首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sustainability of biomass sorghum (Sorghum bicolor L. Moench) in the Mediterranean environments is linked to the potential to increasing the crop productivity using irrigation water of different qualities: fresh and wastewater. An experiment was conducted in Southern Italy during 2012 and 2013 growing seasons to determine the biomass production and to estimate the yielded energy from sorghum irrigated with fresh water and municipal wastewaters. Two stages of wastewater reclamation process were compared: tertiary and secondary treatments.During the growing seasons, the crop growth (biomass and LAI) was surveyed on sorghum crops irrigated with three water qualities. In order to determine the effects of the irrigation water qualities on the final energy yielded, on the harvested biomass, structural components (cellulose, hemicellulose and lignin contents for deriving the ethanol production) and high heating value were analyzed. The data obtained during two crop seasons showed that, sorghum irrigated with municipal wastewater plant produced more dry biomass (23.3 vs 20.3 t ha−1), energy yield (383 vs 335 GJ ha−1), and ethanol (6824 vs 6092 L ha−1) than sorghum biomass with fresh water. As a consequence, the water efficiency for producing bioenergy increased when the waste waters were supplied in substitution of fresh waters. Different indices were calculated for comparing the effect of the water quality on the water use efficiency (WUE) of biomass sorghum crops.  相似文献   

2.
Kenaf is a warm-season species that recently has been proved to be a good source of biomass for cellulose pulp for the paper industry in Mediterranean countries, where the use of hemp is problematic for legal reasons. A two-year research program aiming at studying the effects of different water regimes and nitrogen fertilization levels, upon plant growth, leaf area index, biomass accumulation, water and radiation use efficiency, was carried out on kenaf under a typically semi-arid Mediterranean climate of South Italy. In cv. Tainung 2, four different water regimes (I0 = no irrigation, I25, I50 and I100 = 25, 50 and 100% ETc restoration, respectively) and three nitrogen levels (N0 = no nitrogen, N75 and N150 = 75 and 150 kg ha−1 of N, respectively) were studied. The amount of water applied strongly affected plant growth (in terms of LAI, plant height and biomass) and final total and stem dry yield, which significantly increased from I0 to I100. Nitrogen did not exert any beneficial effect upon dry yield. Radiation Use Efficiency (RUE), calculated in the second year only, was the highest (1.95 g DM MJ−1) in fully irrigated treatment (I100) and the lowest (0.86 g DM MJ−1) in the dry control.Water use efficiency (WUE) was rather similar among water regimes, whilst irrigation water use efficiency (IWUE) progressively increased with the decrease of total volume of water distributed to the crop by irrigation, from 3.47 to 12.45 kg m−3 in 2004 and from 4.27 to 7.72 kg m−3 in 2005. The results obtained from this research demonstrate that in semi-arid areas of South Italy, irrigation at a reduced rate (50% ETc restoration) may be advantageous, since it allowed a 42–45% irrigation water saving, when compared to the fully irrigation treatment, against a 23% (in 2004) and 36% (in 2005) yield reduction, and a still good efficiency (near that potential) in transforming the solar radiation in dry biomass was maintained (RUE = 1.76 g DM MJ−1, against 1.95 g DM MJ−1 in fully irrigated treatment).  相似文献   

3.
An agronomic research was conducted in Tuscany (Central Italy) to evaluate the effects of an advanced irrigation system on the water use efficiency (WUE) of a tomato crop and to investigate the ability of soil and vegetation spectroradiometry to detect and map WUE. Irrigation was applied following an innovative approach based on CropSense system. Soil water content was monitored at four soil depths (10, 20, 30 and 50 cm) by a probe. Rainfall during the crop cycle reached 162 mm and irrigation water applied with a drip system amounted to 207 mm, distributed with 16 irrigation events. Tomato yield varied from 7.10 to 14.4 kg m−2, with a WUE ranging from 19.1 to 38.9 kg m−3. The irrigation system allowed a high yield levels and a low depth of water applied, as compared to seasonal ET crop estimated with Hargraves’ formula and with the literature data on irrigated tomato. Measurements were carried out on geo-referenced points to gather information on crop (crop yield, eighteen Vegetation indices, leaf area index) and on soil (spectroradiometric and traditional analysis). Eight VIs, out of nineteen ones analyzed, showed a significant relationship with georeferenced yield data; PVI maps seemed able to return the best response, before harvesting, to improve the knowledge of the area of cultivation and irrigation system. CropSense irrigation system reduced seasonal irrigation volumes. Some vegetation indexes were significantly correlated to tomato yield and well identify, a posteriori, crop area with low WUE; spectroradiometry can be a valuable tool to improve irrigated tomato field management.  相似文献   

