首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
毛竹林土壤有机碳及微生物量碳特征研究   总被引:7,自引:0,他引:7  
通过对湖南会同林区集约经营毛竹林地土壤有机碳和微生物量碳进行测定,结果表明,毛竹林地土壤(0-60 cm)有机碳和微生物量碳含量平均值分别为1.727%和551.84 mg/kg,不同土壤层次有机碳和微生物量碳含量差异极显著,其中,0-20 cm土层有机碳含量平均值为2.607%,分别是20-40 cm和40-60 cm土层有机碳含量的1.67倍和2.57倍;0-20 cm土层的微生物量碳占土壤总微生物量碳的58.9%,分别是20-40 cm和40-60 cm土层的2.69倍和3.08倍。不同季节间土壤微生物量碳有明显变化规律,即土壤微生物量碳含量1-7月份呈上升的趋势,7月达到最大值,8-12月份呈逐渐下降趋势;不同季节间有机碳含量差异不显著。毛竹林地土壤表层土壤微生物量熵为1.118 6%,与40-60 cm土壤层相当,略高于20-40 cm土壤层,说明毛竹林不同土壤层次有机碳积累强度相当。  相似文献   

2.
卢孟雅  丁雪丽 《土壤》2024,56(1):10-18
稻田土壤碳循环是我国陆地生态系统碳循环的重要组成部分。促进稻田生态系统碳的固定及稳定对减缓全球气候变化起着不容忽视的作用。微生物主导的有机碳转化过程是土壤碳循环研究的核心,微生物同化代谢介导的细胞残体迭代积累在土壤有机碳长期截获和稳定过程中发挥重要作用。与旱地土壤相比,关于稻田土壤中微生物残体积累动态对外源有机物质如作物秸秆输入的响应及主要影响因子的认识还相对有限,对微生物通过同化作用参与土壤固碳的过程和机制尚缺乏系统认识。基于此,本文介绍了微生物残体对土壤有机碳库形成和积累的重要性及评价指标,重点探讨了秸秆还田对稻田土壤微生物残体积累动态以及外源秸秆碳形成细胞残体转化过程的影响,分析了影响微生物残体积累转化的主要气候因素和土壤因素,最后提出了未来应借助先进的光谱和高分辨率成像技术并结合同位素示踪对微生物残体的稳定性与机理开展更为深入的研究。  相似文献   

3.
探究不同植物残体还田条件下微生物关键种如何影响木质素酚的浓度(木质素酚与土壤有机碳的比值),旨在为不同有机物料还田培肥土壤提供理论和技术依据。本研究以河西绿洲灌区的灌漠土作为研究对象,开展了30 a以施加绿肥(GM)、小麦秸秆(SW)、氮肥(N)、绿肥配施氮肥(GMN)、小麦秸秆配施氮肥(SWN)以及不施肥(CK) 6种不同施肥处理的培肥试验。结果表明:GM和SW处理的土壤有机碳含量显著高于其他处理;有小麦秸秆参与还田的处理显著提高了总木质素酚浓度以及3种木质素酚类单体的浓度,其中总木质素酚浓度在SW处理中分别比CK、GM、N、GMN和SWN处理高了109%、122%、115%、164%和57%;对比不施肥和施化肥处理,植物残体还田显著提高了微生物关键种F3(盘菌纲,Pezizomycetes)、F26(被孢霉菌纲,Mortierellomycetes)、F173(粪壳菌纲,Sordariomycetes)、B74(阿尔法变形菌纲,Alphaproteobacteria)和B87(放线菌纲,Actinobacteria)的相对丰度。本研究共鉴定出15个关键种,其中关键种B831(属阿尔...  相似文献   

