首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field experiment was carried out to assess the impact of elevated carbon dioxide (CO2) and temperature on phosphorous (P) nutrition in relation to organic acids exudation, soil microbial biomass P (MBP) and phosphatase activities in tropical flooded rice. Rice (cv. Naveen) was grown under chambered control (CC), elevated CO2 (EC, 550 μmol mol−1) and elevated CO2 + elevated temperature (ECT, 550 μmol mol−1 and 2 °C more than CC) in a tropical flooded soil under open top chambers (OTCs) along with unchambered control (UC) for three years. Root exudates were analyzed at different growth stages of rice followed by organic acids determination. Rhizospheric soil was used for analysis of soil phosphatase, MBP and available P. The total organic carbon (TOC) in root exudates was increased by 27.5% and 30.2% under EC and ECT, respectively over CC. Four different types of organic acids viz. acetic acid (AA), tartaric acid (TA), malic acid (MA) and citric acid (CA) were identified and quantified as dominant in root exudates, concentration of these was in the order of TA > MA > AA > CA. The TA, MA, AA and CA content were increased by 34.4, 31.1, 38.7 and 58.3% under ECT compared to that of UC over the period of 3 years. The P uptake in shoot, root and grain under elevated CO2 increased significantly by 29, 28 and 22%, respectively than CC. Soil MBP, acid and alkaline phosphatase activity was significantly higher under elevated CO2 by 35.1%, 27 and 36%, respectively, compared to the CC. Significant positive relationship exists among the organic acid exudation, MBP, phosphatase activities and P uptake by rice. The enhanced organic acid in root exudates coupled with higher soil phosphatase activities under elevated CO2 resulted in increased rate of soil P solubilization leading to higher plant P uptake.  相似文献   

2.
Location specific adaptation option is required to minimize adverse impact of climate change on rice production. In the present investigation, we calibrated genotype coefficients of four cultivars in the CERES-Rice model for simulation of rice yield under elevated CO2 environment and evaluation of the cultivar adaptation in subtropical India. The four cultivars (IR 36, Swarna, Swarn sub1, and Badshabhog) were grown in open field and in Open Top Chamber (OTC) of ambient CO2 (≈390 ppm) and elevated CO2 environment (25% higher than the ambient) during wet season (June–November) of the years 2011 and 2012 at Kharagpur, India. The genotype coefficients; P1 (basic vegetative phase), P2R (photoperiod sensitivity) and P5 (grain filling phase) were higher, but G1 (potential spikelet number) was lower under the elevated CO2 environment as compared to their open field value in all the four cultivars. Use of the calibrated model of elevated CO2 environment simulated the changes in grain yield of −13%, −17%, −4%, and +7% for the cultivars IR 36, Swarna, Swarna sub1, and Badshabhog, respectively, with increasing CO2 level of 100 ppm and rising temperature of 1 °C as compared to the ambient CO2 level and temperature and they were comparable with observed yield changes from the OTC experiment. Potential impacts of climate change were simulated for climate change scenarios developed from HadCM3 global climate model under the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (A2 and B2) for the years 2020, 2050, and 2080. Use of the future climate data simulated a continuous decline in rice grain yield from present years to the years 2020, 2050 and 2080 for the cultivars IR 36 and Swarna in A2 as well as B2 scenario with rising temperature of ≥0.8 °C. Whereas, the cultivar Swarna sub1 was least affected and Badshabhog was favoured under elevated CO2 with rising temperature up to 2 °C in the sub-tropical climate of India.  相似文献   

