首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequestration of C in arable soils has been considered as a potential mechanism to mitigate the elevated levels of atmospheric greenhouse gases. We evaluated impacts of conservation agriculture on change in total soil organic C (SOC) and relationship between C addition and storage in a sandy loam soil of the Indo-Gangetic Plains. Cotton (Gossypium hirsutum L.) and wheat (Triticum aestivum L.) crops were grown during the first three years (2008–2011) and in the last year, maize (Zea mays L.), wheat and green gram (Vigna radiate L.) were cultivated. Results indicate the plots under zero tillage with bed planting (ZT-B) and zero tillage with flat planting (ZT-F) had nearly 28 and 26% higher total SOC stock compared with conventional tillage and bed planting (CT-B) (∼5.5 Mg ha−1) in the 0–5 cm soil layer. Plots under ZT-B and ZT-F contained higher total SOC stocks in the 0–5 and 5–15 cm soil layers than CT-B plots. Although there were significant variations in total SOC stocks in the surface layers, SOC stocks were similar under all treatments in the 0–30 cm soil layer. Residue management had no impact on SOC stocks in all layers, despite plots under cotton/maize + wheat residue (C/M+ W RES) contained ∼13% higher total SOC concentration than no residue treated plots (N RES; ∼7.6 g kg−1) in the 0–5 cm layer. Hence, tillage and residue management interaction effects were not significant. Although CT-B and ZT-F had similar maize aboveground biomass yields, CT-F treated plots yielded 16% less maize biomass than CT-B plots. However, both wheat and green gram (2012) yields were not affected by tillage. Plots under C/M + W RES had ∼17, 13, 13 and 32% higher mean cotton, maize, wheat and green gram aboveground biomass yields than N RES plots, yielding ∼16% higher estimated root (and rhizodeposition) C input in the 0–30 cm soil layer than N RES plots. About 9.3% of the gross C input contributed towards the increase in SOC content under the residue treated plots. However, ∼7.6 and 10.2% of the gross C input contributed towards the increase in SOC content under CT and ZT, respectively. Thus, both ZT and partial or full residue retention is recommended for higher soil C retention and sustained crop productivity.  相似文献   

2.
Loss of ecological functions due to soil degradation impacts viability of crop production systems world-wide, particularly in vegetable cropping systems commonly located in the most productive areas and characterized by intensive soil cultivation. This paper reports soil degradation caused by intensive vegetable farming, and its reversibility after two to five years of drastic changes in soil management on 16 commercial vegetable farms in south Uruguay. Changes in soil management included addition of green manures and pastures in rotations of vegetable crops, use of animal manure, and erosion control support measures (terracing, reducing slope length, re-orientation of ridges). Soil degradation caused by vegetable farming was assessed by comparing soil properties in 69 vegetable fields with values at reference sites located close to the cropped fields. Effects of the changes in soil management in the 69 fields were assessed by comparing soil properties at the start and to those at the end of the project. Compared to the on-farm reference sites, the vegetable fields contained 36% less SOC, 19% less exchangeable potassium, water stable aggregates with an 18% smaller geometric mean diameter, and 11% lower plant-available soil water capacity. Phosphorus availability was 5 times higher under vegetable cropping compared to the on-farm reference. Phaeozems (Abruptic) revealed greater degradation (44% less soil organic carbon (SOC)) than Vertisols (24% less SOC) and Phaeozems (Pachic) (21% less SOC). After two to five years of improved soil management, SOC concentration in the upper 20 cm increased by on average 1.53 g kg−1 (12%) in the Phaeozems (Abruptic) and 1.42 g kg−1 (9%) in the Phaeozems (Pachic). SOC in Vertisols increased only by 0.87 g kg−1, most likely due to their greater initial SOC concentration. Topsoil carbon sequestration was on average 3.4 Mg ha−1 in the Phaeozems. Multiple linear regression showed the quantity of incorporated amendments, the initial amount of SOC and the clay content to explain 77% of the variability in yearly changes of SOC. Available water capacity increased significantly with SOC particularly due to more water retention at field capacity, resulting in an increase in available water capacity in the first 20 cm of soil of 8.4 mm for every 10 g kg−1 of SOC increase. Results are discussed in relation to perspectives of soil degradation reversal in the long term.  相似文献   

