首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Labour and water scarcity in north west India are driving researchers and farmers to find alternative management strategies that will increase water productivity and reduce labour requirement while maintaining or increasing land productivity. A field experiment was done in Punjab, India, in 2008 and 2009 to compare water balance components and water productivity of dry seeded rice (DSR) and puddled transplanted rice (PTR). There were four irrigation schedules based on soil water tension (SWT) ranging from saturation (daily irrigation) to alternate wetting drying (AWD) with irrigation thresholds of 20, 40 and 70 kPa at 18–20 cm soil depth. There were large and significant declines in irrigation water input with AWD compared to daily irrigation in both establishment methods. The irrigation water savings were mainly due to reduced deep drainage, seepage and runoff, and to reduced ET in DSR. Within each irrigation treatment, deep drainage was much higher in DSR than in PTR, and more so in the second year (i.e. after 2 years without puddling). The irrigation input to daily irrigated DSR was similar to or higher than to daily irrigated PTR. However, within each AWD treatment, the irrigation input to DSR was less than to PTR, due to reduced seepage and runoff, mainly because all PTR treatments were continuously flooded for 2 weeks after transplanting. There was 30–50% irrigation water saving in DSR-20 kPa compared with PTR-20 kPa due to reduced seepage and runoff, which more than compensated for the increased deep drainage in DSR. Yields of PTR and DSR with daily irrigation and a 20 kPa irrigation threshold were similar each year. Thus irrigation and input water productivities (WPI and WPI+R) were highest with the 20 kPa irrigation threshold, and WPI of DSR-20 kPa was 30–50% higher than of PTR-20 kPa. There was a consistent trend for declining ET with decreasing frequency of irrigation, but there was no effect of establishment method on ET apart from higher ET in DSR than PTR with daily irrigation. Water productivity with respect to ET (WPET) was highest with a 20 kPa irrigation threshold, with similar values for DSR and PTR. An irrigation threshold of 20 kPa was the optimum in terms of maximising grain yield, WPI and WPI+R for both PTR and DSR. Dry seeded rice with the 20 kPa threshold outperformed PTR-20 kPa in terms of WPI through maintaining yield while reducing irrigation input by 30–50%.  相似文献   

2.
Farmers have adopted alternate wetting and drying (AWD) irrigation to cope with water scarcity in rice production. This practice shifts rice land away from being continuously anaerobic to being partly aerobic, thus affecting nutrient availability to the rice plant, and requiring some adjustment in nutrient management. The use of a chlorophyll meter (also known as a SPAD meter) has been proven effective in increasing nitrogen-use efficiency (NUE) in continuously flooded (CF) rice, but its use has not been investigated under AWD irrigation. This study aimed at testing the hypotheses that (i) SPAD-based N management can be applied to AWD in the same way it is used in CF rice, and (ii) combining chlorophyll meter-based nitrogen management and AWD can enhance NUE, save water, and maintain high rice yield. Experiments were conducted in a split-plot design with four replications in the 2004 and 2005 dry seasons (DS) at IRRI. The main plots were three water treatments: CF, AWD that involved irrigation application when the soil dried to soil water potential at 15-cm depth of −20 kPa (AWD−20) and −80 kPa (AWD−80) in 2004, and AWD−10 and AWD−50 were used in 2005. The subplots were five N management treatments: zero N (N0), 180 kg N ha−1 in four splits (N180), and three SPAD-based N-management treatments in which N was applied when the SPAD reading of the youngest fully extended leaf was less than or equaled 35 (NSPAD35), 38 (NSPAD38), and 41 (NSPAD41). In 2005, NSPAD32 was tested instead of NSPAD41. A good correlation between leaf N content per unit leaf area and the SPAD reading was observed for all water treatments, suggesting that the SPAD reading can be used to estimate leaf N of rice grown under AWD in a way similar to that under CF. SPAD readings and leaf color chart (LCC) values also showed a good correlation. There were no water × nitrogen interactive effects on rice yield, water input, water productivity, and N-use efficiency. Rice yield in AWD−10 was similar to those of CF; yields of other AWD treatments were significantly lower than those of CF. AWD−10 reduced irrigation water input by 20% and significantly increased water productivity compared with CF. The apparent nitrogen recovery and agronomic N-use efficiency (ANUE) of AWD−10 and AWD−20 were similar to those of CF. The ANUE of NSPAD38 and NSPAD35 was consistently higher than that of N180 in all water treatments. NSPAD38 consistently gave yield similar to that of N180 in all water treatments, while yield of NSPAD35 about 90% of that of CF. We conclude that a combination of AWD−10 and SPAD-based N management, using critical value 38, can save irrigation water and N fertilizer while maintaining high yield as in CF conditions with fixed time and rate of nitrogen application of 180 kg ha−1. Treatments AWD−20 and NSPAD35 may be accepted by farmers when water and N fertilizer are scarce and costly. The findings also suggested LCC can also be a practical tool for N-fertilizer management of rice grown under AWD, but this needs further field validation.  相似文献   