3.
Atmospheric CO2 concentrations ([CO2]) are predicted to increase from current levels of about 400 ppm to reach 550 ppm by 2050. The direct benefits of elevated [CO2] (e[CO2]) to plant growth appear to be greater under low rainfall conditions, but there are few field (Free Air CO2 Enrichment or FACE) experimental set-ups that directly address semi-arid conditions. The objectives of this study were to investigate the following research questions: 1) What are the effects of e[CO2] on the growth and grain yield of lentil (Lens culinaris) grown under semi-arid conditions under FACE? 2) Does e[CO2] decrease grain nitrogen in lentil? and 3) Is there genotypic variability in the response to e[CO2] in lentil cultivars? Elevated [CO2] increased yields by approximately 0.5 t ha−1 (relative increase ranging from 18 to 138%) by increasing both biomass accumulation (by 32%) and the harvest index (by up to 60%). However, the relative response of grain yield to e[CO2] was not consistently greater under dry conditions and might depend on water availability post-flowering. Grain nitrogen concentration was significantly reduced by e[CO2] under the conditions of this experiment. No differences were found between the cultivars selected in the response to elevated [CO2] for grain yield or any other parameters observed despite well expressed genotypic variability in many traits of interest. Biomass accumulation from flowering to maturity was considerably increased by elevated [CO2] (a 50% increase) which suggests that the indeterminate growth habit of lentils provides vegetative sinks in addition to reproductive sinks during the grain-filling period.  相似文献   

4.
This study investigated trade-offs between parameters determining water use efficiency of wheat under elevated CO2 in contrasting growing seasons and a semi-arid environment. We also evaluated whether previously reported negative relationships between nutrient content and transpiration efficiency among wheat genotypes will be maintained under elevated CO2 conditions. Two cultivars of wheat (Triticum aestivum L.), Scout and Yitpi, purportedly differing in water use efficiency related traits (e.g. transpiration efficiency) but with common genetic backgrounds were studied in a high yielding, high rainfall (2013), and in a low yielding, very dry growing season (2014) under Free-Air CO2 Enrichment (FACE, CO2 concentration of approximately 550 μmol mol−1) and ambient (approximately 390 μmol mol−1) CO2. Gas exchange measurements were collected diurnally between stem elongation and anthesis. Aboveground biomass and nutrient content (sum of Ca, K, S, P, Cu, Fe, Zn, Mn and Mg) were determined at anthesis. Yield, yield components and harvest index were measured at physiological maturity. Cultivar Scout showed transiently greater transpiration efficiency (measured by gas exchange) over cultivar Yitpi under both ambient and elevated CO2 conditions, mainly expressed in the high yielding but not in the low yielding season. Nutrient content was on average 13% greater for the lower transpiration efficiency cultivar Yitpi than the cultivar with higher transpiration efficiency (Scout) in the high yielding season across both CO2 concentrations. Elevated CO2 stimulated grain yield to a greater extent in the high yielding season than in the low yielding season where increased aboveground biomass earlier in the season did not translate into fertile tillers in cultivar Yitpi. Yield increased 27 and 33% in the high yielding and 0 and 19% in the low yielding season for cultivars Yitpi and Scout, respectively. Intraspecific variation in CO2 responsiveness related mechanisms of grain yield were observed. These results suggest CO2-driven trade-offs between traits governing water use efficiency are related to both growing season and intraspecific variations, and under very dry finishes, the trade-offs may even reverse. The negative relationship between nutrient content and transpiration efficiency among wheat genotypes will be maintained under elevated CO2 conditions.  相似文献   

5.
Based on the carboxylation kinetics of the C3 and C4 photosynthetic pathway, it is anticipated that C3 crops may be favored over C4 weeds as atmospheric CO2 increases. In the current study, tomato (Lycopersicon esculentum), a C3 crop species, was grown at ambient (~400 μmol mol−1) and enhanced carbon dioxide (~800 μmol mol−1) with and without two common weeds, lambsquarters (Chenopodium album), a C3 weed, and redroot pigweed (Amaranthus retroflexus), a C4 weed, from seedling emergence until mutual shading of crop-weed leaves. Because growth temperature is also likely to change in concert with rising CO2, the experiment was repeated at day/night temperatures of 21/12 and 26/18 °C. For both day/night temperatures, elevated CO2 exacerbated weed competition from both the C3 and C4 weed species. A model based on relative leaf area following emergence was used to calculate potential crop losses from weeds. This analysis indicated that potential crop losses increased from 33 to 55% and from 32 to 61% at the 21/12 and 26/18 °C day/night temperatures, for ambient and elevated CO2, respectively. For the current study, reductions in biomass and projected yield of tomato appeared independent of the photosynthetic pathway of the competing weed species. This may be due to inherent variation and overlap in the growth response of C3 and C4 species, whether weeds or crops, to increasing CO2 concentration. Overall, these results suggest that as atmospheric CO2 and/or temperature increases, other biological interactions, in addition to photosynthetic pathway, deserve additional consideration in predicting competitive outcomes between weeds and crops.  相似文献   