4.
  【目的】  研究长期施肥以及秸秆还田对黑土中微生物标识物氨基糖含量的影响,以期为调节黑土碳循环提供理论支撑。  【方法】  吉林省农业科学院黑土长期定位试验始于1990年,2018年选取其中不施肥对照(CK)、单施化肥(NPK)和有机肥配施化肥(MNPK) 三个处理进行秸秆微区田间试验。这三个处理的土壤中分别再设加入1 cm 长玉米秸秆6000 kg/hm2的处理(CKS、NPKS、MNPKS)和不加入玉米秸秆的处理(CK、NPK、MNPK),共6个处理。秸秆与土壤混匀后置于PVC框(长0.9 m、宽0.6 m、高0.6 m)内,PVC框上端高于地面20 cm。在PVC框埋入土壤60天(夏季)、150天(秋季)后,取土样测定理化性状及氨基葡萄糖(GluN)、氨基半乳糖(GalN)和胞壁酸(MurN)含量。微生物真菌残体碳和细菌残体碳含量依据各氨基糖含量计算。  【结果】  与CK相比,NPK和MNPK处理能够促进氨基糖在土壤中的积累,其中第60天氨基葡萄糖分别显著增加18.81%和105.36%;胞壁酸分别显著增加19.62%和129.30%。两种施肥措施均能提升土壤中微生物残体碳的含量,而且MNPK处理微生物残体碳积累量较CK处理高出近1倍。各处理中真菌残体碳含量要远高于细菌残体碳含量,两种施肥措施均会降低真菌残体碳占微生物残体碳的比重,说明施肥会增加细菌在这一过程中对黑土有机碳积累的贡献。NPKS处理氨基葡萄糖占总氨基糖含量百分比明显增加,MNPKS处理真菌来源的氨基葡萄糖所占百分比也在第60天、第150天这两个时期内逐渐上升,表明真菌细胞死亡残体积累量在增加。  【结论】  添加秸秆后的MNPK处理促进了黑土中微生物残体碳的积累,NPK处理与秸秆添加相结合可以提高真菌残体碳在微生物残体碳中所占比重。因此,施肥和秸秆添加会使黑土中微生物群落组成发生变化,从而影响微生物残体的积累特征。  相似文献   

5.
Amino sugars, being predominantly of microbial origin, can help elucidate the role of microbes in carbon and nitrogen cycling in soils. However, little is known about the microbial degradation and synthesis of soil amino sugars as affected by plant-derived organic materials. We conducted a 30-week microcosm study using three soils amended with soybean leaf or maize stalk to investigate changes in the amounts and patterns of amino sugars over time. The total soil amino sugar content initially increased during the incubation, but later decreased. Amino sugar content of soil amended with maize stalk peaked at an earlier time than it did for soybean leaf, suggesting nutrient quantity and substrate composition influence microbial transformation. Temporal dynamics of the proportion of total soil amino sugar to organic matter after plant material addition conformed to parabolic models (r > 0.8; p < 0.01), which tended to converge over time. The models predicted that the proportions would ultimately approach the initial values as determined before amendment. These findings suggest that soil organic matter has the ability to maintain a baseline steady-state level of amino sugars, and support the interpretation of soil amino sugar reservoir as two components: the Stable Pool (SP) and the Transition Pool (TP).  相似文献   

6.
Climate models predict an increase in global surface temperature and a change in precipitation intensity during this century. For Europe, extended drought periods followed by heavy rainfall are expected. The consequences for soil organic matter (SOM) dynamics are poorly understood. In this study, we investigated the effect of changing soil moisture regime on SOM quality under field conditions. For this purpose, a throughfall exclusion (TE) experiment was conducted in the summers 2006 and 2007 on a Haplic Podzol under a 140 years old Norway spruce stand using a roof installation followed by re-wetting compared to non-manipulated control plots. Total organic carbon, lignin (stable carbon pool), plant and microbial sugars (labile carbon pool) and microbial biomass (phospholipid fatty acids) were determined before, during and after the experiment in the L, O, A and B horizons. No significant treatment effects could be observed for SOM quantity. Amounts of lignin and soil microbial biomass were also not affected by the moisture regime but structure of soil microbial community. In the L and organic layers, gram + bacteria and actinomycetes were reduced during water stress, while gram- bacteria, fungi and protozoa increased during drought. Warmer and drier weather led to a dominance of fungi while a cooler and moister regime favoured bacteria, at least in the L horizon. An increasing PLFA (cy17:0 + cy19:0)/(16:1ω7c + 18:1ω7c) ratio in the O layer and A horizon suggests that the microbes suffered from water stress in these horizons. This agrees with a decreasing contribution of microbial sugars to SOM with decreasing water content in the O and A horizons. Although the original plant material exhibited increasing plant sugar content with increasing dryness, the contribution of the plant sugars to total soil organic carbon (SOC) generally decreased with decreasing water content. Physical-chemical changes of soil structure can theoretically change the sugar extractability from soils and/or chemical changes of sugars structure can probably affect the analysis. Therefore, chemical alteration and stabilization could be responsible for sugar decrease in soil with increasing dryness explaining the contrast compared to the original plant material.  相似文献   