3.
Mouldboard ploughing is known to accelerate soil organic matter (SOM) mineralization rate in Mediterranean regions. Long-term reduced tillage intensity potentially diminishes soil organic carbon (SOC) and total nitrogen (STN) depletions. Here, we compared long-term no-tillage (NT) and conventional tillage (CT) impact on SOC and STN sequestration rates at different depths ranging from 0 to 30 cm. The long-term experiment started in 1986 on a Typic Xerofluvent soil in Central Italy using a randomized complete block design with four replications. Ten years after the experiment began, SOC and STN concentrations in the 0–30 cm soil layer were already higher under NT compared to CT. The shallow layer (0–10 cm) showed the highest SOC and STN concentration increments. However, no differences between tillage systems were observed in the deeper layers. After 28 years, continuous NT increased SOC and STN content in the 30 cm soil depth by 22% compared to initial values. In the same period, continuous CT decreased SOC and STN content by 3% and 5%, respectively. On average, the total SOC and STN gains under NT may be attributed to the shallow layer increments. In the 10–20 and 20–30 cm soil layers, SOC accumulation over time was negligible also under NT. In the whole profile (0–30 cm), the mean annual SOC variation was +0.40 Mg ha−1 yr−1 and −0.06 Mg ha−1 yr−1 under NT and CT, respectively. Under NT, SOC content increased rapidly in the first ten years (+0.75 Mg ha−1yr−1); later on, SOC increments were slower indicating the reaching of a new equilibrium. Data show that NT is a useful alternative management practice increasing carbon sequestration and soil health in Mediterranean conditions.  相似文献   

4.
Under irrigated Mediterranean conditions, no-tillage permanent bed planting (PB) is a promising agriculture system for improving soil protection and for soil carbon sequestration. However, soil compaction may increase with time up to levels that reduce crop yield. The aim of this study was to evaluate the mid-term effects of PB on soil compaction, root growth, crop yield and carbon sequestration compared with conventionally tilled bed planting (CB) and with a variant of PB that had partial subsoiling (DPB) in a Typic Xerofluvents soil (Soil Survey Staff, 2010) in southern Spain. Traffic was controlled during the whole study and beds, and furrows with (F + T) and without traffic (F  T), were spatially distinguished during measurements. Comparisons were made during a crop sequence of maize (Zea mays L.)—cotton (Gossypium hirsutum L.)—maize, corresponding to years 4–6 since trial establishment. After six years, soil compaction was higher in PB than in CB, particularly under the bed (44 and 27% higher in top 0.3- and 0.6-m soil layers, respectively). Around this time, maize root density at early grain filling was 17% lower in PB than in CB in the top 0.6-m layer. In DPB, the subsoiling operation was not effective in increasing root density. Nevertheless, root density appeared to maintain above-ground growth and yield in both PB and DPB compared to CB. Furthermore, at the end of the study, more soil organic carbon was stocked in PB than in CB and the difference increased significantly with a depth down to 0.5 m (5.7 Mg ha−1 increment for the top 0.5-m soil layer). Residues tended to accumulate on furrows, and this resulted in spatial and temporal differences in superficial soil organic carbon concentration (SOC) in the permanent planting systems. In PB, SOC in the top 0.05-m layer increased with time faster in furrows than on beds, and reached higher stable values (1.67 vs. 1.09% values, respectively). In CB, tillage homogenized the soil and reduced SOC in the top 0.05-m layer (average stable value of 0.96% on average for beds and furrows).  相似文献   