4.
Poor soil and drought stress are common in semiarid areas of China, but maize has a high demand for nitrogen (N) and water. Maize production using the technique of double ridges and furrows mulched with plastic film are being rapidly adopted due to significant increases in yield and water use efficiency (WUE) in these areas. This paper studied N use and water balance of maize crops under double ridges and furrows mulched with plastic-film systems in a semiarid environment over four growing seasons from 2007 to 2010. To improve precipitation storage in the non-growing season, the whole-year plastic-film mulching technique was used. There were six treatments which had 0, 70, 140, 280, 420 or 560 kg N ha−1 applied in every year for maize. In April 2011, spring wheat was planted in flat plots without fertilizer or mulch following four years of maize cultivation. After four years, all treatments not only maintained soil water balance in the 0–200 cm soil layer but soil water content also increased in the 0–160 cm soil layer compared to values before maize sowing in April 2007. However, under similar precipitation and only one season of spring wheat, soil water content in the 0–160 cm soil layer sharply decreased in all treatments compared to values before sowing in April 2011. Over the four years of maize cultivation, average yield in all treatments ranged from 4071 to 6676 kg ha−1 and WUE ranged from 18.2 to 28.2 kg ha−1 mm−1. In 2011, the yield of spring wheat in all treatments ranged from 763 to 1260 kg ha−1 and WUE from 3.5 to 6.5 kg ha−1 mm−1. The potential maximum grain yield for maize was 6784 kg ha−1 with 360 kg N ha−1 applied for four years, but considerable NO3N accumulated in the soil profile. A lesser application (110 kg N ha−1) to this tillage system yielded in 82% of the maximum, increased nitrogen use efficiency and mitigated the risk of nitrogen loss from the system. This study suggests that double ridge–furrow and whole-year plastic-film mulching could sustain high grain yields in maize with approximately 110 kg N ha−1 and maintain soil water balance when annual precipitation is >273 mm in this semiarid environment.  相似文献   

5.
The aim of the present work was to evaluate the effect of soil water availability and nitrogen fertilization on yield, water use efficiency and agronomic nitrogen use efficiency of giant reed (Arundo donax L.) over four-year field experiment.After the year of establishment, three levels for each factor were studied in the following three years: I0 (irrigation only during the year of establishment), I1 (50% ETm restitution) and I2 (100% ETm restitution); N0 (0 kg N ha−1), N1 (60 kg N ha−1) and N2 (120 kg N ha−1).Irrigation and nitrogen effects resulted significant for stem height and leaf area index (LAI) before senescence, while no differences were observed for stem density and LAI at harvest.Aboveground biomass dry matter (DM) yield increased following the year of establishment in all irrigation and N fertilization treatments. It was always the highest in I2N2 (18.3, 28.8 and 28.9 t DM ha−1 at second, third and fourth year growing season, respectively). The lowest values were observed in I0N0 (11.0, 13.4 and 12.9 t DM ha−1, respectively).Water use efficiency (WUE) was significantly higher in the most stressed irrigation treatment (I0), decreasing in the intermediate (I1) and further in the highest irrigation treatment (I2). N fertilization lead to greater values of WUE in all irrigation treatment.The effect of N fertilization on agronomic nitrogen use efficiency (NUE) was significant only at the first and second growing season.Giant reed was able to uptake water at 160–180 cm soil depth when irrigation was applied, while up to 140–160 cm under water stress condition.Giant reed appeared to be particularly suited to semi-arid Mediterranean environments, showing high yields even in absence of agro-input supply.  相似文献   