3.
Benefits of increased soil exploration by wheat roots   总被引:2,自引:0,他引:2  
Increased subsoil water extraction by wheat roots enhanced through management or breeding can increase yield, but the benefits depend on the seasonal pattern of water availability as influenced by rainfall distribution, soil type and management. We used a well validated crop simulation model to assess the wheat yield benefits arising from 20% faster root descent and/or more effective water extraction in the subsoil (>0.6 m) under different management scenarios. The analysis was conducted in Mediterranean, temperate equi-seasonal and subtropical Australian wheat-growing environments on deep sand, loam and deep clay soils, respectively.Overall mean yield benefits of 0.3-0.4 t ha−1 were predicted from the combination of faster descent and more efficient roots at all sites and yield reductions were rare, although considerable seasonal and site variation in yield benefits was evident (range in benefits −0.1 to 1.4 t ha−1). In general, faster root descent provided less separate benefit to water uptake and yield (up to 9 mm and 0.1 t ha−1) than more efficient subsoil extraction (up to 21 mm and 0.3 t ha−1), especially for optimal sowing dates, although late-sown crops on deep sands were an exception. At all sites, the yield impacts of preceding management (0.5 to 1.8 t ha−1) and sowing date (0.1 to 0.9 t ha−1) were more consistent and often exceeded or overrode those of root modification by influencing the depth of profile wetting and duration of root descent. For example there was little benefit (<0.1 t ha−1) of modified roots following lucerne compared to an annual crop at most sites as the soils rewet below 1 m less frequently. The study provides insights for targeting those environments and management scenarios for which the largest yield benefits will arise from investments to improve wheat root systems.  相似文献   

4.
Rice–wheat (RW) production system, which covers over 13.5 million ha in the Indo-Gangetic Plains of south Asia, is vital for food and nutritional security and livelihood of millions of poor people in this part of the region. Availability of irrigation water under projected climate change scenarios is a great concern, and demonstration of the impact of different irrigation regimes on rice, wheat, and system yields is essential to adopt suitable water saving technologies to minimize risk. This study tested the ability of the agricultural production systems simulator (APSIM) model to simulate the effects of different irrigation regimes on yield, irrigation water requirement, and irrigation water productivity (WPi) of rice, wheat, and RW system in upper-gangetic plains of India. The long-term simulated rice yield showed a steadily declining trend at an average rate of 120 kg ha?1 yr?1 (R 2 = 0.94, p < 0.05), while long-term simulated wheat yields showed a lower declining trend at an average rate of 48 kg ha?1 yr?1 (R 2 = 0.48, p < 0.05). The highest WPi of 8.31 kg ha?1 mm?1 was observed under RW system with the rice irrigation (IR) regime of 8 days alternate wetting and drying (AWD) and five irrigations for wheat with a yield penalty of 25.5 %. The next highest WPi was observed in the treatment with a 5-day AWD regime in rice and five irrigations for wheat, with a yield penalty of 20.1 %. Thus, we can suggest that a 5-day AWD irrigation regime for rice combined with five irrigations during wheat could be the best option under water limiting situations.  相似文献   