7.
Mineral nutrient inputs to soil may alter microbial activity and consequently influence the accumulation of microbial residues. In this study, we investigated the effects of application rates and ratios of mineral fertilizers on the microbial residue carbon(MRC) of reddish paddy soils after long-term(15-year) fertilizer applications in southern China. Contents of three soil amino sugars as microbial residue contents were determined and MRC were calculated based on amino sugars. Results showed that three individual amino sugar contents increased as fertilizer application rates increased until maximum values were reached at a rate of 450-59-187 kg ha~(-1) year~(-1)(N-P-K). The three amino sugar contents then declined significantly under the highest mineral fertilizer application rate of 675-88-280 kg ha~(-1) year~(-1)(N-P-K). In addition, to enhance the microbial residue contents, it was more beneficial to double P(N:P:K= 1:0.26:0.41) in fertilizers applied to the P-deficient reddish paddy soils than to double either N(N:P:K = 2:0.13:0.41) or K(N:P:K= 1:0.13:0.82). The contents of the three individual amino sugars and microbial residues under different fertilizer application rates and ratios were significantly and positively correlated with soil organic carbon(SOC), total N, total P, and p H. Increases in values of the fungal C to bacterial C ratios showed that soil organic matter(SOM) stability increased because of the fertilizer applications over the past 15 years. The contents and ratios of amino sugars can be used as indicators to evaluate the impact of mineral fertilizer applications on SOM dynamics in subtropical paddy soils. The results indicated that fertilizer applications at a rate of 450-59-187 kg ha~(-1) year~(-1)(N-P-K) may improve crop yields, SOC contents, and SOC stability in subtropical paddy soils.  相似文献   

8.
以起始于1984年的长期不同经营模式毛竹林为研究对象,探讨了夏季毛竹林集约经营后土壤有机碳的变化。结果表明:(1)集约经营后0~80 cm土层毛竹林土壤总有机碳平均增加了5.48%,易氧化碳含量平均增加了15.14%,水溶性有机碳含量平均下降了3.98%,三者均未达到显著差异。(2)两种毛竹林土壤总有机碳、易氧化碳、水溶性有机碳的剖面特征均随土层深度的增加而呈现下降趋势,但下降速度不同。集约经营在一定程度上影响毛竹土壤易氧化碳剖面特征。(3)土壤总有机碳、易氧化碳与土壤养分之间相关性均达到极显著水平,而水溶性有机碳与土壤养分之间相关性不显著。(4)集约经营提高了土壤易氧化碳占总有机碳的比例、土壤碳库活度,并在土壤剖面部分土层差异达到显著水平。但其水溶性有机碳占总有机碳的比例3.74%,低于粗放经营毛竹林的4.10%。因此,集约经营的毛竹林,通过配施恰当比例的有机无机肥,结合土壤垦复、除草、合理的竹株留养和采伐等综合竹林经营技术,以达到改善土壤质量和实现毛竹林可持续经营的目的,也可改善土壤生物化学活性。  相似文献   

9.