6.
The effects of controlled atmospheres (CA) on respiration, ethylene production, firmness, weight loss, quality, chilling injury, and decay incidence of three commercially important cultivars of guava fruit were studied during storage in atmospheres containing 2.5, 5, 8, and 10 kPa O2 with 2.5, 5, and 10 kPa CO2 (balance N2) at 8 °C, a temperature normally inducing chilling injury. Mature light green fruit of cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’ and ‘Apple Colour’, were stored for 30 days either in CA or normal air, and transferred to ambient conditions (25–28 °C and 60–70% R.H.) for ripening. CA storage delayed and suppressed respiratory and ethylene peaks during ripening. A greater suppression of respiration and ethylene production was observed in fruit stored in low O2 (≤5 kPa) atmospheres compared to those stored in CA containing 8 or 10 kPa O2 levels. High CO2 (>5 kPa) was not beneficial, causing a reduction in ascorbic acid levels. CA storage was effective in reducing weight loss, and maintaining firmness of fruit. The changes in soluble solids content (SSC), titratable acidity (TA), ascorbic acid, and total phenols were retarded by CA, the extent of which was dependent upon cultivar and atmosphere composition. Higher amounts of fermentative metabolites, ethanol and acetaldehyde, accumulated in fruit held in atmospheres containing 2.5 kPa O2. Chilling injury and decay incidence were reduced during ripening of fruit stored in optimal atmospheres compared to air-stored fruit. In conclusion, guava cultivars, ‘Lucknow-49’, ‘Allahabad Safeda’, and ‘Apple Colour’ may be stored for 30 days at low temperature (8 °C) supplemented with 5 kPa O2 + 2.5 kPa CO2, 5 kPa O2 + 5 kPa CO2, and 8 kPa O2 + 5 kPa CO2, respectively.  相似文献   

7.
Despite its economic and environmental importance, information about effects of future atmospheric carbon dioxide (CO2) enrichment on aboveground biomass production and tuber yield of potato is still rare. Responses of potato (Solanum tuberosum L. cv. Bintje) were thus investigated in two full growing seasons under 380, 550 or 680 μmol mol?1 CO2 in open-top chambers (OTCs). When averaged over both years, aboveground stem biomass at canopy maturity was negatively related to CO2 enrichment. Aboveground-to-belowground biomass ratio was negatively related to CO2 enrichment as there was a positive relationship between CO2 and total dry yield of potato tubers. The stimulation was mainly related to an increase in the tuber size fraction for commercial yield (tubers > 35 mm). For the largest size class (tubers > 50 mm), which is important for industrial processing, large CO2-induced impacts were observed too, although these effects were not significant. Elevated CO2 concentrations will thus affect biomass allocation of potato plants and result in improvements concerning the market value of the commercial tuber yield.  相似文献   

8.
The increase in atmospheric CO2 concentration [CO2] has been demonstrated to stimulate the growth of C3 crops. However, little information exists about the effect of elevated [CO2] on biomass production of sugar beet, and data from field experiments are lacking. In this study, sugar beet was grown within a crop rotation over two rotation cycles (2001, 2004) at present and elevated [CO2] (375 μl l?1 and 550 μl l?1) in a free air CO2 enrichment (FACE) system and at two levels of nitrogen supply [high (N2), and 50% of high (N1)], in Braunschweig, Germany. The objective of the present study was to determine the CO2 effect on seasonal changes of leaf growth and on final biomass and sugar yield. Shading treatment was included to test whether sugar beet growth is sink limited under elevated [CO2]. CO2 elevation did not affect leaf number but increased individual leaf size in early summer resulting in a faster row closure under both N levels. In late summer CO2 enrichment increased the fraction of senescent leaves under high but not low N supply, which contributed to a negative CO2 effect on leaf area index and canopy chlorophyll content under high N at final harvest. Petioles contained up to 40% water-soluble carbohydrates, which were hardly affected by CO2 but increased by N supply. More N increased biomass production by 21% and 12% in 2001 and 2004, respectively, while beet and sugar yield was not influenced. Concentration of α-amino N in the beet fresh weight was increased under low N and decreased under high N by CO2 enrichment. The CO2 response of total biomass, beet yield and white sugar yield was unaffected by N supply. Averaged over both N levels elevated [CO2] increased total biomass by 7% and 12% in 2001 and 2004, respectively, and white sugar yield by 12% and 13%. The shading treatment in 2004 prevented the decrease in leaf area index under elevated [CO2] and high N in September. Moreover, the CO2 effect on total biomass (24%) and white sugar yield (28%) was doubled as compared to the unshaded conditions. It is concluded that the growth of the storage root of sugar beet is not source but sink limited under elevated [CO2], which minimizes the potential CO2 effect on photosynthesis and beet yield.  相似文献   