5.
Alternate wetting and drying irrigation (AWD) has been reported to save water compared with continuous flooding (CF) in rice cultivation. However, the reported effects on yield varied greatly and detailed agro-hydrological characterization is often lacking so that generalizations are difficult to make. Furthermore, it is not known how AWD modifies nutrient use efficiencies and if it requires different N-fertilizer management compared with CF. This study quantified the agro-hydrological conditions of the commonly practiced AWD and compared the impact of AWD and CF irrigations at different N-fertilizer management regimes on rice growth and yield, water productivity, and fertilizer-use efficiencies in five crop seasons in 1999 and 2000 at two typical lowland rice sites in China (Jinhua, Zheijang Province and Tuanlin, Hubei Province), with shallow groundwater tables.Grain yields varied from 3.2 to 4.5 t ha–1 with 0 kg N ha–1 to 5.3–8.9 t ha–1 with farmers N-rates (150 kg N ha–1 in Jinhua and 180 in Tuanlin). In both sites, no significant water by nitrogen interaction on grain yields, biomass, water productivity, nutrient uptakes and N-use efficiency were observed. Yield and biomass did not significantly differ (P >0.05) between AWD and CF and among N timings. The productivity of irrigation water in AWD was about 5–35% higher than in CF, but differences were significant (P <0.05) only when the rainfall was low and evaporation was high. Increasing the number of splits to 4–6 times increase the total N uptake, but not total P-uptake, and total K-uptake compared with farmers practices of two splits. Apparent Nitrogen recovery (ANR) increased as the number of splits increased, but there was no significant difference in ANR between AWD and CF. During the drying cycles of AWD irrigation, the perched water table depths seldom went deeper than – 20 cm and the soil in the root zone remained moist most of the time. The results suggest that in typical irrigated lowlands in China, AWD can reduce water input without affecting rice yields and does not require N-fertilizer management differently from continuous flooding. The results can be applied to many other irrigated lowland rice areas in Asia which have a shallow groundwater table.  相似文献   

6.
Water productivity (WP) expresses the value or benefit derived from the use of water. A profound water productivity analysis was carried out at experimental field at Field laboratory, Centre for Water Resources, Anna University, India, for rice crop under different water regimes such as flooded (FL), alternative wet and dry (AWD) and saturated soil culture (SSC). The hydrological model soil-water-atmospheric-plant (SWAP), including detailed crop growth, i.e, WOFOST (World Food Studies) model was used to determine the required hydrological variables such as transpiration, evapotranspiration and percolation, and bio-physical variables such as dry matter and grain yield. The observed values of crop growth from the experiment were used for the calibration of crop growth model WOFOST. The water productivity values are determined using SWAP and SWAP–WOFOST. The four water productivity indicators using grain yield were determined, such as water productivity of transpiration (WPT), evapotranspiration (WPET), percolation plus evapotranspiration (WPET+Q) and irrigation plus effective rainfall (WPI+ER). The highest value of water productivity was observed from the flooded treatment and lowest value from the saturated soil culture in WPT and WPET. This study, reveals that deep groundwater level and high temperature reduces the crop yield and water productivity significantly in the AWD and SSC treatment. This study reveals that in paddy fields 66% inflow water is recharging the groundwater. There is good agreement between SWAP and SWAP–WOFOST water productivity indicators.  相似文献   