Purpose

Forest ecosystems play an important role in sequestering carbon in their biomass and soils. Moso bamboo plantations, as a special forest type, are mainly distributed in southern China. There is little information about the carbon storage in moso bamboo plantations, it is now important to better understand the moso bamboo’s carbon sequestration. The main objectives of this study were to investigate the spatial variation of aboveground biomass carbon (AGC) and soil organic carbon (SOC) in moso bamboo plantations and to compare carbon storage in moso bamboo plantations under different management options.

Materials and methods

A total of 73 moso bamboo plots were selected in Anji County, which is a famous “bamboo town” in northwest Zhejiang province, China. The diameter at breast height and the age of each moso bamboo in the selected plots were measured in order to calculate the AGC. SOC was analyzed using sulfuric acid–potassium dichromate solution. One-way ANOVA was applied to analyze the significant difference of AGC and SOC under different management options. Geostatistics and geographical information were used to study the spatial dependence characteristics of AGC and SOC.

Results and discussion

The AGC values were very variable, ranging from 9.92 to 38.70 Mg?ha?1, with an average of 20.85 Mg?ha?1. The SOC values were from 34.8 to 176.17 Mg?ha?1. Both the AGC and SOC values were followed normal distributions. Moso bamboo plantations contributed about 16.5 % of total forest biomass carbon in Zhejiang Province, indicating its important influence on regional carbon budget. Geostatistical analysis revealed that the AGC had moderate spatial autocorrelation. A nested model (a spherical model with a Gaussian model) was chosen to describe the variogram. Spatial patterns for AGC were found in Anji County, with relatively high AGC values were found in the southwestern part of Anji County, and low values were located in the eastern and central parts of the county. While no clear spatial autocorrelation trend was observed in the semivariogram of SOC, indicating a random distribution pattern for SOC in the study area. Meanwhile, the Pearson’s correlation between AGC and SOC in bamboo plantation was weak (r?=?0.064, p?=?0.496), due to moso bamboo’s special growth process and different management options by human beings.

Conclusions

In this study, moderate spatial dependency was found for AGC, while the spatial autocorrelation of SOC was poor. In moso bamboo forest ecosystem, SOC was mainly stored at the top 40 cm layer. Management options were proved to be an important factor for carbon sequestration. Extensive management is an efficient way to increase carbon stock, compared to moderate and intensive management. With the rapid increase of plantation area, moso bamboo ecosystem will continue to play an important role in regional carbon budget.  相似文献   

10.
The majority of dead organic material enters the soil carbon pool following initial incorporation into microbial biomass. The decomposition of microbial necromass carbon (C) is, therefore, an important process governing the balance between terrestrial and atmospheric C pools. We tested how abiotic stress (drought), biotic interactions (invertebrate grazing) and physical disturbance influence the biochemistry (C:N ratio and calcium oxalate production) of living fungal cells, and the subsequent stabilization of fungal-derived C after senescence. We traced the fate of 13C-labeled necromass from ‘stressed’ and ‘unstressed’ fungi into living soil microbes, dissolved organic carbon (DOC), total soil carbon and respired CO2. All stressors stimulated the production of calcium oxalate crystals and enhanced the C:N ratios of living fungal mycelia, leading to the formation of ‘recalcitrant’ necromass. Although we were unable to detect consistent effects of stress on the mineralization rates of fungal necromass, a greater proportion of the non-stressed (labile) fungal necromass C was stabilised in soil. Our finding is consistent with the emerging understanding that recalcitrant material is entirely decomposed within soil, but incorporated less efficiently into living microbial biomass and, ultimately, into stable SOC.  相似文献   