6.
In Mediterranean environments, flood irrigation of rice (Oryza sativa L.) crops is in danger of disappearance due to its unsustainable nature. The aim of the present study was to determine the short- and long-term effects of aerobic rice production, combined with conventional and no-tillage practices, on soils' physical, physicochemical, and biological properties, as well as on the rice yield components and productivity in the semi-arid Mediterranean conditions of SW Spain. A field experiment was conducted for three consecutive years (2011, 2012, and 2013), with four treatments: anaerobic with conventional tillage and flooding (CTF), aerobic with conventional tillage and sprinkler irrigation (CTS), aerobic with no-tillage and sprinkler irrigation (NTS), and long-term aerobic with no-tillage and sprinkler irrigation (NTS7). Significant soil properties improvements were achieved after the long-term implementation of no-tillage and sprinkler irrigation (NTS7). The short-term no-tillage and sprinkler irrigated treatment (NTS) gave lower yields than CTF in 2011 and 2012, but reached similar yields in the third year (NTS 8229 kg ha−1; CTF 8926 kg ha−1), with average savings of 75% of the total amount of water applied in CTF. The NTS7 data showed that high yields (reaching 9805 kg ha−1 in 2012) and water savings are sustainable in the long term. The highest water productivity was with NTS7 in 2011 (0.66 g L−1) and 2012 (1.46 g L−1), and with NTS in 2013 (1.05 g L−1). Thus, mid- and long-term implementation of sprinkler irrigation combined with no-tillage may be considered as a potentially productive and sustainable rice cropping system under Mediterranean conditions.  相似文献   

7.
Sustainable soil and crop management practices that reduce soil erosion and nitrogen (N) leaching, conserve soil organic matter, and optimize cotton and sorghum yields still remain a challenge. We examined the influence of three tillage practices (no-till, strip till and chisel till), four cover crops {legume [hairy vetch (Vicia villosa Roth)], nonlegume [rye (Secaele cereale L.)], vetch/rye biculture and winter weeds or no cover crop}, and three N fertilization rates (0, 60–65 and 120–130 kg N ha−1) on soil inorganic N content at the 0–30 cm depth and yields and N uptake of cotton (Gossypium hirsutum L.) and sorghum [Sorghum bicolor (L.) Moench]. A field experiment was conducted on Dothan sandy loam (fine-loamy, siliceous, thermic, Plinthic Paleudults) from 1999 to 2002 in Georgia, USA. Nitrogen supplied by cover crops was greater with vetch and vetch/rye biculture than with rye and weeds. Soil inorganic N at the 0–10 and 10–30 cm depths increased with increasing N rate and were greater with vetch than with rye and weeds in April 2000 and 2002. Inorganic N at 0–10 cm was also greater with vetch than with rye in no-till, greater with vetch/rye than with rye and weeds in strip till, and greater with vetch than with rye and weeds in chisel till. In 2000, cotton lint yield and N uptake were greater in no-till with rye or 60 kg N ha−1 than in other treatments, but biomass (stems + leaves) yield and N uptake were greater with vetch and vetch/rye than with rye or weeds, and greater with 60 and 120 than with 0 kg N ha−1. In 2001, sorghum grain yield, biomass yield, and N uptake were greater in strip till and chisel till than in no-till, and greater in vetch and vetch/rye with or without N than in rye and weeds with 0 or 65 kg N ha−1. In 2002, cotton lint yield and N uptake were greater in chisel till, rye and weeds with 0 or 60 kg N ha−1 than in other treatments, but biomass N uptake was greater in vetch/rye with 60 kg N ha−1 than in rye and weeds with 0 or 60 kg N ha−1. Increased N supplied by hairy vetch or 120–130 kg N ha−1 increased soil N availability, sorghum grain yield, cotton and sorghum biomass yields, and N uptake but decreased cotton lint yield and lint N uptake compared with rye, weeds or 0 kg N ha−1. Cotton and sorghum yields and N uptake can be optimized and potentials for soil erosion and N leaching can be reduced by using conservation tillage, such as no-till or strip till, with vetch/rye biculture cover crop and 60–65 kg N ha−1. The results can be applied in regions where cover crops can be grown in the winter to reduce soil erosion and N leaching and where tillage intensity and N fertilization rates can be minimized to reduce the costs of energy requirement for tillage and N fertilization while optimizing crop production.  相似文献   

8.
We used a collection of Australian wheats released between 1958 and 2007 to probe for time trends in evapotranspiration and nitrogen uptake, and the efficiencies in the use of water and nitrogen to produce grain yield. Yield increased linearly with year of cultivar release at a rate of 18 kg ha−1 y−1; this rate aligned with the relationship between rate of genetic gain and environmental yield from breeding programs worldwide. No time trend was apparent for seasonal evapotranspiration, hence the linear increase in yield per unit evapotranspiration with year of release which was fully accounted for by yield improvement. Under our experimental conditions, yield per unit transpiration of current varieties was ∼24 kg ha−1 mm−1, highlighting the need to update the 20 kg ha−1 mm−1 ratio commonly used in agronomic benchmarking.Yield per unit nitrogen uptake was largely unchanged as a consequence of increased nitrogen uptake that paralleled the increase in yield, and a secondary contribution of reduced grain protein concentration particularly under environmental conditions that favoured high protein. The nitrogen nutrition index, accounting for the effect of biomass on nitrogen uptake, increased linearly with year of cultivar release, hence supporting the conclusion that breeding for yield improved the nutrition status of wheat in association with an increased capacity to uptake nitrogen in equal-sized crops.  相似文献   