5.
Different tillage systems (conventional, minimum, raised bed and no tillage) and four mulch levels (control, polythene, straw and soil) were compared in maize (Zea mays) and wheat (Triticum aestivum) production for three years on an experimental field (sandy loam) located at Dry Land Research Sub Station, Dhiansar, Jammu. Each treatment was replicated four times in split plot design. The aim of the research was to determine the influence of tillage and mulch practices on economics, energy requirement, soil physical properties and performance of maize and wheat. Tillage methods significantly affected the soil physical properties as change in soil moisture contents and infiltration rate of soil was recorded. The soil moisture contents in minimum tillage (MT) were maximum (12.4%, 16.6%) in surface soil as compared to conventional tillage (CT) in maize and wheat crops, respectively. Comparing to the CT infiltration rate was (1.16times, 1.21times and 1.11times) higher in minimum tillage (MT), no tillage (NT) and raised bed (RB), respectively in kharif season. Similar results were also found in rabi season. The greatest maize yield of 1865 kg ha?1 was achieved with CT system while not significantly lower yield was achieved with MT system (1837 kg ha?1). However, wheat yield was recorded higher in MT as compare to the CT system. Comparing to the energy requirement of different operations, MT required 34.3% less, NT 31.1% less and RB 46.0% less than the CT system. MT system saved 2.5 times energy in tillage operation compared to the CT system. The economic analysis also revealed that the maximum benefits could be obtained from MT (EUR 202.4 ha?1) followed by RB (EUR 164.2 ha?1) and NT (EUR 158.3 ha?1) and lowest in CT (EUR 149.5 ha?1). Benefit-cost ratio was highest in MT (0.71) and lowest in CT (0.44). Results revealed that mulch significantly affected the soil physical properties and growth of maize. The maximum soil moisture content, infiltration rate and grain yield of maize and wheat recorded higher in mulching practices over no mulch treatment. Polythene mulch and straw mulch were almost equally valuable in maize and wheat sequence. Tillage (minimum) and mulch (polythene and straw) have pronounced effect on soil physical properties (improved infiltration rate and conserve soil water), energy requirement, economics and growth of maize and wheat.  相似文献   

6.
The experiment was conducted to evaluate the agronomic benefit of the application of organic fertilizers combined with different soil tillage on quantitative and qualitative components of winter wheat (Triticum durum Desf., cv. ‘Simeto’) and on chemical soil fertility parameters. The environmental impact, due to heavy metals introduced in soil-plant system, was further investigated. Soil tillage treatments consisted of conventional (CT) and minimum tillage (MT). Fertilization treatments were: mineral at 100 kg N ha−1 (Nmin); municipal solid waste compost at 100 kg N ha−1 (Ncomp); 50 kg N ha−1 of both compost and mineral fertilizers (Nmix); sewage sludge at 100 kg N ha−1 (Nss). These treatments were compared with an unfertilized control (N0). No significant difference was observed between the two soil tillage treatments for quantitative yield production, while among the fertilization treatments Nss did not show any significant difference compared to Nmin. At the end of the research, the fertility of the soil (oxidable carbon, total nitrogen, available phosphorus) was on average higher in Ncomp and Nss treatments compared to the N0 and Nmin ones. The overall distribution of heavy metals in soil-plant system respect to the different fertilizer treatments has not allowed to grouped their effects with Principal Components Analysis. This result showed that the amount of potential pollutants applied by organic amendments did not modified the dynamic equilibrium of the soil–plant system. The MT, as well as the fertilization with the application of sewage sludge (Nss), allowed to reach productive performance similar to conventional management (CT with Nmin). Here we demonstrate that, in the short term period, sustainable agronomical techniques can replace the conventional one with environmental benefit.  相似文献   

7.
Compared to the short-term experiment, we have a lack of understanding about the long-term effect of fertilizers on rice yield and paddy soil properties under the conditions of frequent soil disturbance and intensive cropping cultivation. Thus, a 32-year (1984–2015) field experiment was established on a red clay soil (typical Ultisols) near Nanchang, Jiangxi province, China, to assess the effects of inorganic and organic fertilizers on rice yields, soil chemical properties and bacterial communities in early rice-late rice-Astragalus sinicus L. rotation system. Manure applications in combination with different proportions of chemical fertilizer in terms of nitrogen, particularly 70 M + 30CF (70% manure in combination with 30% chemical fertilizer), sustained high rice yields and increased soil OM, 1 N NaOH-hydrolyzed N, Olsen phosphorus, microbial biomass, and bacterial diversity but alleviated soil acidification. The soil receiving MCF had a great number of bacterial operational taxonomic units and high richness indexes. Compositions and abundances of predominant bacteria in soils varied among the fertilizer treatments and all of bacterial communities were dominated by three major phyla (Chloroflexi, Proteobacteria, and Acidobacteria), which were more than 70% of the total sequences in each of the soils examined. Among the top 15 predominant bacteria, seven were commonly found in all studied soils and only 1–2 phylotypes were unique in each soil. A large number of facultative anaerobic and aerobic bacteria, including Thiobacillus thioparus, Bradyrhizobium, and Nitrospira, were present in all studied soil. Therefore, bacterial community compositions can reflect soil processes such as acidification, greenhouse gas emission and nitrogen recycling in response to tillage and fertilizer managements.  相似文献   