9.
Tomato fruit (Lycopersicon esculentum L. cv. Carousel) were exposed to ozone concentrations ranging between 0.005 (controls) and 1.0 μmol mol−1 at 13 °C and 95% RH. Quality-related attributes and organoleptic characteristics were examined during and following ozone treatment. Levels of soluble sugars (glucose, fructose) were maintained in ozone-treated fruit following transfer to ‘clean air’, and a transient increase in β-carotene, lutein and lycopene content was observed in ozone-treated fruit, though the effect was not sustained. Ozone-enrichment also maintained fruit firmness in comparison with fruit stored in ‘clean air’. Ozone-treatment did not affect fruit weight loss, antioxidant status, CO2/H2O exchange, ethylene production or organic acid, vitamin C (pulp and seed) and total phenolic content. Panel trials (employing choice tests, based on both appearance and sensory evaluation) revealed an overwhelming preference for fruit subject to low-level ozone-enrichment (0.15 μmol mol−1), with the effect persisting following packaging.  相似文献   

10.
Ptilotus nobilis (Lindl.) F. Muell. has potential in the floriculture industries as a cut flower crop. Ethylene production and respiration rates, fresh weight changes and volatile scent production from cut inflorescences of P. nobilis cultivars Passion (dark pink flowers) and Purity (white-green flowers) were measured during vase life. Inflorescence weight loss was significant (P < 0.001) during vase life with wilting and colour loss being the primary reasons for loss of vase life. Inflorescences ready for the cut market stored and at 22 °C had vase lives of >12 d. Ethylene production by inflorescences was low to negligible. Treatment with silverthiosulphate (STS) and ethylene had no effects on vase life. Evidently, ethylene did not play a role in determining the postharvest longevity of cut P. nobilis flowers. Respiration rates of inflorescences were high at harvest (>700 mg CO2 kg−1 FW h−1) and declined gradually thereafter during vase life. Total volatile emissions followed a similar pattern. For Passion, respiration rates of immature florets were significantly greater (P = 0.02) than florets from other developmental stages while the calyx produced the most CO2. For Purity, respiration rates of florets of different maturities did not differ and the reproductive tissue produced the most CO2. Only fully opened mature florets with their stigma and anthers revealed, emitted significant quantities of volatiles (P < 0.001) and primarily from the calyx tissue for both cultivars. The individual volatiles differed somewhat for the two cultivars. However, both produced significant quantities of benzaldehyde, 3,5-dimethoxytoluene and benzyl alcohol. These compounds have previously been associated with desirable floral scent.  相似文献   