11.
Intensive management is known to markedly alter soil carbon (C) storage and turnover in Moso bamboo forests compared with extensive management. However, the effects of intensive management on soil respiration (RS) components remain unclear. This study aimed to evaluate the changes in different RS components (root, mycorrhizal, and free-living microorganism respiration) in Moso bamboo forests under extensive and intensive management practices. A 1-year in-situ microcosm experiment was conducted to quantify the RS components in Moso bamboo forests under the two management practices using mesh screens of varying sizes. The results showed that the total RS and its components exhibited similar seasonal variability between the two management practices. Compared with extensive management, intensive management significantly increased cumulative respiration from mycorrhizal fungi by 36.73%, while decreased cumulative respiration from free-living soil microorganisms by 8.97%. Moreover, the abundance of arbuscular mycorrhizal fungi (AMF) increased by 43.38%, but bacterial and fungal abundances decreased by 21.65% and 33.30%, respectively, under intensive management. Both management practices significantly changed the bacterial community composition, which could be mainly explained by soil pH and available potassium. Mycorrhizal fungi and intensive management affected the interrelationships between bacterial members. Structural equation modeling indicated that intensive management changed the cumulative RS by elevating AMF abundance and lowering bacterial abundance. We concluded that intensive management reduced the microbial respiration-derived C loss, but increased mycorrhizal respiration-derived C loss.  相似文献   

12.
毛竹林地土壤团聚体稳定性及其对碳贮量影响研究   总被引:7,自引:2,他引:7  
通过对集约经营毛竹林地土壤团聚体的测定,结果表明毛竹林地3个土壤层次各粒径团聚体分布特征为>5 mm的含量在土壤团粒结构中占主导地位,占总团聚体的比例为26.39%~42.38%;其次为1~5 mm含量,占14%~18%;<0.25 mm的含量最小,占2.31%~6.73%。毛竹林土壤团聚体平均重量直径平均值为0.90 mm,并且随着土壤层次的增加有逐渐增加的趋势。毛竹林地土壤总有机碳的积累与0.25~3.15 mm土壤团聚体中有机碳含量呈显著相关,与>3.15 mm和<0.25 mm团聚体有机碳含量相关不显著。毛竹林地0~20 cm土壤层中,分布在>5 mm和3.15~5 mm粒径土壤团聚体中的有机碳比例分别为14.86%和11.26%,低于20~40 cm和40~60 cm土壤。这也说明,长期集约经营毛竹林后,林地土壤有机碳含量下降的主要原因可能是>5 mm粒径土壤团聚体有机碳含量下降。  相似文献   

13.
土壤有机碳(SOC)的稳定是陆地生态系统碳循环的关键过程之一,对维持土壤肥力和减少温室气体排放具有重要意义。以往认为植物残体中难降解性物质的物理保护和腐殖质影响土壤中有机碳库的稳定性。最近的研究结果表明,微生物介导的碳循环过程在土壤有机碳稳定中发挥着重要作用。丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF)作为土壤中一类重要的共生微生物,参与植物光合碳向土壤的转运和分配,是陆地生态系统碳循环的重要一环,但其在土壤有机碳稳定中的作用潜力还未得到充分挖掘。基于此,本文估算了植物光合碳在AMF根外菌丝的分配量;总结了AMF介导的土壤有机碳稳定机制,主要包括AMF活体菌丝对碳的截留,分泌物及残体的分子结构抗性和土壤矿物吸附,提高植物源碳的质量和数量,菌丝分泌物及残体的激发效应和稳定土壤团聚体;探讨了影响AMF介导的稳定性有机碳形成的非生物(气候因子、土壤养分和土壤矿物)和生物因子(植物和AMF种类);提出了AMF与土壤有机碳周转互作机理进一步的研究方向,包括探究菌根植物光合碳转化为稳定性SOC的机制,解析不同生态系统中AMF对稳定性SOC的贡献及影响因素,并厘清...  相似文献   