7.
《Plant Production Science》2013,16(4):514-525
Abstract

We evaluated the genotypic differences in growth, grain yield, and water productivity of six rice (Oryza sativa L.) cultivars from different agricultural ecotypes under four cultivation conditions: continuously flooded paddy (CF), alternate wetting and drying system (AWD) in paddy field, and aerobic rice systems in which irrigation water was applied when soil moisture tension at 15 cm depth reached ?15 kPa (A15) and ?30 kPa (A30). In three of the sixcultivars, we also measured bleeding rate and predawn leaf water potential (LWP) to determine root activity and plant water status. Soil water potential (SWP) in the root zone averaged ?1.3 kPa at 15 cm in AWD, -5.5 and -6.6 kPa at 15 and 35 cm, respectively, in A15, and ?9.1 and ?7.6 kPa at 15 and 35 cm, respectively, in A30. The improved lowland cultivar, Nipponbare gave the highest yield in CF and AWD. The improved upland cultivar, UPLRi-7, and the traditional upland cultivar, Sensho gave the highest yield in A15 and A30, respectively. The yields of traditional upland cultivars,Sensho and Beodien in A30 were not lower than the yields in CF. However, the yields of the improved lowland cultivars, Koshihikari and Nipponbare, were markedly lower in A15 and A30. Total water input was 2145 mm in CF, 1706 mm in AWD, 804 mm in A15, and 627 mm in A30. The water productivity of upland rice cultivars in aerobic plots was 2.2 to 3.6 times higher than that in CF, while those of lowland cultivars in aerobic plots were lower than those in CF. The bleeding rate of Koshihikari was lower in A15 and A30 than in CF and AWD, and its LWP was significantly lower in A15 and A30 than in CF and AWD, but Sensho and Beodien showed no differences among the four cultivation conditions. We conclude that aerobic rice systems are promising technologies for farmers who lack access to enough water to grow flooded lowland rice. However, lowland cultivars showed severe growth and yield reductions under aerobic soil conditions. This might result from poor root systems and poor root function, which limits water absorption and thus decreases LWP. More research on the morphological and physiological traits under aerobic rice systems is needed.  相似文献   

8.
Intensive cultivation of rice and wheat in north-west India has resulted in air pollution from rice straw burning, soil degradation and declining groundwater resources. The retention of rice residues as a surface mulch could be beneficial for moisture conservation and yield, and for hence water productivity, in addition to reducing air pollution and loss of soil organic matter. Two field experiments were conducted in Punjab, India, to study the effects of rice straw mulch and irrigation scheduling on wheat growth, yield, water use and water productivity during 2006-2008. Mulching increased soil water content and this led to significant improvement in crop growth and yield determining attributes where water was limiting, but this only resulted in significant grain yield increase in two instances. There was no effect of irrigation treatment in the first year because of well-distributed rains. In the second year, yield decreased with decrease and delay in the number of irrigations between crown root initiation and grain filling. With soil matric potential (SMP)-based irrigation scheduling, the irrigation amount was reduced by 75 mm each year with mulch in comparison with no mulch, while maintaining grain yield. Total crop water use (ET) was not significantly affected by mulch in either year, but was significantly affected by irrigation treatment in the second year. Mulch had a positive or neutral effect on grain water productivity with respect to ET (WPET) and irrigation (WPI). Maximum WPI occurred in the treatment which received the least irrigation, but this was also the lowest yielding treatment. The current irrigation scheduling guidelines based on cumulative pan evaporation (CPE) resulted in sub-optimal irrigation (loss of yield) in one of the two years, and higher irrigation input and lower WPI of the mulched treatment in comparison with SMP-based irrigation scheduling. The results from this and other studies suggest that farmers in Punjab greatly over-irrigate wheat. Further field and modelling studies are needed to extrapolate the findings to a wider range of seasonal and site conditions, and to develop simple tools and guidelines to assist farmers to better schedule irrigation to wheat.  相似文献   

9.
Deficit irrigation (DI) is a water-saving irrigation strategy in which irrigation water is applied at amounts less than full crop-water requirements. Some researchers have suggested that greater increases in water use efficiency (WUE) could be realized if DI was used in combination with water conservation or rainwater harvesting techniques. The objective of this six-year field study was to determine the effect of DI in combination with straw mulch (SM) or plastic film-mulched ridge and straw-mulched furrows (RF) on grain yield and WUE in a winter wheat-summer maize rotation. Interactive effects between the water-saving management practices and N fertilizer rate were also investigated. Results indicated that maize yields in the RF + DI and SM + DI treatments were as much as 1.6 times those in the DI and conventional furrow irrigation (CFI) treatments. Over the six-year study, total maize yield in the RF + DI treatment was 5580 kg/ha more than in the CFI treatment and 6500 kg/ha more than in the DI treatment. Wheat yields in the RF + DI and SM + DI treatments were similar to the CFI treatment but slightly more than in the DI treatment. At harvest, there was no significant difference in water storage in the 0-200 cm soil profile among the RF + DI, SM + DI, DI, and CFI treatments. Nitrogen fertilizer application significantly increased maize and wheat yield compared to the unfertilized treatment; however, there was no further yield response when the N application rate exceeded 120 kg N/ha. In summary, these results indicated that DI in combination with SM or RF practices increased crop yield and WUE in the winter wheat-summer maize crop rotation. Compared to CFI practices, the SM + DI and RF + DI practices reduced the amount of irrigation water applied over a six-year period by about 350 mm.  相似文献   