11.
The increased consumption of fresh-cut celery has led to the need to explore packaging alternatives for fresh-cut celery that can meet consumer, market, and industry needs. In this study, the effect of bio-based packaging and non-conventional atmospheres on the quality and safety of chlorine-sanitized celery sticks stored at 7 °C was investigated. Two materials differing in permeability [a bio-based polyester (polylactic acid (PLA)) and a petroleum-based polyolefin (polypropylene/low density polyethylene (PP/PE)] and four initial gas compositions [air (A-PLA or A-PP/PE), 95 kPa O2 + 5 kPa N2 (O2-PLA), 99 kPa N2 + 1 kPa O2 (N2-PLA), and 6 kPa O2 + 12 kPa CO2 + 82 kPa N2 (CO2-PLA)] were evaluated. Changes in headspace composition, weight loss, surface and cut end color, texture, ethanol content, appearance, and growth of Listeria monocytogenes on inoculated celery sticks were assessed during 21 d of storage. Active MAP (CO2-PLA) out-performed passive MAP (A-PLA) in maintaining celery stick quality but not safety. Conventional active MAP (CO2-PLA) out-performed non-conventional active MAPs (O2-PLA and N2-PLA) in maintaining celery stick quality throughout storage, but O2-PLA suppressed L. monocytogenes growth while CO2-PLA promoted growth during the first 10 d of storage. PLA and PP/PE materials affected celery stick quality but not Listeria growth. This study shows that the initial gas composition and packaging material both impact the quality and safety of celery sticks. Overall, the combination PLA and 95 kPa O2 proved most beneficial in maximizing both the safety and quality of celery sticks during one week of storage at 7 °C.  相似文献   

12.
‘Big Top’ and ‘Venus’ nectarines and ‘Early Rich’ and ‘Sweet Dream’ peaches were picked at commercial maturity and stored for 20 and 40 d at −0.5 °C and 92% RH under either air or one of the three different controlled atmosphere regimes (2 kPa O2/5 kPa CO2, 3 kPa O2/10 kPa CO2 and 6 kPa O2/17 kPa CO2). Physicochemical parameters and volatile compounds emission were instrumentally measured after cold storage plus 0 or 3 d at 20 °C. Eight sensory attributes were assessed after cold storage plus 3 d at 20 °C by a panel of 9 trained judges, in order to determine the relationship between sensory and instrumental parameters and the influence of storage period and cold storage atmosphere composition on this relationship.A principal component analysis (PCA) was undertaken to characterize the samples according to their sensory attributes. PCA results reflected the main characteristics of the cultivars: ‘Big Top’ was the nectarine cultivar with the highest values for sweetness, juiciness and flavor; ‘Sweet Dream’ was the sweetest peach and was characterized by high values for crispness and firmness, while ‘Venus’ and ‘Early Rich’ were characterized by their sourness. To assess the influence of storage period and CA composition on sensory properties, a PLS model of the flavor of the different samples was constructed using standard quality attributes and volatile concentrations as the X-variables. The model with 2 factors accounted for more than 80% of flavor variance. PLS results indicated that the main influence on flavor perception was storage period. Atmosphere composition also had an influence on flavor perception: flavor perception decreased from samples stored in a 2/5 O2/CO2 atmosphere composition to those of 3/10 and 6/17. These results can be qualitatively extended to juiciness and sweetness since all these sensory properties were strongly correlated.  相似文献   

13.
Southern hemisphere blueberry producers often export their products through extended supply chains to Northern hemisphere consumers. During extended storage, small variations in temperature or atmosphere concentrations may generate significant differences in final product quality. In addition, relatively short delays in establishing cool storage temperatures may contribute to quality loss. In these experiments a full factorial analysis was done of the effects of three cooling delays (0, 12 or 24 h at 10 °C), three atmosphere concentrations (air, 10% CO2 + 2.5% O2 and 10% CO2 + 20% O2) and two storage temperatures (0 °C and 4 °C) which were assessed for their impact on final quality, measured as weight loss, firmness and rot incidence. Two blueberry cultivars were studied: ‘Brigitta’, a highbush cultivar, and ‘Maru’, a rabbiteye. Delays in cooling had a small effect on final product weight, whereas variation in storage temperature and atmosphere during simulated transport influenced both firmness and rot incidence. Atmospheres with 10% CO2 reduced decay incidence, particularly at low oxygen concentration (2.5% O2), although the latter conditions tended to soften fruit. In order to achieve optimal postharvest storage for blueberries, minimising temperature variability in the supply chain is important, as is finding the potentially cultivar-specific optimal combination of high CO2 and low O2 concentration that results in simultaneously minimising rot incidence and induced softening.  相似文献   