8.
No-till (NT) farming is popular globally, however, the effects on crop yields remain debatable. A meta-analysis was conducted on crop yield responses to NT in China based on 1006 comparisons from 164 studies. Results showed that a decrease of 2.1 ± 1.8% on crop yield was observed under NT with residue removed (NT0) compared with that under plow tillage with residue removed (PT0), but the decreases can be diminished to 1.9 ± 1.0% when residue retention was combined with both the two tillage practices. On the contrary, NT with residue retention (NTR) may significantly increase crop yields by 4.6 ± 1.3% compared with that under PT0 (P < 0.05). Along with improvements in crop yields, increases in soil organic carbon (SOC) by 10.2 ± 7.2%, available nitrogen (N) by 9.4 ± 5.4%, available potassium by 10.5 ± 8.8%, and water storage by ∼9.3 ± 2.4% was observed under NTR compared with PT0, indicating that improvements in soil quality could benefit crop productivity under NTR. Categorically, results on meta-analysis and regression indicated large variations in crop yields under NTR because of differences in crop species, temperature and precipitation, antecedent SOC level, N fertilizer input, duration of adoption, and with or without residue retention. For example, crop yields significantly increased with increase in duration (P < 0.0001) under NTR, by 21.3% after 10 years of continuous NTR compared with PT0. Adoption of NTR under appropriate site-specific conditions can advance China’s food security, improve yield stability and alleviate soil-related constraints.  相似文献   

9.
In agricultural soils, the formation of soil organic matter largely depends on the carbon (C) input by crop residues and rhizodeposition, which is thus of decisive importance for the management and prediction of soil organic carbon (SOC) stocks in cropland and grassland. However, there is a remarkable lack of reliable, crop-specific C input data. We used a plant C allocation approach to estimate the C input of major crops and grassland into agricultural soils of Bavaria in southeast Germany. Historic and recent plant C allocation coefficients were estimated and C inputs were calculated for a 60-year period (1951–2010) using long-term agricultural statistics. The spatial distribution of C inputs within Bavaria was derived from county-specific statistical data. The results revealed increases of the C input by 107–139% for cereals, 173–188% for root, forage and leguminous crops and 34% for grassland in the last 60 years. This increase was related to linear yield increases until 1995 despite significant changes of plant C allocation. However, from 1995 onwards, crop yields and related C inputs stagnated, which allowed a robust estimation of recent crop-specific C input values. A total C input of 3.8–6.7 t ha−1 yr−1 was estimated for cereals, 5.2–6.3 t ha−1 yr−1 for root, forage and leguminous crops and 2.4 t ha−1 yr−1 for grassland. These amounts were partly higher compared to estimations in the literature. A generally high spatial variability of C inputs was detected within Bavaria with differences of up to 40% between adjacent counties. The results of this study could be used to optimize the C input of crop rotations and thus promote the formation of soil organic matter and C sequestration in agricultural soils on the basis of a soil carbon model. Moreover, recent estimations of C inputs could be used to model the future development of agricultural SOC stocks. A further stagnation of crop yields and the related C input under an ongoing temperature increase bears the risk of a future decrease of SOC stocks in cropland soils of Bavaria.  相似文献   