10.
An alarming rate of ground water depletion and increasing labour scarcity are major threats to future rice production in north west India. Management strategies that reduce the irrigation amount and labour requirement while maintaining or increasing yield are urgently needed. Dry seeded rice (DSR) has been proposed as one means of achieving these objectives, but little is known about optimal water management for DSR. Therefore a field study was conducted on a clay loam soil in Punjab, India, during 2008 and 2009, to investigate the effects of irrigation management on the performance of puddled transplanted rice (PTR) and dry seeded rice. Irrigation scheduling treatments were based on soil water tension (SWT) ranging from ponding/saturation (daily irrigation) to alternate wetting and drying (AWD) with irrigation thresholds of 20, 40 and 70 kPa at 18–20 cm soil depth. Rainfall was above average and well distributed in 2008 (822 mm), and average and less well distributed in 2009 (663 mm).  相似文献   

11.
The widely adopted alternate wetting and drying (AWD) irrigation for rice production is increasingly needed to quantify the different water outflows and nitrogen leaching losses. We investigated the effects of AWD on percolation, water productivity, nitrogen leaching losses, and nitrogen productivity through in situ experiments. Results show that AWD reduced irrigation water without a significant impact on grain yields and increased the mean water productivity by 16.9 % compared with continuously flood irrigation (CFI). The mean nitrogen productivity of 135 kg ha?1 N level was 22.2 % higher than that of 180 kg ha?1 N level, although grain yields substantially increased because of nitrogen fertilization application. The percolation was also reduced by 15.3 % in 2007 and 8.3 % in 2008 compared to CFI. However, the cumulative percolation of the first 5 days after irrigation in AWD plots is significantly larger than that in CFI plots. The NH4 +–N and TN leaching losses of AWD and CFI had no significant variations while the NO3 ?–N leaching losses were increased caused by AWD. The total NH4 +–N, NO3 ?–N, and TN leaching losses of AWD in the first 3 days after irrigation were higher than that of contemporaneous CFI. The results indicate that the bypass or preferential flow and strengthened nitrification–denitrification nitrogen transformation processes because of alternate wetting and drying potentially decrease the water saving effectiveness and increase the NO3 ?–N loading to the groundwater.  相似文献   

12.
This study was carried out to determine the effect of water stress on five different generative stages of soybeans and to evaluate the CROPGRO-soybean model under semi-arid climatic conditions. The study was conducted at the Faculty of Agricultural Engineering, Harran University research field in 2003 and 2004 growing seasons. Plants received full irrigation during vegetative stages, after which it was cut off at different reproductive stages (treatments): R1-2, beginning of flowering and full bloom; R3, beginning of pod; R4, full pod; R5, beginning of seed; and R6, full seed. The control treatment was full irrigation throughout. Observed yields ranged from 1955 (R6) to 3684 kg ha−1 (control) in 2003, and from 1867 (R6) to 3952 kg ha−1 (control) in 2004, respectively. Generally, in both of the years any water stress imposed on soybeans in three different generative stages (R3, R5, and R6) resulted in substantial yield reduction compared with full irrigation; yield reduction was greatest at the R6 stage. Biomass and 1000 seed weight also showed significant difference. Overall, CROPGRO-soybean simulated parameters from all treatments were higher compared with observed ones. Although simulated yield results were close to measured ones, they could not track observed yield patterns. Generally, the CROPGRO-soybean simulation model failed to satisfactorily mimic observed soybean yield, biomass, and 1000 seed weight and therefore it is suggested not to be used for similar scenarios and climatic conditions.  相似文献   