14.
Pre-storage application of 40% CO2 at 0 °C for 24 or 48 h and controlled atmosphere (12% O2 + 12% CO2) storage at 0 °C for up to eight weeks on decay control and quality of organic ‘Flame Seedless’ and ‘Crimson Seedless’ table grapes were studied as a postharvest disease control alternative. To simulate different potential field conditions, these organic treatments were applied to organic-grown grapes that were naturally infected (without inoculation), surface inoculated (berries inoculated by spraying with a conidia suspension), and nesting inoculated (clusters inoculated by placing in the middle an artificially infected berry) with the pathogen Botrytis cinerea, the cause of grape gray mold. Under these three conditions, a 40% CO2 for 48 h pre-storage treatment followed by controlled atmosphere reduced the gray mold incidence from 22% to 0.6% and from 100% to 7.4% after four and seven weeks, respectively. High CO2 pre-storage alone limited botrytis incidence in both naturally and artificially infected grapes, but was more effective when combined with CA. These treatments did not affect visual or sensory fruit quality. Exposure to high CO2 for 24 or 48 h effectively inhibited mycelial growth of B. cinerea in PDA plates incubated at 22 °C for up to 72 h. Conidia germination in PDA plates was reduced ∼60% after 12 h incubation. In vitro studies demonstrated a fungistatic effect, but further studies on the mechanism of action could improve treatment performance. This novel high CO2 initial fumigation followed by controlled atmosphere during storage or transportation could be a commercially feasible alternative for postharvest handling of organic and conventional table grapes. Our results encourage validating this combined physical treatment in other cultivars and under commercial conditions.  相似文献   

15.
The lateness, tallness and high vigour of old tall durum wheat cultivars could be advantageous for dual-purpose use and their high propensity for lodging should be reduced by grazing. A 3-year field trial was performed in Sardinia, Italy, in a typical Mediterranean environment. Crops of the durum wheat cultivar Senatore Cappelli were sown in October, and grazing was simulated by clipping half of the plots at the terminal spikelet stage of development. The forage biomass derived from clipping varied greatly between seasons (from 0.8 to 3.3 t ha−1 dry matter) in response to the notable inter-seasonal variability in weather conditions. Cultivar Senatore Cappelli showed good recovery following clipping, with the ability to attain almost complete radiation interception well before anthesis. The high number of leaves that emerged after clipping might have contributed to this good recovery. Nevertheless, clipping reduced the dry matter produced by anthesis (16 t ha−1 in clipped compared to 21 t ha−1 in unclipped crops) as well as the final dry matter (DMMAT) (19 t ha−1 in clipped compared to 23 t ha−1 in unclipped crops), although these differences disappeared when the clipped biomass was included. The lower lodging observed at anthesis in the clipped (21%) compared with unclipped crops (63%) likely reduced the difference between treatments. The lower DMMAT of clipped treatments was reflected in a lower grain yield (GY) (3.4 t ha−1 vs 4.2 t ha−1 in the unclipped treatment). Clipping did not affect the amount of nitrogen present in the biomass, nitrogen uptake efficiency or radiation use efficiency. GY reduction after clipping was mediated by the reduction in spikes m−2 and kernels m−2 (KNO). Spike fertility was not affected by clipping, because the same amount of radiation was available for each spike (about 1 MJ). The period with reduced ground cover after clipping was reflected in an increased evaporation and reduced transpiration, which did not alter the total water used and increased the transpiration efficiency in terms of DMMAT.Old tall durum wheat cultivars manifested good suitability for dual-purpose use in environments with low attainable yields because their low grain yield potential contributed to reducing the negative effects of clipping on GY. Their high straw yield and kernel protein percentage represented an advantage with respect to semi-dwarf cultivars.  相似文献   

