首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
以溶胶凝胶法制备Ti O_2-Al_2O_3复合载体,采用超声波辅助浸渍负载Ni制得Ni/Ti O_2-Al_2O_3催化剂,将其应用于松节油催化加氢反应,考察了催化剂制备条件及松节油催化加氢反应条件对催化加氢的影响。结果表明,复合载体中钛铝物质的量之比(钛铝比)值0.4、载体焙烧温度550℃、超声波功率280 W、硝酸镍浸渍液浓度0.5 mol/L和超声波辅助浸渍时间2 h的条件下,制备的催化剂Ni/Ti O_2-Al_2O_3催化性能最高。最佳的加氢反应条件为:反应时间140 min、反应压力4.5 MPa、反应温度150℃和催化剂用量为松节油质量的5%,该条件下原料中α-蒎烯转化率达97.27%,产物顺式蒎烷的选择性为96.15%,顺式蒎烷的得率为93.52%。  相似文献   

2.
以γ-Al_2O_3为载体,过渡金属离子Mn、Ni为活性组分,通过共浸渍法制备负载有二元金属氧化物的催化剂Mn-Ni/γ-Al_2O_3,利用XRD、XRF和BET对催化剂进行了分析与表征。采用响应面法优化Mn-Ni/γ-Al_2O_3催化臭氧深度处理制浆废水工艺,并考察了催化剂的稳定性和重复使用性能。结果表明:Mn、Ni成功负载到了γ-Al_2O_3表面及内部孔道,负载后催化剂的粒径减小,比表面积、孔容和平均孔径分别降低了11.96%,16.48%和5.28%;在p H值8.7、催化剂用量9.2 g/L、臭氧质量浓度29.6 g/L的最佳工艺条件下,将Mn-Ni/γ-Al_2O_3(Mn与Ni的物质的量比为6∶4)用于催化臭氧深度处理废水,40℃恒温处理30min后废水CODCr的去除率达75.1%,AOX去除率达85.98%;催化剂重复使用6次时,CODCr的去除率仍达70.6%,并且反应过程中Mn、Ni离子溶出量始终保持在1 mg/L以下,表明Mn-Ni/γ-Al_2O_3具有较高的稳定性和较好的重复使用性能。  相似文献   

3.
纳米Pd组装介孔分子筛MCM-41催化松香加氢反应   总被引:1,自引:0,他引:1  
以浸渍法将纳米金属Pd粒子负载到介孔纯硅分子筛MCM-41中,制得Pd/MCM-41催化剂.采用X射线衍射仪(XRD)和电子显微镜(TEM)对所合成的材料进行了表征.结果表明,纳米Pd已经成功引入到MCM-41分子筛中,并均匀分布在分子筛的孔道内,分子筛仍然保持良好的中孔结构.将Pd/MCM-41用来催化松香加氢反应,实验结果表明,Pd/MCM-41的催化活性和选择性均优于Ni/MCM-41和Pd/C.同时详细考察了反应时间、温度、氢气压力和催化剂用量等因素对反应的影响,得到了较佳的反应条件:松香与催化剂的质量比为1∶ 0.04(松香 5 g,催化剂 0.2 g),反应温度 180 ℃, 氢气压力 8 MPa,反应时间 4 h,制得的氢化松香产品中枞酸质量分数 1.0%,去氢枞酸质量分数 9.3%.  相似文献   

4.
针对生物油催化裂解提质工艺中存在催化剂易结焦失活、精制油品质低等问题,提出了低温等离子体(NTP)协同分子筛催化剂HZSM-5在线催化裂解提质油菜秸秆热解油的技术方案,采用自行设计的NTP辅助催化反应器,探讨了工艺参数对精制生物油得率和理化特性的影响。研究结果表明:催化温度、催化剂床层高度和反应器放电功率对反应结果影响显著,在催化温度400℃、催化剂(NTP+HZSM-5)床层高度35 mm、反应器放电功率25 W的最优工艺条件下,获得了精制生物油得率、含氧量、高位热值(QHHV)、pH值和重质组分分别为9.13%、15.78%、34.86 MJ/kg、5.41和3.15%的试验结果,与单HZSM-5催化提质方法相比,精制生物油品质显著提升,且催化剂积炭量从单HZSM-5提质方法时的5.88%大幅降低至2.14%,证实了NTP协同HZSM-5催化裂解提质生物油技术方案的可行性。  相似文献   