10.
Biomass productivity, nitrogen recovery fraction and nitrogen utilization efficiency (NUE) of kenaf (Hibiscus cannabinus L.) cultivar Tainung 2 were tested, under three Lens culinaries treatments (incorporated, harvested before the sowing of the energy crop and mono-cropping) and four nitrogen dressings (0, 50, 100 and 150 kg ha−1), in two field experiments carried out on a fertile, clayey to loamy soil, and on a sandy soil of moderate fertility, in central Greece, over the period 2007–2009. The obtained results showed a positive response in L. culinaries cover cropping on kenaf total yield, on both experimental sites. Total dry biomass fluctuated from 16.07 to 21.46 t ha−1 for incorporated plots and from 13.63 to 16.55 t ha−1 for control treatments (relied only on applications of N-fertilization) for sandy soil, and from 14.98 to 19.28 t ha−1 in case of legume incorporation and from 12.34 to 16.69 t ha−1 for control plots, for clayey soil, respectively. The evaluated NUE was 76 kg kg−1, for sandy soil, and 72 kg kg−1, for clay soil. The recovery fraction escalated from 41% in control plots to 70% in plots with previous L. culinaries cultivation for sandy soil, while for clayey soil an increase of 20% was recorded, indicating a prominent effect of legume cover-cropping management.  相似文献   

11.
In a pear orchard, when leaf senescence occurs, nitrogen (N) is added to the soil by the fallen leaves and can be re-used by the tree after undergoing decomposition and mineralization processes. Studies on leaf decomposition and N mineralization in orchards are scarce but essential to understand the N balance in the tree–soil ecosystem in a sustainable or precision agriculture. This study aimed to quantify the contribution of pear tree senescent leaves to N cycling in the orchard and its re-cycling by the crop. ‘Rocha’ pear unlabelled leaves were incubated in situ using the litter-bag technique and 15N-enriched leaves were placed at the soil surface in undisturbed confined cores.One- to six-year-old pear trees returned to the soil between 1 kg N ha?1 year?1 and 6 kg N ha?1 year?1 from senescent leaves that decomposed at rates varying from 0.0025 day?1 (d?1) to 0.0047 d?1 (estimated by both techniques, respectively). In the litter-bags, after 506–641 days, only 18–35% of initial DW was recovered in the soil, whereas in the soil cores the weight loss was higher, resulting in only 30–6% of initial DW after 398–406 d. After this period, between 36% and 110% of the initial N of the senescent leaves was recovered as organic 15N in the surface soil layer (0–7.5 cm), depending on climatic conditions, and being more prone to be absorbed by weeds.  相似文献   

12.
In a field experiment, peas (Pisum sativum L.) and oats (Avena sativa L.) were grown as sole crops and intercrops, fertilized with horse manure and yard-waste compost derived from shrub and garden cuttings at 10 t C ha−1 each. The objectives were to compare the effects of these organic fertilizer and cropping system in organic farming on (a) yield of peas and oats, grown as the sole crop or intercropped, as well as N2 fixation and photosynthetic rates, (b) the yield of wheat as a succeeding crop, (c) microbial biomass indices in soil and roots, and (d) microbial activity estimated by the CO2 evolution rate in the field and the amount of organic fertilizers, recovered as particulate organic matter (POM). In general, organic fertilizer application improved nodule dry weight (DW), photosynthetic rates, N2 fixation, and N accumulation of peas as well as N concentration in oat grain. Averaged across fertilizer treatments, pea/oat intercropping significantly decreased nodule DW, N2 fixation and photosynthetic rate of peas by 14, 17, and 12%, respectively, and significantly increased the photosynthetic rate of oats by 20%. However, the land equivalent ratio (LER) of intercropped peas and oats exceeded 1.0, indicating a yield advantage over sole cropping. Soil microbial biomass was positively correlated with pea dry matter yields both in sole and intercropped systems. Organic fertilizers increased the contents of microbial biomass C, N, P, and fungal ergosterol in soil and CO2 production, whereas the cropping system had no effects on these microbial indices. According to the organic fertilizer recovered as POM, 70% (manure) and 64% (compost) of added C were decomposed, but only 39% (manure) and 13% (compost) could be attributed to CO2–C during a 101-day period. This indicated that horse manure was more readily available to soil microorganisms than compost, leading to increased grain yields of the succeeding winter wheat.  相似文献   