16.
The aims of these field experiments were to investigate the effectiveness of soil application of rubber tire ash in comparison with soil and foliar applications of zinc (Zn) sulfate to increase Zn and decrease cadmium (Cd) concentrations in wheat grain. A two-year field experiment was conducted during the 2007–2008 and 2007–2008 growing seasons at Isfahan research field, Iran. Ten different Zn-efficiency bread wheat cultivars (Triticum aestivum L.) commonly cultivated in different parts of Iran were subjected to no Zn fertilizer addition (control), soil application of 40 kg ha−1 ZnSO4, soil application of 100 (for the first year) and 250 (for the second year) kg ha−1 waste rubber tire ash, foliar application of Zn at the mid tillering stage, and foliar application of Zn at the early anthesis stage. In the foliar application, ZnSO4 was sprayed at a rate of 0.66 kg Zn/ha. Foliar spray of zinc sulfate at early anthesis, in general, had no significant effect on the yield and grain Cd while significantly increased grain Zn concentrations of most cultivars. On average, the foliar Zn treatment at the mid tillering stage (0.66 kg Zn/ha), decreased the mean grain Cd concentration from 0.032 mg kg−1 in the control treatment to 0.024 mg kg−1. While the grain Zn concentrations of some cultivars increased with soil application of Zn sulfate, they were not affected or even decreased in other cultivars. For most studied wheat cultivars, pre-planting application of rubber tire ash in soil resulted in a significant decrease of grain Cd concentrations. The results show that the effectiveness of soil and foliar application of Zn on yield and grain Zn and Cd concentrations greatly depends on the cultivar. The currently recommended rates of soil applications of Zn to ameliorate Zn deficiency are sufficient to increase grain Zn and decrease grain Cd concentrations in some wheat cultivars, while they do not in the others. In this study, soil application of 250 kg rubber tire ash/ha and foliar spray of 0.66 kg Zn/ha at tillering stage were the most effective treatments to ameliorate Zn deficiency and to increase Zn and decrease Cd concentration in grains of most wheat cultivars.  相似文献   

17.
The underlying causes as well as chemical and biochemical alleviation for CO2-induced browning in apple fruit are poorly understood. Ascorbic acid (AsA) dynamics in ‘Braeburn,’ a susceptible cultivar, and ‘Gala’, a resistant cultivar, were evaluated during on-tree development and storage at 0.5 °C in air or controlled atmospheres (CA) containing 1 kPa O2 and 1, 3 or 5 kPa CO2. ‘Braeburn’ fruit treated with diphenylamine (DPA) was also stored for 1 month to determine effects on browning incidence and AsA concentration. ‘Braeburn’ apples had significantly higher (p  0.05) AsA levels than ‘Gala’ during on-tree development, and storage. No correlation between AsA and maturity/ripening indices for ‘Braeburn’ or ‘Gala’ was apparent. Histochemical localization of fruit AsA showed a staining intensity consistent with the quantity analytically determined, and showed that AsA is diffusely distributed throughout the cortex in both cultivars during on-tree development. During storage, AsA was localized to the periphery of brown tissue in ‘Braeburn’ and to the coreline and cortex proximal to the peel in ‘Braeburn’ and ‘Gala’ tissues. DPA decreased browning development during storage, however, no correlation between DPA treatment and AsA quantity in healthy or brown cortex tissue was observed. The results indicate AsA quantity alone is not an indicator of CO2 sensitivity in these two cultivars.  相似文献   

18.
Controlled atmosphere (CA) treatments with ultralow oxygen (ULO) alone and in combinations with 50% carbon dioxide were studied to control grape mealybug, Pseudococcus maritimus (Ehrhorn) on harvested table grapes. Two ultralow oxygen levels, 30 and <0.01 μL L−1, were tested in both ULO and ULO + 50% CO2 treatments. The ULO treatments with the lower oxygen level were more effective than the ULO treatments at the higher oxygen level. The ULO + 50% CO2 treatments were more effective than the ULO treatments. Grape mealybug eggs were significantly more tolerant of ULO and ULO + CO2 treatments than nymphs and adults. A 14 day ULO treatment with 30 μL L−1 O2 at 2 °C did not achieve 100% mortalities of any life stage. In the presence of 50% CO2, the 14 d treatment achieved complete mortality of all life stages of the grape mealybug. A 3 d ULO treatment with <0.01 μL L−1 O2 at 2 °C resulted in 93.3% mortality of nymphs and adults. The 3 d ULO treatment in combination with 50% CO2 treatments, however, achieved complete control of grape mealybug nymphs and adults and caused 70.5% relative egg mortality. Complete egg mortality was achieved in a 10 d ULO + 50% CO2 treatment with <0.01 μL L−1 O2 at 2 °C. Both the 14 d CA treatment with 30 μL L−1 O2 and 50% CO2 and the 10 d CA treatment with <0.01 μL L−1 O2 and 50% CO2 were tested on table grapes and grape quality was evaluated after two weeks of post-treatment storage. The CA treatments did not have a significant negative impact on grape quality and were safe for table grapes. The study indicated that CA treatments have potential to be developed for postharvest control of grape mealybug on harvested table grapes.  相似文献   