5.
采用普通热溶剂法和微波加热法将SalenMnCl成功负载于NaY分子筛的超笼中,通过FT-IR、XRD、TG和比表面分析方法对催化剂进行了表征。以此负载型催化剂催化低浓度过氧乙酸氧化α-蒎烯制备α-环氧蒎烷,比较了2种方法制备的催化剂性能,然后用响应曲面法探索最佳反应条件,并在该条件下研究负载型催化剂循环使用情况。结果表明,2种方法制备的分子筛负载型SalenMnCl催化剂均可催化α-蒎烯环氧化反应,且催化效果微波法优于普通热溶剂法。微波法制备的SalenMnCl/Y-MW催化剂催化反应的最优条件为:过氧乙酸与α-蒎烯物质的量之比值为1.43,反应温度为10℃,反应时间为3.75 h,在此条件下产物产率达91.60%。同时,该负载型催化剂重复使用5次,产物产率仍达76%以上,其具有较好的稳定性,可循环利用。  相似文献   

6.
采用真空浸渍法制备炭基固体碱催化剂K2O/C,并在超声波辅助条件下,利用制备的K2O/C催化纤维低聚糖与油酸甲酯制备纤维低聚糖脂肪酸酯表面活性剂。选取L9(34)正交试验确定制备K2O/C催化剂的最佳条件为:炭基载体平均孔径为2.87 nm,K2CO3与炭基载体的质量比值为0.5,真空浸渍后,450℃下煅烧2 h。考察了超声波辅助下超声波时间、超声波频率、反应温度、反应时间和催化剂用量对产品得率的影响。研究发现:在20 k Hz,150 W超声功率下,将物质的量之比为2∶1的油酸甲酯和纤维低聚糖(水溶液)超声波作用15 min,形成均一稳定的乳化体系,真空条件下,移除体系中的水分后,加入占总物料量5%的K2O/C催化剂,125℃下反应2 h,纤维低聚糖脂肪酸酯的最高得率为85.6%,其酯化度为18.8%,亲水亲油平衡值(HLB)为9.89,表面张力为32.1 m N/m,乳化力为28.1%,硬水稳定性4级。  相似文献   

7.
为了研究生物质热解气化过程中,反应器类型对镍基催化剂的积炭和使用寿命的影响,以杉木屑为原料,研究了Ni/木炭催化剂分别在二段式和三段式热裂解反应器内重复使用次数对杉木屑热裂解产物及其催化剂质量的影响规律。结果表明:在杉木屑热裂解过程中,Ni/木炭催化剂上会同时发生炭的沉积和炭的氧化消耗2个过程,其质量的变化受这2个过程共同的影响,且镍基活性中心上的积炭比载体木炭更难以被氧化消耗。沉积在Ni/木炭催化剂上的炭主要是以纳米碳纤维的形式存在,且纳米碳纤维覆盖在金属镍上。在二段式反应器中,催化剂的质量是先减少,然后增加,再减少;而在三段式中,则是不断减少。采用三段式生物质热裂解反应器不仅可以显著延长Ni/木炭催化剂的使用寿命,而且可以充分利用热解气化过程所产生的副产物固体炭,从而降低生物质热解气化的催化剂使用成本。  相似文献   

8.
以商业氧化钨(WO3)为载体,通过调控制备工艺和活化方式制备了一系列钨基金属催化剂并探索其催化性能。研究结果表明:通过浸渍负载法制备并采用NaBH4液相活化制备的Ru-Ni/WO3催化剂,Ru和Ni的负载量分别为2%和20%,其表现出较好的纤维素氢解制乙二醇的催化性能,在240℃、 4 MPa氢压下,反应4 h可以得到86.1%纤维素转化率和62.8%的乙二醇选择性。采用XRD、SEM、Raman和XPS等表征手段探讨了催化剂组成和结构对其催化性能和产物分布的影响机制,Ni和Ru分步浸渍、然后NaBH4液相还原活化的双金属催化剂会比普通浸渍和氢气热还原活化的催化剂更易被还原,同时具有更大的比表面积和金属分散性,表现出更多的表面缺陷和酸活性位,从而有利于催化纤维素直接氢解转化制备乙二醇。  相似文献   

9.
为了使呋喃甲醛的制备过程绿色化,以ZrOCl2为原料,利用沉淀-浸渍法初步制备了SO42-/ZrO2固体酸,并应用于催化木糖制备呋喃甲醛的反应。采用L9(34)正交试验确定了适宜的反应条件:木糖质量浓度10 g/L、催化剂用量20 g/L、反应温度220℃、反应时间3 h。之后采用单因素试验考察了催化剂制备条件对呋喃甲醛产率的影响。得到的催化剂最佳制备条件为:H2SO4浸渍浓度1.0 mol/L、焙烧温度550℃、焙烧时间5 h,呋喃甲醛产率达最大值47%。实验结果表明:SO42-/ZrO2固体酸在催化木糖制备呋喃甲醛方面,具有较大发展潜力。  相似文献   