13.
A study was conducted to evaluate a non-destructive method able to predict Magness–Taylor (MT) penetrometric firmness of blood oranges, potentially applicable for on-line selection. The method consisted of multivariate modelling of non-destructive penetrometric measurements performed on intact oranges with a 11.3 mm diameter probe by digital dynamometric equipment. The tests were carried out on 366 blood oranges (Citrus sinensis (L.) Osbeck cv. Tarocco); 60 were used as a control group to verify the non-destructive nature of the tests. Four test factors were used on the fruit: two different levels of non-destructive deformation (1 and 3 mm), at two different deformation speeds (5 and 30 mm s?1). In order to obtain the reference parameter (MT firmness), a destructive penetrometric test followed each non-destructive deformation on the same fruit (deformation of 20 mm at 1 mm s?1). The force–deformation curves of the non-destructive tests were elaborated to calculate different texture parameters (max force, elasticity, work). These parameters with raw curve data (force values for constant deformation steps) were used, after autoscaling pre-processing, as X-block datasets in supervised multivariate modelling (partial least squares) to predict MT firmness values. Among the test factors used, the 30 mm s?1 speed and 3 mm deformation provided the best overall prediction of MT firmness. This comprised an r value of 0.76 and standard error of prevision (SEP) of 2.99 N for a MT firmness mean value of 35.65 N (8.4%). The time needed to apply the selected deformation may lead to a sorting speed of about 10 fruit per second, representing an acceptable value for commercial application.  相似文献   

14.
Phosphorus (P) is an essential nutrient and a limited resource, yet excess P is applied to agricultural land and can cause environmental problems in areas with intensive animal farming. In this study, the fertilizing effects of P in several animal manure-based products (including thermal treatment) were tested after application to two agricultural soil types (Jyndevad soil: clay 5.1%, silt 4.1%, sand 88.9%, organic matter 2.1%, total C 1.2% soil dry matter (DM), total P 266 mg kg−1 soil DM, pH 6.3; Rønhave soil: clay 15.4%, silt 32.6%, sand 49.6%, organic matter 2.3%, Total C 1.3% soil DM, total P 488 mg kg−1 soil DM, pH 6.6). The first-year effect of P application was tested in a spring barley crop (Hordeum vulgare L.) and residual P effects were tested in a perennial ryegrass (Lolium perenne L.) crop the following year. Untreated ash from thermally gasified animal manure biogas residue (GA) and a corresponding neutralized acid extract of the ash (ExL) in liquid form were the products in focus. Other products in use were: pelletized pig manure biogas residue (PEL), incinerated PEL (IA), anaerobically digested pig slurry (DS), dried ExL, dried fraction of separated pig slurry (SS), thermally gasified SS (GAs), thermally gasified poultry manure (GAp), crushed triple super phosphate (TSP) and disodium phosphate (DSP) was used as reference P fertilizer. For application of 20 kg P ha−1 mineral P fertilizer replacement value (RV) in the second year in the sandy soil was 76% and 99% for GA, 79% and 123% for IA, 95% and 155% for PEL, 94% and 73% for ExL, 55% and 15% for ExD, 64% and 82% for SS, 104% and 109% for DS, 60% and 95% for GAp, 73% and 111% for GAs, where the first value is based on barley DM yield and the second on barley total P uptake. Tripling the GA application rate to 60 kg P ha−1 in both soils had no significant effect on barley DM yield and P uptake. The overall efficiency for liquid fertilizers was much higher than for solid ones and relative effectiveness (RE) of ExL was comparable to RE of DSP. Despite the low P level in soils, the ryegrass crop grew very well on both soils in the second year, and there was no detectable residual effect of the treatments on grass yield and P uptake. In conclusion, untreated ash and solid manures used in this study were not suitable as starter P fertilizer, but could be used to maintain the level of available P in soil, as there were indications that ash/manure P contributed significantly to plant P uptake during the growing season of barley.  相似文献   

