首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 15 毫秒
1.
Twenty‐three cytoplasmic male sterile BC1F1 barley lines were exposed to varying temperature treatments (TTs) to examine the effect of temperature on the stability of the expression of cytoplasmic male sterility (cms). The TTs used for this test were: (i) controlled low‐temperature treatment of 16°C (CL), (ii) controlled medium‐temperature treatment of 21–24/16–17°C day/night (CM) and (iii) ambient glasshouse‐temperature treatment of 24–41/16–17°C day/night (AG). The expression of cms was found to be variably influenced by temperature and by the genetic background of the cms recipient lines. Ten cms lines exhibited consistently complete male sterility over TTs, indicating that these lines are completely under cms genes control, while other lines showed partial revision to fertility across different TTs with profound influence of warm temperatures (CM and AG) in breaking down the cms in barley.  相似文献   

2.
灌浆结实期低温弱光复合胁迫对稻米品质的影响   总被引:3,自引:0,他引:3  
近年来,南方水稻抽穗灌浆期低温寡照天气发生频率明显增加,为探明其对稻米品质的影响,在水稻灌浆结实期不同时间段(1~7d、8~14d、15~21d、22~28d、29~35d)设置低温弱光复合胁迫(LW)、单一弱光(WN)、单一低温处理(LN)和常温常光(NN)4个处理,研究低温弱光复合胁迫对稻米加工品质、外观品质、蒸煮食味品质、RVA谱特征值等的影响。结果表明,不同处理方式间的垩白米率、垩白大小和垩白度均表现为LW>LN>WN>NN,且灌浆结实期各阶段的复合胁迫均较对照NN差异极显著或显著,除了2016年灌浆结实1~7d的垩白度外,灌浆结实21d内的复合胁迫与单一弱光、低温差异也显著或极显著,单一胁迫低温、弱光在灌浆结实21d内较对照NN差异极显著或显著,其中单一低温与弱光在部分处理下差异达显著水平,灌浆结实21d后,复合胁迫与单一弱光、低温部分差异显著,弱光与低温无显著差异。不同处理间的糙米率、精米率和整精米率均表现为NN>WN>LN>LW,其中,灌浆结实21d内,复合胁迫及单一低温、弱光较对照NN差异极显著或显著,灌浆结实21d后,部分时间段差异显著或极显著。低温弱光复合胁迫及单一胁迫对加工品质影响程度按大小依次为整精米率、精米率、糙米率,且灌浆结实21d内处理的影响大。对蒸煮食味品质,低温弱光复合胁迫极显著或显著降低了稻米的直链淀粉含量、胶稠度、外观、黏度和食味值,显著或极显著提高了蛋白质含量和硬度,单一胁迫低温、弱光表现与复合胁迫相同的影响,且灌浆结实21d内,除2016年的胶稠度,单一低温、弱光较对照NN差异显著或极显著,单一低温、弱光较复合胁迫差异也多显著或极显著。从水稻RVA谱特征值来看,低温弱光复合胁迫及单一胁迫造成稻米的峰值黏度、热浆黏度与崩解值下降,最高黏度、消减值与峰值时间上升,除灌浆结实29~35d的崩解值外,复合胁迫较对照NN差异达极显著或显著水平,部分指标的低温、弱光较对照NN差异也达显著水平。总之,灌浆结实期各时间段的低温弱光复合胁迫及单一胁迫造成稻米品质不同程度下降,且以灌浆结实21d内复合胁迫的影响较大。  相似文献   