14.
以广西壮族自治区桂林市华江乡内广泛分布的毛竹林土壤为研究对象,以竹生物质炭和竹凋落物作为外源碳,设置对照(CK)、低添加量生物质炭(1% BC)、高添加量生物质炭(2% BC)、低添加量凋落物(1% L)、高添加量凋落物(2% L)5个处理,进行为期两个月的室内培养试验,研究不同外源碳添加对毛竹林土壤营养元素和酶活性的影响。结果表明:与对照相比,竹生物质炭和竹凋落物添加均显著提高了土壤pH;竹生物质炭添加显著降低了而竹凋落物添加显著提高了土壤铵态氮(NH4+-N)含量(P<0.05),且高添加量(2% BC和2% L)的降低或提高作用更明显;不同外源碳添加均显著提高了土壤硝态氮(NO3-N)含量,且凋落物添加的提高作用更明显;不同外源碳添加均显著提高了土壤有效磷(AP)含量,且高添加量的提高作用更明显;竹生物质炭添加对土壤可溶性有机碳(DOC)含量没有显著影响,但降低了土壤可溶性氮(DN)含量,而竹凋落物添加显著提高了土壤DOC和DN含量;不同外源碳添加对土壤微生物生物量碳(MBC)和氮含量(MBN)均没有显著影响,但降低了土壤蔗糖酶和脲酶活性。相关性分析表明,土壤pH、NH4+-N、NO3-N、DOC和DN是影响竹林土壤酶活性的关键性因子。  相似文献   

15.
Impact of combined application of inorganic and organic fertilizers on soil carbon dioxide (CO2) emission is poorly understood. We investigated the effects of inorganic fertilizer (IF), organic fertilizer (OF), and a mixture of organic and inorganic fertilizers (OIF) applications on the dynamics of soil CO2 efflux in intensively managed Moso bamboo plantations. Soil CO2 efflux and concentrations of water soluble organic C (WSOC) and microbial biomass C (MBC) in the IF treatment were higher than those in the control but lower than those in the OF and OIF treatments. Both OF and OIF treatments increased the SOC stock. Strong exponential relationships (p < 0.01) between soil temperature and CO2 efflux were observed in all treatments. Soil CO2 efflux in all four treatments was correlated with WSOC (p < 0.05) but not with MBC. We concluded the combined approach can possibly contribute to increasing the level of SOC stock in intensively managed plantations.  相似文献   

16.
The formation of soil organic matter (SOM) very much depends on microbial activity. Even more, latest studies identified microbial necromass itself being a significant source of SOM and found microbial products to initiate and enhance the formation of long-term stabilized SOM. The objectives of this study were to investigate the microbial contribution to SOM in pools of different stability and its impact on SOM quality. Hence, four arable soils of widely differing properties were density-fractionated into free and occluded particulate organic matter (fPOM, oPOM < 1.6 g cm−3 and oPOM < 2.0 g cm−3) and mineral associated organic matter (MOM > 2.0 g cm−3) by using sodium polytungstate. These fractions were characterized by in-source pyrolysis-field ionization mass spectrometry (Py-FIMS). Main SOM compound classes of the fractions were determined and further SOM properties were derived (polydispersity, thermostability). The contribution of microbial derived input to arable soil OM was estimated from the hexose to pentose ratio of the carbohydrates and the ratio of C4–C26 to C26–C36 fatty acids. Additionally, selected samples were investigated by scanning electron microscopy (SEM) for visualizing structures as indicators for the origin of OM. Results showed that, although the samples differed significantly regarding soil properties, SOM composition was comparable and almost 50% of identifiable SOM compounds of all soils types and all density fractions were assigned to phenols, lignin monomers and alkylaromatics. Most distinguishing were the high contents of carbohydrates for the MOM and of lipids for the POM fractions. Qualitative features such as polydispersity or thermostability were not in general assignable to specific compounds, density fractions or different mean residence times. Only the microbial derived part of the soil carbohydrates could be shown to be correlated with high SOM thermostability (r2 = 0.63**, n = 39). Microbial derived carbohydrates and fatty acids were both enriched in the MOM, showing that the relative contribution of microbial versus plant-derived input to arable SOM increased with density and therefore especially increased MOM thermostability. Nevertheless, the general microbial contribution to arable SOM is suggested to be high for all density fractions; a mean proportion of about 1:1 was estimated for carbohydrates. Despite biomolecules released from living microorganisms, SEM revealed that microbial mass (biomass and necromass) is a considerable source for stable SOM which is also increasing with density.  相似文献   