15.
A regional analysis of the effects of soil and climate factors on wheat yield was performed in the Argentine Pampas in order to obtain models suitable for yield estimation and regional grain production prediction. Soil data from soil surveys and climate data from meteorological records were employed. Grain production information from statistics at county level was integrated at a geomorphological level. The Pampas was divided into 10 geographical units and data from 10 growing season were used (1995–2004). Surface regression and artificial neural networks (ANN) methodologies were tested for analyzing the data. Wheat yield was correlated to soil available water holding capacity (SAWHC) in the upper 100 cm of the profiles (r2 = 0.39) and soil organic carbon (SOC) content (r2 = 0.26). The climate factor with stronger effect on yield was the rainfall/crop potential evapotranspiration ratio (R/CPET) during the fallow and vegetative crop growing cycle periods summed (r2 = 0.31). The phototermal quotient (PQ) during the pre-anthesis period had also a significant effect on yield (r2 = 0.05). A surface regression response model was developed that account for 64% of spatial and interannual yield variance, but this model could not perform a better yield prediction than the blind guess technique. An ANN was fitted to the data that accounted for 76% of yield variability. Comparing predicted versus observed yield a lower RMSE (P = 0.05) was obtained using the ANN than using the regression or the blind guess methods. Regional production estimations performed by the ANN showed a good agreement with observed data with a RMSE equivalent to 7% of the whole surveyed area production. As variables used for the ANN development may be available around 40–60 days before wheat harvest, the methodology may be used for wheat production forecasting in the Pampas.  相似文献   

16.
One experiment lasting for two years was carried out at Pegões (central Portugal) to estimate the impact of mature white lupine residue (Lupinus albus L.) on yield of fodder oat (Avena sativa L. cv. Sta. Eulalia) as the next crop in rotation, comparing with the continuous cultivation of cereal, under two tillage practices (conventional tillage and no-till) and fertilized with five mineral nitrogen (N) rates, with three replicates. Oat as a first crop in the rotation provided more N to the agro-ecosystem (63 kg N ha−1) than did lupine (30–59 kg N ha−1). This was at a cost of 100 kg of mineral N ha−1, whereas lupine was grown without addition of N. A positive response of oat as a second crop was obtained per kg of lupine-N added to the system when compared with the continuous oat–oat. The cereal also responded positively to mineral N in the legume amended soil in contrast with the oat–oat sequence where no response was observed, partly due to the fast mineralization rate of lupine residue and a greater soil N immobilization in the continuous oat system. Each kg N ha−1 added to the soil through the application of 73 kg DM ha−1 mature lupine residue (above- and belowground material) increased by 72 kg DM ha−1 the oat biomass produced as the second crop in rotation when 150 kg mineral N ha−1 were split in the season, independent of tillage practice. Mature legume residue conserved in the no-tilled soil depressed the yield of succeeding cereal but less than the continuous oat–oat for both tillage practices, where the application of mineral N did not improve the crop response.  相似文献   

17.
Fungal decay is a major cause of postharvest losses in strawberries. The traditional approach for controlling fungal decay is the use of fungicides. However, the use of fungicides has been questioned as a sustainable and safe method, and is also prohibited in many countries. One potential physical method for reducing fungal decay is application of a short-term hypobaric treatment prior to storage. In this study efficacy of postharvest hypobaric treatments to control natural rot development in strawberries was evaluated. Strawberries were treated with hypobaric pressures (25 kPaa, 50 kPaa and 75 kPaa) for 4 h at 20 °C and subsequently stored at 20 °C or 5 °C. A 50 kPaa treatment consistently delayed rot development in samples stored at either temperature confirming that the technique has potential as a non-chemical treatment. Moreover 50 kPaa treatments did not affect weight loss and firmness at either 20 °C or 5 °C. An initial increase in respiration rate was observed in 50 kPaa treated samples potentially indicating mild stress due to hypobaric treatment. An in vitro fungal study found that 50 kPaa treatment for 4 h did not affect the rate of radial growth of colonies of Botrytis cinerea and Rhizopus stolonifer, providing further evidence that the potential mechanism of hypobaric treatment is induction of the defence system within the fruit rather than a direct effect on fungal viability. Further molecular and biochemical research is required to evaluate the possible stimulation of resistance in fruit through short-term hypobaric treatments.  相似文献   