3.
Stem borers and leaffolders are the main pests that cause severe damage in rice (Oryza sativa L.) production worldwide. We developed the first photoperiod- and thermo-sensitive male sterility (PTSMS) rice 208S with the cry1Ab/1Ac Bacillus thuringiensis (Bt) gene, through sexual crossing with Huahui 1 (elite line with the cry1Ab/1Ac gene). The novel 208S and its hybrids presented high and stable resistance to stem borers and leaffolders, and the content of Cry1Ab/1Ac protein in chlorophyllous tissues achieved the identical level as donor and showed little accumulation in non-chlorophyllous tissue. No dominant dosage effect in the Bt gene was observed in 208S and its derived hybrids. An analysis of fertility transition traits indicated that 208S was completely sterile under long day length/high temperature, but partially fertile under short day length/low temperature. With fine grain quality and favorable combining ability, 208S had no observed negative effects on fertility and agronomic traits from Bt (cry1Ab/1Ac). Additionally, 208S as a male sterile line showed no fertility decrease caused by Bt transgenic process, as it is the case in Huahui 1. Thus, 208S has great application value in two-line hybrid production for insect resistance, and can also be used as a bridge material in rice Bt transgenic breeding.  相似文献   

4.
5.
High temperature and drought stress are projected to reduce crop yields and threaten food security. While effects of heat and drought on crop growth and yield have been studied separately, little is known about the combined effect of these stressors. We studied detrimental effects of high temperature, drought stress and combined heat and drought stress around anthesis on yield and its components for three wheat cultivars originating from Germany and Iran. We found that effects of combined heat and drought on the studied physiological and yield traits were considerably stronger than those of the individual stress factors alone, but the magnitude of the effects varied for specific growth‐ and yield‐related traits. Single grain weight was reduced under drought stress by 13%–27% and under combined heat and drought stress by 43%–83% but not by heat stress alone. Heat stress significantly decreased grain number by 14%–28%, grain yield by 16%–25% and straw yield by 15%–25%. Cultivar responses were similar for heat but different for drought and combined heat and drought treatments. We conclude that heat stress as imposed in this study is less detrimental than the effects of those other studied stresses on growth and yield traits.  相似文献   

6.
During continuous casting process, the composition of molten steel often varies with different heats, which leads to the big fluctuation of billet surface temperature when the traditional parameter water control model is applied to control the process. Additionally, it is difficult to keep the temperature at the straightening point of the billet within a reasonable range. Given above consideration, a new control model for secondary cooling of continuous casting based on compensation temperature of the difference between liquidus and solidus has been presented. Meanwhile, the temperature field of the billet is simulated with both the parameter water control model and the new secondary cooling control model, and the results indicate that the new control model for secondary cooling of continuous casting could perform better when it is used to control the surface temperature at straightening points of billet, thereby ensuring the quality of the billet.  相似文献   

7.
Increase in drought conditions during the oilseed rape (OSR) reproductive phase is predicted to occur more often in the temperate zone, leading to significant yield losses. Crop management solutions such as film antitranspirant (AT) applied at key drought‐sensitive growth stages on both wheat and oilseed rape have recently been shown to alleviate drought‐induced yield losses. However, there is a lack of information regarding potential AT effectiveness to reduce drought damage on OSR plants at different soil moisture regimes. Therefore, two similar experiments were performed in a computer‐controlled glasshouse/phenotyping centre to investigate the physiological responses of OSR to well‐watered (WW), moderate water stress (MWS), water stress (WS) and severe water stress (SWS) conditions. Stress treatments were imposed at the initiation of flowering and treated with an AT or water onto the leaf canopy. Stress limited the gas‐exchange and increased leaf temperature, leaf‐to‐air temperature, bud‐to‐air temperature and ABA concentrations which increased with stress intensity in all tissues analysed. Yield components were significantly reduced by WS and SWS treatments when compared to the WW plants. Application of AT counteracted the detrimental effect of WS and SWS by decreasing water use over the first few days of stress application thus improving relative water content and leaf water‐use efficiency, decreasing ABA accumulation in leaf and all the reproductive organs analysed (buds, flowers and pods) and avoiding bud‐to‐air temperature increases. AT application sustained pod formation and seed production under WS but only seed production under SWS conditions. These data suggest that leaf‐canopy application of AT at key phenological stages under particular magnitudes of soil moisture deficit may sustain OSR reproduction and reduce yield losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号