19.
Most sweet cherries produced in the US Pacific Northwest and shipped to distant markets are often in storage and transit for over 3 weeks. The objectives of this research were to study the effects of sweet cherry storage O2 and CO2 concentrations on the respiratory physiology and the efficacy of modified atmosphere packaging (MAP) on extending shelf life. Oxygen depletion and CO2 formation by ‘Bing’ and ‘Sweetheart’ cherry fruit were measured. While respiration rate was inhibited linearly by reduced O2 concentration from 21% to 3–4% at 20 °C, it was affected very little from 21% to ∼10% but declined logarithmically from ∼10% to ∼1% at 0 °C. Estimated fermentation induction points determined by a specific increased respiratory quotient were less than 1% and 3–4% O2 for both cultivars at 0 and 20 °C, respectively. ‘Bing’ and ‘Sweetheart’ cherry fruits were packaged (∼8 kg/box) in 5 different commercial MAP box liners and a standard macro-perforated polyethylene box liner (as control) and stored at 0 °C for 6 weeks. MAP liners that equilibrated with atmospheres of 1.8–8.0% O2 + 7.3–10.3% CO2 reduced fruit respiration rate, maintained higher titratable acidity (TA) and flavor compared to control fruit after 4 and 6 weeks of cold storage. In contrast, MAP liners that equilibrated with atmospheres of 9.9–14.4% O2 + 5.7–12.9% CO2 had little effect on inhibiting respiration rate and TA loss and maintaining flavor during cold storage. All five MAP liners maintained higher fruit firmness (FF) compared to control fruit after 6 weeks of cold storage. In conclusion, storage atmospheres of 1.8–14.4% O2 + 5.7–12.9% CO2 generated by commercial MAP, maintained higher FF, but only the MAP with lower O2 permeability (i.e., equilibrated at 1.8–8.0% O2) maintained flavor of sweet cherries compared to the standard macro-perforated liners at 0 °C. MAP with appropriate gas permeability (i.e., equilibrated at 5–8% O2 at 0 °C) may be suitable for commercial application to maintain flavor without damaging the fruit through fermentation, even if temperature fluctuations, common in commercial storage and shipping, do occur.  相似文献   

20.
The carbon dioxide (CO2) concentration of the global atmosphere has increased during the last decades. This increase is expected to impact the diurnal variation in temperature as well as the occurrence of extreme temperatures. This potentially could affect crop production through changes in growth and development that will ultimately impact yield. The objective of this study was to evaluate the effect of CO2 and its interaction with temperature on growth and development of soybean (Glycine max (L.) Merr., cv. Stonewall). The experiment was conducted in controlled environment chambers at the Georgia Envirotron under three different temperatures and two CO2 regimes. The day/night air temperatures were maintained at 20/15, 25/20 and 30/25 °C, while the CO2 levels were maintained at 400 and 700 ppm, resulting in six different treatments. Plants were grown under a constant irradiance of 850 μmoles m−2 s−1 and a day length of 12 h; a non-limiting supply of water and mineral nutrients were provided. Five growth analyses were conducted at the critical development stages V4, R3, R5, R6 and R8. No differences in start of flowering were observed as a function of the CO2 level, except for the temperature regime 25/20 °C, where flowering for the elevated CO2 level occurred 2 days earlier than for the ambient CO2 level. For aboveground biomass, an increase in the CO2 level caused a more vigorous growth at lower temperatures. An increase in temperature also decreased seed weight, mainly due to a reduction in seed size. For all temperature combinations, final seed weight was higher for the elevated CO2 level. This study showed that controlled environment chambers can be excellent facilities for conducting a detailed growth analysis to study the impact on the interactive effect of changes in temperature and CO2 on soybean growth and final yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号