9.
Agricultural soil could be made to serve as a sink rather than a source of greenhouse gases by suitable soil management. This study was, therefore, conducted to assess the impact of tillage and fertilizer application on soil and plant carbon and nitrogen fractionation and intrinsic water use efficiency (iWUE). The experiment was a split–split-plot factorial design with three replications. The main plot consisted of two tillage treatments: zero tillage (ZT) and conventional tillage (CT). The sub-plot contained four NPK fertilizer treatments (0, 90, 120 and 150 kg N ha−1), while the sub–sub-plot comprised three poultry manure (PM) treatments (0, 10 and 20 Mg ha−1). Soil carbon and nitrogen sequestration were evaluated using stable isotope of carbon (δ13C) and nitrogen (δ15N). The δ13C in maize plant was used to obtain iWUE. It was observed that soil δ13C and δ15N were more depleted under ZT than CT and in plots treated with 20 Mg ha−1 PM (PM20) implying carbon and nitrogen sequestration under ZT and by PM20. Relative to the control, application of PM20 raised soil δ15N enrichment by 82% and 96% under CT and ZT, respectively. Higher iWUE of 25.7% was obtained under CT and was significantly higher than the iWUE values under ZT in the second year of the study while the iWUE was significantly lower with PM20 application than other fertilizer treatments. The significant δ13C depletion and hence lower iWUE with combination of NPK fertilizer and PM under CT than the control implied that soil disturbance under tilled plots was mediated by combined nutrient management thereby limiting soil C available for fractionation resulting in lower iWUE. This suggests that conservation tillage such as zero tillage and integrated application of organic and inorganic fertilizers are good strategies for reducing soil carbon and nitrogen emission.  相似文献   

10.
Robust associations between yield and crop growth rate in a species-specific critical developmental window have been demonstrated in many crops. In this study we focus on genotype-driven variation in crop growth rate and its association with chickpea yield under drought. We measured crop growth rate using Normalised Difference Vegetative Index (NDVI) in 20 diverse chickpea lines, after calibration of NDVI against biomass accounting for morphological differences between Kabuli and Desi types. Crops were grown in eight environments resulting from the combination of seasons, sowing dates and water supply, returning a yield range from 152 to 366 g m−2. For both sources of variation – environment and genotype – yield correlated with crop growth rate in the window 300 °Cd before flowering to 200 °Cd after flowering. In the range of crop growth rate from 0.07 to 0.91 g m−2 °Cd−1, the relationship was linear with zero intercept, as with other indeterminate grain legumes. Genotype-driven associations between yield and crop growth rate were stronger under water stress than under favourable conditions. Despite this general trend, lines were identified with high crop growth rate in both favourable and stress conditions. We demonstrate that calibrated NDVI is a rapid, inexpensive screening tool to capture a physiologically meaningful link between yield and crop growth rate in chickpea.  相似文献   

11.
Ridge and furrow rainfall concentration (RC) system has gradually been popularized to increase water availability to crops for improving and stabilizing agricultural production in the semiarid area of northwest China. The system is comprised of two elements: the plastic-covered ridge serves as rainfall harvesting zones and the furrow serves as planting zones. To make this system more perfect for alleviating drought stress in semiarid region, it is necessary to test optimum planting systems. A field experiment was conducted from 2007 to 2010 to evaluate the effects of RC planting on soil moisture, wheat yield and water use efficiency (WUE) under different ridge widths. Four planting systems were designed (RC40: 40 cm ridge with 60 cm furrow width, RC60: 60 cm ridge with 60 cm furrow width, RC80: 80 cm ridge with 60 cm furrow width, and CF: conventional flat without ridging). The results showed that RC planting can significantly increase soil moisture in 0–200 cm during the growing seasons of winter wheat. The rainfall-harvesting effect increased with ridge width increasing. Winter wheat yield and WUE was significantly higher under RC60 than under CF by 405.1 kg ha1 and 2.39 kg mm1 ha1, respectively, on average across the three experimental years (P < 0.05). The above findings indicate that RC60 can benefit winter wheat cropping for higher yield through improving soil moisture. It could be concluded that the RC planting system with 60 cm ridge and furrow width will offer a sound opportunity for sustainable farming in semiarid dryland agricultural area.  相似文献   