13.
为探究水氮运筹对滴灌冬小麦产量和水氮利用效率的效应,于2019—2021年开展了连续2年小麦田间试验,设置2个施氮水平210(N1)和240(N2)kg·hm-2,4个灌水处理W1(不灌水)、W2(每次30 mm)、W3(每次45 mm)、W4(每次60 mm),分析不同处理小麦产量及水氮利用率相关指标。结果表明,2019—2021年,施氮量和灌水量对冬小麦抽穗期、扬花期和灌浆期叶片净光合速率的影响为极显著(P<0.01)或显著(P<0.05),且三个生育时期均以N2W4 处理最高,与N1W4和N2W3处理间没有显著差异;三个生育时期的土壤铵态氮和硝态氮含量均以N2W3、N1W4或N2W4处理最低。小麦越冬期、灌浆期和成熟期土壤铵态氮与产量和氮肥偏生产力(NPFP)均呈显著或极显著负相关;抽穗期、灌浆期和成熟期土壤硝态氮与产量和NPFP均呈显著或极显著负相关。2个年度,水氮运筹较对照显著提高了冬小麦的产量和水氮利用效率,产量增幅分别为38.9%~62.0%和40.9%~68.3%,水分利用效率(WUE)增幅分别为8.0%~15.7% 和10.1%~16.4%,NPFP增幅分别为38.9%~62.0%和40.9%~65.5%;冬小麦产量和WUE均以N2W4处理最高,N2W3处理次之,两者间没有显著性差异;但N2W3处理的水分利用效率均显著高于N2W4处理。综上,在本试验条件下,施氮量240 kg·hm-2、每次灌水45 mm(N2W3)为该地区滴灌冬小麦最佳水氮运筹组合,可以实现保障产量和提高水氮利用效率的目标。  相似文献   

14.
The objective of this research was to investigate the critical water content (θ c) and water stress coefficient (K s) of soybean plant under deficit irrigation. This research was conducted in a plastic house at the University of Lampung, Sumatra in Indonesia from June to September 2000. The water deficit levels were 0–20%, 20–40%, 40–60%, 60–80%, and 80–100% of available water (AW) deficit, arranged in Randomized Completely Block (RCB) design with four replications. The results showed that the soybean plant started to experience stress from week IV within 40–60% of AW deficit. The fraction of total available water (TAW) that the crop can extract from the root zone without suffering water stress (p) was 0.5 and θc was 0.305 m3 m−3. The values of K s at p=0.5 were 0.78, 0.86, 0.78, and 0.71 from week IV to week VII, respectively. The optimum yield of soybean plant with the highest yield efficiency was reached at 40–60% of AW deficit with an average K s value of 0.78; this level of deficit irrigation could conserve about 10% of the irrigation. The optimum yield of soybean plant was 7.9 g/pot and crop water requirement was 372 mm.  相似文献   

15.
The uncertainty of monsoon rainfall and the decreasing availability of irrigation water, as a result of climate change, and high water demand of other sectors have resulted to wide adoption of alternate wetting and drying (AWD) technique especially in irrigated lowland rice production to overcome water scarcity. However, under climate change circumstances, AWD can be optimized when taking advantage of favorable water seasonality conditions to increase crop yield and irrigation water use efficiency. Therefore, a field trial was conducted to find suitable water depth for reducing rice irrigation water use by combining four different water depth treatments (T2cm, T3cm, T4cm, and T5cm) with rainfall through a randomized complete block design having 3 replications. Water depths were applied weekly from transplanting to heading. The results showed that water stress at vegetative stage decreased plant height and tillers number between 7 and 33 % at panicle initiation, followed by total and partial growth recovery. In addition, panicle number per hill showed a 53–180 % decrease at the heading stage. Severe water stress induced by the lowest water treatment significantly reduced yield components between 15 and 52 % at harvest. It was found that weekly application of 3 cm water depth combined with rainfall improved AWD effectiveness, and yielded the highest beneficial water productivity with less yield expenses.  相似文献   