10.
为了使呋喃甲醛的制备过程绿色化,以ZrOCl2为原料,利用沉淀-浸渍法初步制备了SO24-/ZrO2固体酸,并应用于催化木糖制备呋喃甲醛的反应.采用L9(34)正交试验确定了适宜的反应条件:木糖质量浓度10g/L、催化剂用量20 g/L、反应温度220℃、反应时间3h.之后采用单因素试验考察了催化剂制备条件对呋喃甲醛产率的影响.得到的催化剂最佳制备条件为:H2SO4浸渍浓度1.0 mol/L、焙烧温度550℃、焙烧时间5h,呋喃甲醛产率达最大值47%.实验结果表明:SO24-/ZrO2固体酸在催化木糖制备呋喃甲醛方面,具有较大发展潜力.  相似文献   

11.
采用原位水热合成法在氧化铝陶瓷膜(CM)表面原位合成出了孔道规则有序的MCM-41/CM分子筛膜。再采用浸渍法将SO2-4/Zr O2负载在MCM-41/CM分子筛膜上对MCM-41进行酸改性,制得负载型固体酸催化剂SO2-4/Zr O2/MCM-41/CM,并用于催化棕榈油与甲醇的酯交换反应制备生物柴油。结果表明,当Zr(NO3)4的浓度为0.4 mol/L、硫酸浓度为2 mol/L、焙烧温度为550℃时,制备出的负载型固体酸催化剂SO2-4/Zr O2/MCM-41/CM活性最高。通过考察反应条件对酯交换反应的影响,得出最佳的反应条件,即当催化剂用量5%(以活性组分负载率计)、反应时间为60 min、反应温度为100℃、醇油物质的量之比为10∶1时,脂肪酸甲酯的收率可达92%以上,重复使用5次后,脂肪酸甲酯收率仍达80%以上。  相似文献   

12.
采用NaOH处理的分子筛ZSM-5为载体,制备了镍铝层状双金属氧化物/分子筛复合催化剂(NiAl-LDO/ZSM-5),将其用于香茅草残渣在甲醇气氛中的热解实验研究。催化剂表征结果表明:经过NaOH处理后,ZSM-5的骨架有不同程度破坏,且破坏程度随NaOH浓度增加而增大;催化剂的比表面积在负载NiAl-LDO后降低,但随着NaOH浓度的升高逐渐增大;同时,催化剂的酸量随NaOH浓度的升高都明显增加。催化热解实验结果表明:未经NaOH处理的NiAl-LDO/ZSM-5催化热解的生物油收率为13.4%,与ZSM-5催化相比生物油中苯类物质由34.06%上升至43.15%,同时,萘类物质从63.31%下降至23.15%;经NaOH处理后生物油收率基本不变,但随着NaOH处理溶液浓度增大,热解生物油中芳香烃由16.35%增加至50.19%,非芳香含氧物质由35.35%逐渐下降至17.38%。  相似文献   

13.
以核桃壳粉(WSPs)为载体,采用还原沉淀法制备了WSPs负载的铜催化剂(WSPs-Cu),采用红外(FT-IR)、热重分析(TGA)、X射线衍射分析(XRD)、扫描电镜结合X射线能谱(SEM/EDS)等对WSPs-Cu进行表征,结果表明:成功制备出Cu较均匀分布在WSPs表面的WSPs-Cu催化剂,WSPs-Cu的含铜量为3.386%,同时WSPs-Cu在100~200℃范围内具有较好的热稳定性。以WSPs-Cu为异相催化剂,催化苯甲酰氯及其衍生物与苯乙炔之间的偶联反应,制备出炔酮类化合物,结果表明:在无溶剂的条件下,以三乙胺为缚酸剂,微波辐射以及40℃下反应30 min,WSPs-Cu催化合成了5种炔酮化合物(产率61%~90%)。WSPs-Cu循环使用5次后仍保留较高活性,催化合成产物的产率为79%。将模型反应由微量放大到常量,投料量为80 mmol时,WSPs-Cu催化合成炔酮的产率可达到82%。  相似文献   

14.
在两段式反应器上开展了对香樟木屑真空热解蒸气的在线催化提质研究。对比分析了催化前后各相产物产率和气体组成的变化,以及催化前后液相产物理化特性和化学组成。结果表明,催化后液相产物产率降低,但生物油出现分层,上层为油相,下层为水相。油相的H/C物质的量之比、pH值和高位热值(湿基)分别为1.712、4.93和37.15 MJ/kg;油相中烃类和轻质酚类等目标产物含量明显增加,而酸类、醛类和酮类等具有腐蚀性和不稳定性的化合物含量则显著降低,燃料品质较生物原油有显著提升;水相中仍含有少量腐蚀性和不稳定化合物,但其干基的高位热值达32.98 MJ/kg,除去水分后亦可将其用作替代燃料。热解蒸气中非目标产物在HZSM-5分子筛的活性位点上发生转化反应生成期望化合物,各类反应遵循碳正离子反应机理。  相似文献   