12.
Loss of ecological functions due to soil degradation impacts viability of crop production systems world-wide, particularly in vegetable cropping systems commonly located in the most productive areas and characterized by intensive soil cultivation. This paper reports soil degradation caused by intensive vegetable farming, and its reversibility after two to five years of drastic changes in soil management on 16 commercial vegetable farms in south Uruguay. Changes in soil management included addition of green manures and pastures in rotations of vegetable crops, use of animal manure, and erosion control support measures (terracing, reducing slope length, re-orientation of ridges). Soil degradation caused by vegetable farming was assessed by comparing soil properties in 69 vegetable fields with values at reference sites located close to the cropped fields. Effects of the changes in soil management in the 69 fields were assessed by comparing soil properties at the start and to those at the end of the project. Compared to the on-farm reference sites, the vegetable fields contained 36% less SOC, 19% less exchangeable potassium, water stable aggregates with an 18% smaller geometric mean diameter, and 11% lower plant-available soil water capacity. Phosphorus availability was 5 times higher under vegetable cropping compared to the on-farm reference. Phaeozems (Abruptic) revealed greater degradation (44% less soil organic carbon (SOC)) than Vertisols (24% less SOC) and Phaeozems (Pachic) (21% less SOC). After two to five years of improved soil management, SOC concentration in the upper 20 cm increased by on average 1.53 g kg−1 (12%) in the Phaeozems (Abruptic) and 1.42 g kg−1 (9%) in the Phaeozems (Pachic). SOC in Vertisols increased only by 0.87 g kg−1, most likely due to their greater initial SOC concentration. Topsoil carbon sequestration was on average 3.4 Mg ha−1 in the Phaeozems. Multiple linear regression showed the quantity of incorporated amendments, the initial amount of SOC and the clay content to explain 77% of the variability in yearly changes of SOC. Available water capacity increased significantly with SOC particularly due to more water retention at field capacity, resulting in an increase in available water capacity in the first 20 cm of soil of 8.4 mm for every 10 g kg−1 of SOC increase. Results are discussed in relation to perspectives of soil degradation reversal in the long term.  相似文献   

13.
Different preceding crops interact with almost all husbandry and have a major effect on crop yields. In order to quantify the yield response of winter wheat, a field trial with different preceding crop combinations (oilseed rape (OSR)–OSR–OSR–wheat–wheat–wheat), two sowing dates (mid/end of September, mid/end of October) and 16 mineral nitrogen (N) treatments (80–320 kg N ha−1) during 1993/1994–1998/1999, was carried out at Hohenschulen Experimental Station near Kiel in NW Germany. Single plant biomass, tiller numbers m−2, biomass m−2, grain yield and yield components at harvest were investigated. During the growing season, the incidence of root rot (Gaeumannomyces graminis) was observed. Additionally, a bioassay with Lemna minor was used to identify the presence of allelochemicals in the soil after different preceding crops.Averaged over all years and all other treatments, wheat following OSR achieved nearly 9.5 t ha−1, whereas the second wheat crop following wheat yielded about 0.9 t ha−1 and the third wheat crop following 2 years of wheat about 1.9 t ha−1 less compared with wheat after OSR. A delay of the sowing date only marginally decreased grain yield by 0.2 t ha−1. Nitrogen fertilization increased grain yield after all preceding crop combinations, but at different levels. Wheat grown after OSR reached its maximum yield of 9.7 t ha−1 with 210 kg N ha−1. The third wheat crop required a N amount of 270 kg N ha−1 to achieve its yield maximum of 8.0 t ha−1.Yield losses were mainly caused by a lower ear density and a reduced thousand grain weight. About 4 weeks after plant establishment, single wheat plants following OSR accumulated more biomass compared to plants grown after wheat. Plants from the third wheat crop were smallest. This range of the preceding crop combinations was similar at all sampling dates throughout the growing season.Root rot occurred only at a low level and was excluded to cause the yield losses. The Lemna bioassay suggested the presence of allelochemicals, which might have been one reason for the poor single plant development in autumn.An increased N fertilization compensated for the lower number of ears m−2 and partly reduced the yield losses due to the unfavorable preceding crop combination. However, it was not possible to completely compensate for the detrimental influences of an unfavorable preceding crop on the grain yield of the subsequent wheat crop.  相似文献   

