampers are located at different position of the structure. Compared seismic performance of the retrofited structure with unretrofited one, an optimum scheme where viscidity dampers should better set is obtained. Then the number and technical parameter of viscidity dampers are adjusted, and seismic performance of the structure are calculated. The results are compared and a more economic scheme is obtained because the cost is lowest and the displacement of the structure under earthquakes is satisfied the standard for seismic appraiser of building. Several rules and advices are gotten about how to use the viscidity dampers to retrofit reinforce concrete frame structures. The conclusion about viscidity dampers are useful for similar actual engineering.  相似文献   

14.
The shear design formula for seismic shearwalls in the Chinese standard (Code for Design of Concrete Structures) have not been verified by tests yet, In order to compensate for it, the authors undertake the task of testing on the shear behavior of seismic shearwalls organized by the Code association. After discussing on the particular conditions controlling tests and philosophy in specimen designing, the results of the first group of tests on the seismic shear behavior of shearwalls, which are I-shaped and with relatively large scale and axial force ratio of 0.2 and tested under reversed cyclic horizontal forces, are introduced. The results are analyzed and discussed.  相似文献   

15.
Accurate assessment of seismic performance of reinforced concrete columns(RC columns)is significant to ensure the safety of reinforced concrete structure subjected to earthquake action. In order to derive a reasonable prediction by Pushover analysis, a calculation method for determining lateral load-deformation curve, unloading rigidity and reloading rigidity of RC columns subjected to combined flexural and shear force is proposed based on test data analysis in the PEER (Pacific Earthquake Engineering Research Center) Structural Performance Database, and the formula for calculating the equivalent damping ratio according to hysteresis loop area is also provided. In this paper, conventional section analysis techniques are employed for modeling the flexural behavior of lateral load-deformation relationship, and the modified formulas with actual data analysis are implemented for modeling the effect of shear and slip of the longitudinal bars at columns end. Unloading rigidity and reloading rigidity of the columns are determined by statistical analysis on relations between themselves and secant rigidity of the columns respectively. Finally, a single-degree of freedom (SDOF) system is taken as an example to illustrate the applications of the proposed model for developing the corresponding “capacity curve” and performing pushover analysis on columns. The influences of primary parameters, such as shear-span ratio, axial load ratio, reinforcement ratio and stirrup ratio, on seismic performance of columns are also analyzed.  相似文献   

16.
Because the factors that affect the behavior of the beam-column joints are complicated,an experimental study alone is not sufficient.Therefore,a nonlinear finite element analysis was conducted to provide better understanding of the performance of the beam-column joints.The authors intend to do the parameter study with nonlinear finite element method after a lot of high-strength concrete beam-column joints have been experimented.In this paper,the analytical model firstly was applied to simulate the experimental joint behavior and the comparison results were very well.Based on this,the parametric analysis of concrete strength on seismic performance of beam-column joints has been conducted.  相似文献   

17.
In order to analyse seismic behaviors of inclined column-shaped and beam-shaped transfer floor,the pseudo static testing is carried out,which are subjected to vertical loads and horizontal cyclic loads,respectively on two specimens,including the framed short-leg shear wall inclined column-shaped transfer plane framework and the same dimension beam-shaped transfer frame.The load transfer is direct,inclined column transfer structure can reduce the beam dimension effectively,and it is easier to implement the aseismatic design principles,including "strong column and weak beam,strong shearing and weak bend,stronger nodes".Lateral rigidity of inclined column-shaped transfer stories is large,making it difficult to engender structure weakness stories.If the design is reasonable,inclined column-shaped transfer structure can get better seismic behavior.  相似文献   

18.
The seismic resistant performance and failure mechanism of the steel bracing Bound-Column were analyzed with tests and the finite element method. Two-story steel bracing Bound-Column test specimen was selected. The braces adopt long leg back-back double angle. Tests were divided into three groups, including one monotonic loading test and two cyclic tests. Lateral load-bearing capacity, stiffness and hysteretic behavior of the steel bracing Bound-Column were obtained by the comparison of test results and the finite element method. Results show that the steel brace of Bound-Column contributes a lot to its load capacity and stiffness, while the external frame provides little lateral rigidity and capacity. Bound-Column failure occurs only in the steel braces, while the external frame is with no damage.  相似文献   

19.
以竖向荷载和水平地震作用组合下的钢筋混凝土柱和钢柱为对象,研究了失效方程中荷载相关特性对柱承载力抗震可靠性的影响。根据现行《混凝土结构设计规范》和《钢结构设计规范》分析了不同柱弯矩轴力相关曲线的特性。结合多个框架结构实例,对比了柱失效方程中荷载相关曲线与规范考虑情形的异同。实例分析表明:水平地震和竖向荷载组合作用下,小偏压RC柱和工字型钢柱的荷载相关曲线与规范考虑的情形较为符合,均近似为负相关的直线;水平地震和竖向荷载组合作用下,大偏压RC柱的荷载相关曲线则与规范考虑的情形有较大出入,存在明显的正相关段部分。在此基础上,考虑失效方程复杂特性,依据已有的荷载和抗力变量概率模型,采用Monte Carlo法分析了水平地震和竖向荷载组合作用下柱的可靠性。结果表明:钢柱和小偏压RC柱的承载力抗震可靠度随轴压力荷载效应比值的变化幅度较小,与规范模式计算结果较接近;大偏压RC柱的承载力抗震可靠度随轴压力荷载效应比值的变化会有较大幅度波动,与规范模式计算结果差异较大;当轴压力荷载效应比值为负时,大偏压RC柱的承载力抗震可靠度会低于规范计算值较多,现行柱可靠性设计方法会偏于不安全。  相似文献   

20.
The reversed cyclic loading tests of 5 nearly full-scale beam-column assembly specimens with high shear-compression ratio under different axial loads in reinforced concrete plane frames have been completed,which cover the shortage in the field of high shear-compression parameter among seismic joint experiments in the world.Based on relatively complete measuring and analyses of the law for the bond and slip of the beam bar through the joint,the stress of the level stirrup legs and hysteretic dissipated energy and the change of rigidity,the characteristic of shear transfer mechanisms and damage development and comprehensive seismic behavior of the assembly are proposed in this paper.It makes it possible to improve design codes and to establish relatively reasonable analytic modes and hysteretic modes in inelastic dynamic response analyses of the frame.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号