16.
Field experiments were conducted to study the effects of drip irrigation regimes on potato (Solanum tuberosum L.) growth, tuber yield and quality, and water use efficiency (WUE) when grown under plastic mulch in an arid area of Northwestern China in 2008, 2009 and 2010. The 2008 experiment consisted of a drip irrigation check without plastic mulch and four different drip irrigation frequency treatments with plastic mulch: once every day, once every 2 days, once every 4 days, and once every 8 days. In 2009 and 2010 the drip check treatment without mulch was irrigated at −25 kPa soil matric potential (SMP) during three potato development stages and four different SMP drip irrigation strategies were compared during the potato development stages (using plastic mulch): S1 (−25 kPa SMP during the three development stages), S2 (−25 kPa SMP during tuber initiation and bulking and −35 kPa SMP during maturation), S3 (−25 kPa SMP during tuber initiation and maturation and −35 kPa SMP during bulking), S4 (−35 kPa SMP during the three development stages). Plastic mulch negatively affected tuber yield, WUE, and tuber quality. In the presence of plastic mulch, tuber yield, specific gravity, starch content, and vitamin C content seemed to be enhanced as the irrigation frequency increased, although the differences were not statistically significant. Irrigation frequency did not affect WUE for potato grown under plastic mulch. Analysis of plant height, tuber yield and WUE showed that a drip irrigation threshold of −35 kPa SMP led to obvious water stress for potato growth in this arid area. Under plastic mulch in 2010, S2 was the optimum drip irrigation regime because of the significantly higher yield than S3 and S4, the highest WUE and significantly firmer tubers than any of the other irrigation regimes tested.  相似文献   

17.
针对绿洲灌区春小麦生产中水氮消耗量大、连作普遍问题,2015-2018年,在河西走廊甘肃农业大学绿洲试验站进行田间试验,设两种耕作措施(玉米茬免耕一膜两年用,NT;玉米茬传统翻耕,CT)、两种灌水水平(2400m^3·hm^-2,传统水平,I2;1920m^3·hm^-2,传统灌水减量20%,I1)和三种施氮水平(225kg·hm^-2,传统施氮,N3;180kg·hm^-2,减量20%施氮,N2;135kg·hm^-2,减量40%施氮,N1),分析了不同处理下春小麦籽粒产量、灌溉水生产力和氮肥偏生产力特征。结果表明,与CT、I2相比,NT和I1均能提高春小麦的籽粒产量、灌溉水生产力和氮肥偏生产力;与N3相比,N2的氮肥偏生产力提高11.6%~30.4%,籽粒产量和灌溉水生产力在2016、2017年均无显著变化,在2018年分别降低10.7%和10.4%;N1的籽粒产量降低6.1%~23.5%,灌溉水生产力和氮肥偏生产力分别增加6.1%~23.0%和27.6%~56.5%。在所有处理中,NTI1N2和NTI2N3处理的籽粒产量三年中均较高,二者间差异不显著,但NTI1N2处理灌溉水生产力和氮肥偏生产力较NTI2N3处理分别提高7.6%~20.4%和16.5%~30.4%;NTI1N2处理的籽粒产量、灌溉水生产力和氮肥偏生产力较CTI2N3处理分别提高3.8%~22.0%、19.7%~40.8%和29.7%~52.5%。综上所述,在西北绿洲灌区以覆膜玉米为前茬,免耕穴播小麦,配套施氮180kg·hm^-2、生育期灌水1920m^3·hm^-2的种植方式是适用于小麦节约水氮的高效生产模式。  相似文献   