14.
The efficient use by crops of nitrogen from manures is an agronomic and environmental issue, mainly in double-annual forage cropping systems linked to livestock production. A six-year trial was conducted for a biennial rotation of four forage crops: oat-sorghum (first year) and ryegrass-maize (second year) in a humid Mediterranean area. Ten fertilization treatments were introduced: a control (without N); two minerals equivalent to 250 kg N ha−1 year−1 applied at sowing or as sidedressing; dairy cattle manure at a rate of 170, 250 and 500 kg N ha−1 year−1 and four treatments where the two lowest manure rates were supplemented with 80 or 160 kg mineral N ha−1 year−1. They were distributed according to a randomized block design with three blocks. The highest N mineral soil content was found in the summer of the third rotation, in plots where no manure was applied. The yearly incorporation of manure reduced, in successive cropping seasons, the amount of additional mineral N needed as sidedressing to achieve the highest yields. Besides, in the last two years, there was no need for mineral N application for the manure rate of 250 kg N ha−1 year−1. This amount always covered the oat-sorghum N uptake. In the ryegrass-maize sequence uptakes were as high as 336 kg N ha−1 year−1. In the medium term, the intermediate manure rate (250 kg N ha−1 year−1) optimizes nutrient recycling within the farming system, and it should be considered in the analysis of thresholds for N of organic origin to be applied to systems with high N demand.  相似文献   

15.
Rapeseed yields in Argentina are low (averaging 1400 kg/ha nationwide) with a high inter-annual variability. One of the limiting factors for improving yields is the lack of information on the adaptability of the cultivars, especially in the main rapeseed-producing area, the southeastern Pampas. The objectives of this study were to (i) quantify and analyze the yield variability of winter and spring rapeseed hybrids introduced in Argentina, (ii) identify the main environmental factors that affect the yields of the spring and winter genotypes in the southeastern Pampas, and (iii) model and validate rapeseed yields from environmental variables in the pre- and post-flowering periods. Principal component analysis (PCA) and linear regression methods were used to analyze 129 data points from 16 comparative yield trials in eight sites of southeastern Pampas. The rainfed crops were sown between April and July and from 2007 to 2009. Pre- and post-flowering phases were recorded in each experiment; temperature, frost occurrences, rainfall and radiation were measured during each phase. Yield variability (600–3700 kg ha−1) was slightly lower in spring than in winter genotypes (CV 0.25 versus 0.38). Sixty percent of the winter genotype variability was explained by the first axis which was associated to the pre- and post-flowering durations, while 25% of the variability was explained by the second axis associated to yield. Almost 50% of the spring genotype variability was explained by the first axis associated to pre-flowering and total durations, while 27% of the variability was explained by the second axis in which post-flowering duration was associated to yield. Winter genotypes evidenced vernalization requirements that were either partially or not fulfilled, so, the longer the photoperiod, the longer the pre-flowering phase duration. In the critical period of 30 d post-flowering, yield was not associated to the photothermal quotient. In winter genotypes, yield was associated to a linear model which included rainfall during the crop cycle, radiation and pre-flowering temperatures (R2 = 0.50). The model was adequately validated with independent data (n = 116) from official trials. For spring genotypes, only the frost occurrences during the critical period were relevant (R2 = 0.26) and placing the flowering time after October decreased the risk of late frost damage. Water use efficiency (WUE) values ranged from 1.6 to 6.7 kg ha−1 per mm of rain without a clear trend between spring and winter genotypes for this trait. In conclusion, winter genotypes did not necessarily yield more than the spring materials. In addition, rainfall during the crop cycle and frost occurrences during flowering were the main limiting factors of the winter and spring genotype yields, respectively, in the southeastern Pampas.  相似文献   