17.
【目的】 毛竹入侵能够对生态系统的各个方面产生影响,包括森林生态系统氮循环。生物固氮是森林生态系统氮循环的重要一环,研究毛竹入侵过程中土壤固氮微生物的变化,可为毛竹入侵对生态功能影响的评价提供理论依据。 【方法】 选取天目山自然保护区的三个毛竹入侵带 (青龙山、石门洞和进山门),分别在三个入侵带中沿毛竹入侵方向采集毛竹纯林、毛竹与原林混交林以及原林地的表层土壤,分析pH、有机碳、碱解氮、有效磷和速效钾等土壤化学性质,应用基于nifH功能基因的末端限制性片段长度多态性 (T-RFLP) 和荧光定量PCR (qPCR) 技术,分析土壤固氮微生物群落结构和丰度的变化。 【结果】 毛竹入侵后土壤化学性质呈现三种不同情况,在三个入侵带中总体上升的有pH、有机碳、碱解氮、有效磷,下降的为速效钾,而硝态氮的变化均不显著,总体上,土壤养分含量在毛竹入侵后有所上升。土壤固氮微生物的丰度随毛竹入侵过程降低,其中进山门入侵带的变化显著 (P < 0.05)。土壤固氮微生物T-RFLP的结果显示,48 bp在三个入侵带中均为优势片段;不同的T-RFs在毛竹入侵过程中变化各异,有的片段在毛竹入侵后消失,有的片段在毛竹入侵后出现,有的片段变化不显著。土壤固氮微生物群落的Shannon指数和均匀度指数随毛竹入侵降低,Simpson指数相反,这些指标只在石门洞入侵带的不同林分之间存在显著差异 ( P < 0.05);多响应置换过程分析 (MRPP) 显示,石门洞和进山门入侵带毛竹入侵前后土壤固氮微生物群落结构有显著变化 ( P < 0.05);冗余分析 (RDA) 结果表明,土壤性质对固氮微生物群落变化的解释率普遍较低 (低于30%),三个入侵带显著影响土壤固氮微生物群落变化的土壤化学性质各不相同,并且三个入侵带的样点在RDA坐标图中分布格局并不统一。 【结论】 即使同一自然保护区的三个毛竹入侵带,土壤固氮微生物群落随着入侵过程的变化并不一致,母岩和原有植被产生的综合作用导致土壤固氮微生物群落发生变化,但需结合更多的因素进行进一步地探讨。   相似文献   

18.
We assessed the contribution of polysaccharides and lignin, major components of plant residues, to the refractory pool of soil organic carbon (SOC) in arable soils. Soil samples from two contrasting treatment types of European long-term agroecosystem experiments, i.e. conventionally managed (fertilized) and C-depleted plots, enriched in refractory compounds, were compared. Bulk samples from eight experimental sites and particle-size fractions of two of the sites were investigated. The CuO oxidation technique was used as a relative measure of lignin and its degree of structural alteration. The contents and composition of polysaccharides were determined following hydrolysis with trifluoroacetic acid (TFA). For the bulk samples, the amount of lignin phenols declined more than the total OC in the course of C-depletion. The contribution of lignin phenols to total OC was thus lower in the C-depleted versus the fertilized plots. A greater lignin biodegradation was found in the bulk samples of the depleted plots compared with the fertilized plots. The analysis of size fractions revealed lower OC-normalized contents of lignin phenols and a higher degree of lignin alteration in fractions <63 μm of the depleted versus the fertilized plots. These findings indicate that lignin does not accumulate within the refractory C pool of arable soils. The refractory SOC pool shows a lower contribution of lignin as compared with more labile fractions of SOC. If lignin-derived carbon is present in the stable pool it has been extensively modified so that it can no longer be identified as phenolic CuO oxidation products. OC-normalized contents of polysaccharides (neutral sugars and galacturonic acid) were similar in bulk samples of the C-depleted and fertilized plots. The contrasting treatments showed similar polysaccharide contents especially in separates <6 μm. The separates <6 μm in the C-depleted plots retained between 50 and 100% of the polysaccharide amounts in the fertilized plots. The mass ratio of (galactose+mannose)-to-(arabinose+xylose) (GM/AX) was higher in bulk samples of the C-depleted versus the fertilized plots, indicating a higher relative contribution of microbial sugars. Within a particular soil, the fine separates were those with the highest GM/AX ratio. These results indicate that the refractory C pool has a similar proportion of polysaccharides as the labile C pool, but refractory polysaccharides are mainly associated with fine separates and show a dominant contribution of microbial sugars. Our results provide evidence that polysaccharides, mainly those of microbial origin, are stabilized over the long-term within fine separates of arable soils. In contrast, CuO lignin is associated mainly with the coarse fractions and does not contribute to the refractory C pool.  相似文献   