18.
We studied the effects of water regimes and nutrient amendments on CH4 and N2O emissions in a 2 × 3 factorial, completely randomised growth chamber experiment. Treatments included continuously flooded (CF) and alternate wetting and drying (AWD), and three organic amendments: no amendment-control, rice straw (RS) and biochar (BC). Compound fertiliser was applied to all treatments. Rice was grown in columns packed with a paddy soil from Cambodia. Results revealed faster mineralisation of organic carbon (RS and BC) when applied in water-saturated conditions lasting for 2 weeks instead of flooding. This resulted in lower total CH4 emissions in treatments under AWD than those under the CF water regime, namely 44 % in RS treatments and 29 % in BC treatments. Nitrous oxide fluxes were generally non-detectable during the experimental period except after fertilisation events, and the total N2O–N emissions accounted for on average 1.7 % of the total applied mineral fertiliser N. Overall, the global warming potentials (GWPs) were lower in treatments under AWD than those under the CF water regime except for the control treatment with only mineral fertiliser application. Grain yields were slightly higher in treatments under AWD than the CF water regime. Hence, the yield-scaled GWP was also lower in the treatments under the AWD water regime, namely 51 % in RS, 59 % in BC and 17 % in control treatments. Control treatments had the lowest GWP, but provided the highest yield. The yield-scaled GWP under these treatments was therefore lower than under the other treatments.  相似文献   

19.
滴灌量对冬小麦耗水特性和干物质积累分配的影响   总被引:2,自引:0,他引:2  
为给滴灌冬小麦高产栽培的水分管理提供理论依据,在播前足墒和越冬前灌水750 m33·hm-2的条件下分析了起身后不同滴灌量(2550、3150和3750 m3·hm-2,分别用W1、W2、W3表示)对冬小麦耗水及干物质积累、分配的影响.结果表明,随滴灌量的减少,冬小麦孕穗期至花后20 d的0~100 cm土层含水量明显降低,但土壤含水量沿毛管的横向差异增大,总耗水量减少,土壤贮水的消耗量明显增加;群体的叶面积指数和干物质积累量降低,尤其是远离毛管处下降更明显;开花前营养器官贮藏同化物向籽粒的转运量、运转率及对籽粒的贡献率增加,开花后干物质同化量和对籽粒的贡献率显著降低;籽粒产量降低,灌溉水利用效率呈增加趋势.3个处理中,W2的水分利用效率最高,产量与W3差异不显著.在本试验条件下,起身后滴灌冬小麦的适宜灌溉定额为3150~3750 m3·hm2.  相似文献   

20.
Appropriate benchmarks for water productivity (WP), defined here as the amount of grain yield produced per unit of water supply, are needed to help identify and diagnose inefficiencies in crop production and water management in irrigated systems. Such analysis is lacking for maize in the Western U.S. Corn Belt where irrigated production represents 58% of total maize output. The objective of this paper was to quantify WP and identify opportunities to increase it in irrigated maize systems of central Nebraska. In the present study, a benchmark for maize WP was (i) developed from relationships between simulated yield and seasonal water supply (stored soil water and sowing-to-maturity rainfall plus irrigation) documented in a previous study; (ii) validated against actual data from crops grown with good management over a wide range of environments and water supply regimes (n = 123); and (iii) used to evaluate WP of farmer's fields in central Nebraska using a 3-y database (2005–2007) that included field-specific values for yield and applied irrigation (n = 777). The database was also used to quantify applied irrigation, irrigation water-use efficiency (IWUE; amount of yield produced per unit of applied irrigation), and the impact of agronomic practices on both parameters. Opportunities to improve irrigation management were evaluated using a maize simulation model in combination with actual weather records and detailed data on soil properties and crop management collected from a subset of fields (n = 123). The linear function derived from the relationship between simulated grain yield and seasonal water supply, namely the mean WP function (slope = 19.3 kg ha−1 mm−1; x-intercept = 100 mm), proved to be a robust benchmark for maize WP when compared with actual yield and water supply data. Average farmer's WP in central Nebraska was ∼73% of the WP derived from the slope of the mean WP function. A substantial number of fields (55% of total) had water supply in excess of that required to achieve yield potential (900 mm). Pivot irrigation (instead of surface irrigation) and conservation tillage in fields under soybean–maize rotation had the greatest IWUE and yield. Applied irrigation was 41 and 20% less under pivot and conservation tillage than under surface irrigation and conventional tillage, respectively. Simulation analysis showed that up to 32% of the annual water volume allocated to irrigated maize in the region could be saved with little yield penalty, by switching current surface systems to pivot, improving irrigation schedules to be more synchronous with crop water requirements and, as a fine-tune option, adopting limited irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号