16.
Data from a field experiment (1995–2000) conducted on a fertile sandy loess in the Hercynian dry region of central Germany were used to determine the energy efficiency of winter oilseed rape (Brassica napus L.) as affected by previous crop and nitrogen (N) fertilization. Depending on the previous crop, winter oilseed rate was cultivated in two different crop rotations: (1) winter barley (Hordeum vulgare L.)–winter oilseed rape–winter wheat (Triticum aestivum L.), and (2) pea (Pisum sativum L.)–winter oilseed rape–winter wheat. Fertilizer was applied to winter oilseed rape as either calcium ammonium nitrate (CAN) or cattle manure slurry. The N rates applied to winter oilseed rape corresponded to 0, 80, 160 and 240 kg N ha−1 a−1.Results revealed that different N management strategies influenced the energy balance of winter oilseed rape. Averaged across years, the input of energy to winter oilseed rape was highly variable ranging from 7.42 to 16.1 GJ ha−1. Lowest energy input occurred when unfertilized winter oilseed rape followed winter barley, while the highest value was obtained when winter oilseed rape received 240 kg N ha−1 organic fertilization and followed winter barley. The lowest energy output (174 GJ ha−1), energy from seed and straw of winter oilseed rape, was observed when winter oilseed rape receiving 80 kg N ha−1 as organic fertilizer followed winter barley. The energy output increased to 262 GJ ha−1 for winter oilseed rape receiving 240 kg N ha−1 as mineral fertilizer followed pea. The energy efficiency was determined using the parameters energy gain (net energy output), energy intensity (energy input per unit grain equivalent GE; term GE is used to express the contribution that crops make to the nutrition of monogastric beings), and output/input ratio. The most favourable N rate for maximizing energy gain (250 GJ ha−1) was 240 kg N ha−1, while that needed for minimum energy intensity (91.3 MJ GE−1) was 80 kg N ha−1 and for maximum output/input ratio (29.8) was 0 kg N ha−1.  相似文献   

17.
Increasing demand for livestock products is driving development of livestock systems worldwide. That requires improved and new forage production options. The Loess Plateau region in central-northern China is an important area for livestock production, as it supports11% and 19% of the country’s cattle and sheep, respectively (China statistical yearbook 2014). The rain-fed semi-arid environment of the Loess Plateau means that maximizing the water-use-efficiency (WUE) of forage production is vital to guarantee enough fodder supply the livestock demand. A three-year field experiment in north-west Loess Plateau compared forage production, water use and water-use-efficiency as well as crude protein (CP) content of forage maize, Sudan grass, foxtail millet and Japanese millet sown at three sowing dates according to the opening rain during 2011–2013. On average, forage maize produced the highest biomass (12.1 t ha−1) and had the highest WUE (43.4 kg DM ha−1 mm−1). This was followed by Sudan grass (7.8 t ha−1; 26.5 kg DM ha−1 mm−1), Japanese millet (6.7 t ha−1; 26.2 kg DM ha−1 mm−1) and foxtail millet (6.7 t ha−1; 24.6 kg DM ha−1 mm−1). Optimizing sowing date played an important role in maximizing forage production and WUE of all tested forages. Compared to the earliest sowing date, a delay of two weeks reduced forage production by 17% in maize, 35% in foxtail millet, and 16% in Japanese millet. A delay of four to six weeks reduced biomass yield by 58% in maize, 57% in foxtail millet, and 56% in Japanese millet. Late sowing also greatly reduced WUE of forage maize and foxtail millet by 33% and 42%, respectively, when compared to early sowing. The middle sowing date maximized forage production and WUE of Sudan grass in two of the three growing seasons, which was 20% and 38% higher than the early and late sowing, respectively. Late sowing in all forages reduced crop water use by 42–57 mm compared to the early sowing. Among four test crops, CP of Sudan grass (7.9%) and forage maize (7.7%) was higher than foxtail millet (6.8%) and Japanese millet (6.7%). Compared with early sowing, CPf in late sowing significantly increased in Sudan grass and decreased in Japanese millet, in contrast, no evident sowing date effect was found in forage maize and foxtail millet. This study showed that all four warm-season annual grasses had high forage production potential, forage maize was the most reliable and efficient option. Forage maize and the millets could easily be integrated into existing cropping systems and provide opportunities as both grain and forage-producing crop to provide added flexibility for farmers.  相似文献   

18.
Depending on soil and management, ploughing up grassland for use as arable land can lead to an increase in the release of mineralized nitrogen and a high risk of nitrogen leaching during winter. The amount of N leaching is also dependent on the N efficiency of following crops and the level of N fertilization.In a field experiment in northwest Germany permanent grassland was ploughed and used as arable land. The experiment was conducted over 2 years at three sites and investigated two main factors: (i) succeeding crops, either spring barley (and catch crop)–maize or silage maize–maize; and (ii) N-fertilization either nil or moderate (120 kg N ha−1 for barley or 160 kg for maize). Plant yields, the soil mineral nitrogen (SMN) content and the nitrate leaching losses over winter were determined. On average for the 2-year period, the SMN in autumn and the nitrate leaching losses during winter for the rotation barley–maize were 76 kg ha−1 SMN and 81 kg N ha−1 N leaching losses, and for maize–maize they amounted to 108 and 113 kg ha−1, respectively. The SMN and N leaching losses for the plots with no N fertilizer were 49 and 52 kg N ha−1 and for the plots fertilized at a moderate N level they were 135 and 142 kg N ha−1, respectively.We conclude that although the extent of nitrate leaching is influenced by the site conditions and management of the grassland prior to ploughing, the management after ploughing is the decisive factor. The farmer can significantly reduce nitrate leaching with his choice of succeeding crop and the amount of N fertilization.  相似文献   