18.
Agricultural soil could be made to serve as a sink rather than a source of greenhouse gases by suitable soil management. This study was, therefore, conducted to assess the impact of tillage and fertilizer application on soil and plant carbon and nitrogen fractionation and intrinsic water use efficiency (iWUE). The experiment was a split–split-plot factorial design with three replications. The main plot consisted of two tillage treatments: zero tillage (ZT) and conventional tillage (CT). The sub-plot contained four NPK fertilizer treatments (0, 90, 120 and 150 kg N ha−1), while the sub–sub-plot comprised three poultry manure (PM) treatments (0, 10 and 20 Mg ha−1). Soil carbon and nitrogen sequestration were evaluated using stable isotope of carbon (δ13C) and nitrogen (δ15N). The δ13C in maize plant was used to obtain iWUE. It was observed that soil δ13C and δ15N were more depleted under ZT than CT and in plots treated with 20 Mg ha−1 PM (PM20) implying carbon and nitrogen sequestration under ZT and by PM20. Relative to the control, application of PM20 raised soil δ15N enrichment by 82% and 96% under CT and ZT, respectively. Higher iWUE of 25.7% was obtained under CT and was significantly higher than the iWUE values under ZT in the second year of the study while the iWUE was significantly lower with PM20 application than other fertilizer treatments. The significant δ13C depletion and hence lower iWUE with combination of NPK fertilizer and PM under CT than the control implied that soil disturbance under tilled plots was mediated by combined nutrient management thereby limiting soil C available for fractionation resulting in lower iWUE. This suggests that conservation tillage such as zero tillage and integrated application of organic and inorganic fertilizers are good strategies for reducing soil carbon and nitrogen emission.  相似文献   

19.
Soil management systems may negatively affect the quality of the soil. Policymakers and farmers need scientific information to make appropriate land management decisions. Conventional (CT) and zero tillage (ZT) are two common soil management systems. Comparative field studies under controlled conditions are required to determine the impact of these systems on soil quality and yields. The research presented studied plant and soil physical and chemical characteristics as affected by different agricultural management practices, i.e. ZT and CT, cropped with continuous wheat or maize in monoculture (M) or in a yearly rotation (R) of these two crops, either with residue retention (+r) or without residues retention (?r), in an experimental field in the Transvolcanic Belt of Mexico after 14 years. The dominant factors defining soil quality were organic C, total N, moisture, aggregate stability, mechanical resistance, pH and EC. The principal component combining the variables organic C, total N, aggregate stability and moisture content showed the highest correlations with final yield (R = 0.85 for wheat and 0.87 for maize).After 14 years of continuous practice, ZTM + r and ZTR + r had the best soil quality and produced the highest wheat and maize yields of average 2001–2004 (6683 and 7672 kg ha?1 and 5085 and 5667 kg ha?1, respectively). Removing the residues, i.e. treatments ZTM ? r with maize (average 2001–2004: 1388 kg ha?1) and ZTR ? r and CTR ? r with wheat (average 2001–2004: 3949 and 5121 kg ha?1), gave the lowest yields and less favourable soil physical and chemical characteristics compared to the other practices. It was found that zero tillage with residue retention is a feasible management technology for farmers producing maize and wheat in the agro-ecological zone studied, resulting in a better soil quality and higher yields than with the conventional farmer practice (maize monoculture, conventional tillage and residue removal).  相似文献   

20.
The effectiveness of short hyperbaric treatments to control postharvest decay of sweet cherries (Prunus avium L., cv Ferrovia) and table grapes (Vitis vinifera L., cv Italia) was investigated. Sweet cherries and table grape berries were exposed to the pressure of 1140 mmHg (1.5 atm) for 4 and 24 h, respectively, in 64 L gas-proof tanks. Fruit kept at ambient pressure (near 760 mmHg, 1.0 atm) served as a control. Postharvest rots of sweet cherries arose from naturally occurring infections, whereas table grape berries were artificially wounded, exposed to the hyperbaric treatment, then the wounds inoculated with 20 μL of a Botrytis cinerea conidial suspension (5 × 104 spores mL−1). Sweet cherries were stored at 0 ± 1 °C for 14 d, followed by 7 d at 20 ± 1 °C. Table grapes berries were kept at 20 ± 1 °C for 3 d. On sweet cherries, hyperbaric treatment reduced the incidence of brown rot, grey mould, and blue mould, with respect to the control. Similarly, on treated table grapes a significant reduction of lesion diameter and percentage of B. cinerea infected berries was observed. Induced resistance was likely to be responsible for the observed decay reduction. To our knowledge, this is the first report on the effectiveness of short hyperbaric treatments in controlling postharvest decay of sweet cherries and table grapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号