15.
采用了浸渍法制备了KNO3/Al2O3固体碱催化剂,考察了催化剂制备条件对假紫罗兰酮合成的影响,并对其进行了Hammett指示剂法、FTIR、XRD表征分析。结果表明:所制备的催化剂在催化合成假紫罗兰酮的缩合反应中表现出良好的活性,当活性组分KNO3的负载质量分数为25%、浸渍时间为6 h、焙烧温度为600℃时,所制备的催化剂催化合成假紫罗兰酮产率可达87.5%。对催化剂的表征结果表明,催化剂的活性与高温焙烧KNO3和Al2O3发生相互作用形成的Al-O-K结构及KNO3分解产物K2O有关。  相似文献   

16.
生物质能源的高效利用可以有效缓解能源危机,改善生态环境。在生物质热解过程中会产生焦油堵塞设备,造成能量损失,从而影响生物质在工业中大规模使用。在常见生物质能源利用技术中,催化裂解技术可以有效去除焦油并提高可燃气体产量。综述了国内外生物质焦油催化裂解的研究,并对天然矿石类催化剂、碱金属催化剂、非镍金属催化剂、镍基催化剂的催化活性、反应稳定性以及经济效益等进行了讨论。针对镍基催化剂易失活的问题,介绍了通过选择更优的载体,添加不同的助剂对镍基催化剂进行改性,以提高催化剂的催化活性和反应稳定性的相关研究,旨在为制备出更经济高效的催化剂提供研究思路。  相似文献   

17.
笔者成功合成碳化木负载聚苯胺复合催化剂用于微波援助果糖催化转化反应。碳化木的表面性质经过空气氧化法和化学氧化法改性,从而提升聚苯胺在载体表面的稳定。通过利用多种表征手段,研究了碳载体和催化剂的结构演变以及聚苯胺的表面形貌、组成。通过结合空气氧化和化学氧化过程,聚苯胺的负载量从原始的1%显著提升到8%。试验结果显示,碳载体表面的羟基不仅促进了聚苯胺在表面的生长,且提高了碳载体在水中的吸波能力。在微波援助果糖催化转化反应中,复合催化剂表现了较好的吸波特性,从而提升其反应温度。在30 min内复合催化剂使得5-甲基糠醛的产率达到70%。这种整体型催化剂易于回收与再生,具有优异的重复使用性。  相似文献   

18.
以建立3-蒈烯的高效利用途径为目的,对其催化转化进行了深入研究,结果表明:金属类催化剂对促进3-蒈烯发生三元环开环脱氢具有很高的活性,尤其是在铂催化下脱氢产物伞花烃的选择性超过90%,其中,间伞花烃与对伞花烃的质量比约为7∶2;分子筛催化同样会导致3-蒈烯发生三元环开环并脱氢,随着反应温度升高,脱氢产物对伞花烃进一步裂解生成甲苯等芳烃化合物,ZSM-5型分子筛在促进裂解反应方面能力突出。在此基础上,建立了以金属铂与ZSM-5型分子筛为复合催化剂,3-蒈烯经连续催化转化制备甲苯与间伞花烃的工艺路线,在V(Pt/Al_2O_3)∶V(ZSM-5)1∶1,280℃的条件下,原料转化率接近100%,产品总得率大于85%,最终产物甲苯得率约25%,纯度大于99%;间伞花烃得率约46%,纯度大于95%。  相似文献   

19.
以蔗渣为原料,采用炭化-浸渍法制备碳基钌催化剂(Ru/CSB),并将其应用于催化葡萄糖加氢制备山梨醇。利用XRD、SEM和TEM对催化剂结构进行了表征,并考察了不同反应条件对催化剂性能的影响以及催化剂的重复使用效果。催化剂表征结果显示:活性金属Ru很好地负载在炭化蔗渣(CSB)载体上,且分布均匀。在蔗渣炭化温度为450℃,催化剂用量(以反应体系质量分数计)为1%,氢气压力为3 MPa,反应温度为120℃,反应时间为2 h的条件下,葡萄糖转化率为99.41%,山梨醇得率为98.13%,山梨醇选择性为98.71%。催化剂的重复使用性能较好,在重复使用5次后,Ru的分散度下降,出现团聚现象,山梨醇的得率有略微的下降,为94.80%。  相似文献   

20.
鉴于芳烃化合物重要的应用价值以及广阔的市场前景,详细阐述了生物质为原料催化转化制备高附加值芳烃化合物的研究进展,系统概述了生物质原料的种类、模型化合物的种类、沸石分子筛催化剂、介孔分子筛催化剂、催化剂的浸渍改性以及工艺条件等对生物质催化转化制备芳烃化合物的影响,进而探讨了催化热解机理,为生物质的全组分、高资源化利用提供新的方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号