19.
The expansion of biogas production from anaerobic digestion in the Po Valley (Northern Italy) has stimulated the cultivation of dedicated biomass crops, and maize in particular. A mid-term experiment was carried out from 2006 to 2010 on a silt loamy soil in Northern Italy to compare water use and energy efficiency of maize and sorghum cultivation under rain fed and well-watered treatments and at two rates of nitrogen fertilization. The present work hypothesis were: (i) biomass sorghum, for its efficient use of water and nitrogen, could be a valuable alternative to maize for biogas production; (ii) reduction of irrigation level and (iii) application of low nitrogen fertilizer rate increase the efficiency of bioenergy production. Water treatments, a rain fed control (I0) and two irrigation levels (I1 and I2; only one in 2006 and 2009), were compared in a split–split plot design with four replicates. Two fertilizer rates were also tested: low (N1, 60 kg ha−1 of nitrogen; 0 kg ha−1 of nitrogen in 2010) and high (N2, 120 kg ha−1 of nitrogen; 100 kg ha−1 of nitrogen in 2010). Across treatments, sorghum produced more aboveground biomass than maize, respectively 21.6 Mg ha−1 and 16.8 Mg ha−1 (p < 0.01). In both species, biomass yield was lower in I0 than in I1 and I2 (p < 0.01), while I1 and I2 did differ significantly. Nitrogen level never affected biomass yield. Water use efficiency was generally higher in sorghum (52 kg ha−1 mm−1) than in maize (38 kg ha−1 mm−1); the significant interaction between crop and irrigation revealed that water use efficiency did not differ across water levels in sorghum, whereas it significantly increased from I0 and I1 to I2 in maize (p < 0.01). The potential methane production was similar in maize and sorghum, while it was significantly lower in I0 (16505 MJ ha−1) than in I1 and I2 (21700 MJ ha−1). The only significant effect of nitrogen fertilization was found in the calculation of energy efficiency (ratio of energy output and input) that was higher in N1 than in N2 (p < 0.01). These results support the hypothesis that (i) sorghum should be cultivated rather than maize to increase energy efficiency, (ii) irrigation level should replace up to 36% of ETr and (iii) nitrogen fertilizer rate should be minimized to maximize the efficiency in biomass production for anaerobic digestion in the Po Valley.  相似文献   

20.
Regions in north-western Europe characterized by high density of livestock/biogas plants and extensive silage maize production are facing major environmental challenges due to excessive residual soil mineral nitrogen (N) in autumn and hence nitrate leaching. Winter catch crops (CC) have potential to accumulate residual N; however, the N uptake potential after maize harvest in autumn and spring remains unclear. Therefore, a two-year field trial (April 2012–April 2014) was conducted at three sites, to quantify the combined effects of four consecutive CC sowing dates (10 Sep; 20 Sep; 30 Sep and 15 Oct) and two CC species (rye, Secale cereale. L. and Italian ryegrass, Lolium multiflorum Lam.) on DM accumulation and N uptake of CC above- and belowground in autumn and spring, and to derive functional relationships. The results clearly showed that rye was more effective in accumulating biomass and nitrogen than Italian ryegrass. The better performance of rye was related to increased growth intensity of roots and shoot, a different allocation pattern and higher N uptake efficiency. An exponential function of temperature sum (Tsum) produced a reliable prediction of above- and belowground biomass and N. To achieve an agronomically relevant N uptake of 20 kg N ha−1, rye required 278 °Cd Tsum, which corresponds to a sowing date latest in the second decade of September. Under favourable growing conditions, a biomass accumulation of up to 5 Mg DM ha−1, corresponding to 83 kg N ha−1 above- and belowground, seems achievable under the given environmental conditions. In continuous maize grown under the environmental conditions of Northern Germany, however, catch crops will not reach a relevant N uptake on the long-term average.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号