19.
Microbial communities in soil are highly species-rich, recognition of which has led to the view that functional redundancy within communities may buffer many impacts of altered community structure on soil functions. In this study we investigated the impact of long-term (>50 years) exclusion of plant-inputs (bare-fallow treatment) on soil microbial community structure and on the ability of the microbial biomass to mineralise tracer additions of 13C-labelled plant-derived C-substrates. Exclusion of plant-inputs resulted in depletion of soil organic matter (SOM) and a reduction in microbial biomass size. The microbial community structure was also strongly affected, as indicated by the distinct phospholipid fatty acid (PLFA) profiles in bare-fallow and grassland soils. Mineralisation of labile plant-derived substrates was not perturbed by the bare-fallow treatment. The incorporation of labile plant-derived C into PLFA biomarkers was found to differ between soils, reflecting the distinct community structures of the soils and indicating that these substrates were utilised by a broad range of microbial groups. In contrast, the mineralisation of recalcitrant plant-derived substrates was reduced in bare-fallow soil and the fate of substrate-derived C within PLFA biomarkers was, initially, similar between the soils. These results indicate that utilisation of these recalcitrant substrates was a function restricted to specific groups, and that exclusion of plant-derived inputs to soil had reduced the capacity of bare-fallow microbial communities to utilise this substrate type. Therefore, the study suggests that long-term selective pressure on microbial communities, resulting in altered community structure, may also result in altered functional attributes. This structure-function relationship was apparent for utilisation of recalcitrant plant-derived substrates, but not for the more widely distributed attribute of labile C-substrate utilisation.  相似文献   

20.
连年秸秆覆盖对玉米产量及土壤微生物残体碳积累的影响   总被引:2,自引:1,他引:2  
为明确连年秸秆覆盖对玉米产量及土壤微生物残体碳的影响,从而揭示秸秆覆盖条件下土壤有机碳积累的微生物学机制,该研究基于田间8 a长期定位小区试验,比较了不覆盖秸秆(CK)和覆盖秸秆(SM)两处理中玉米产量,同时利用一阶动力学模型对土壤(0~10 cm和10~20 cm)中有机碳、微生物残体碳及两者比例的年际变化进行了拟合。结果表明:1)秸秆覆盖在前5 a内没有显著提高玉米产量,第6年开始产量显著增加;在前2~3 a没有显著提高土壤有机碳和微生物残体碳含量;2)利用一阶动力学模型参数得到,SM处理显著提高了表层土壤有机碳、微生物残体碳以及两者比例的最大值,较CK处理分别高12%、39%、6%;3)SM处理显著延长了表层土壤有机碳、微生物残体碳以及两者比例达到最大值的时间,较CK处理分别多13、12和2.5 a,然而SM处理并没有显著影响下层土壤有机碳、微生物残体碳及两者比例的变化。因此,秸秆覆盖能够通过显著提高表层微生物残体碳及其对土壤有机碳的贡献,进而有利于对整个耕层土壤有机碳的固持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号