首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
One hundred and fifty-four mares were inseminated with fresh semen either during the pre- or post-ovulatory periods at different intervals relative to ovulation: 36-24 h (n = 17) and 24-0 h (n = 30) before ovulation; 0-8 h (n = 21), 8-16 h (n = 24), 16-24 h (n = 48) and 24-32 h (n = 14) h after ovulation. All mares received the same routine post-mating treatment consisting of an intrauterine infusion with 1 litre of saline and antibiotics followed 8 h later by an intravenous administration of oxytocin. Artificial inseminations (AI) from 36 h before ovulation up to 16 h post-ovulation were performed with transported cooled semen. While there was no data available for inseminations later than 16 h, data from natural mating after 16 h post-ovulation were included. Pregnancy rate (PR) of mares inseminated 36-24 h (29.4%) was significantly lower (p < 0.05) than mares inseminated 24-0 h before ovulation (60%), 0-8 h (66.7%) and 8-16 h (70.1%) post-ovulation. Embryo loss rate (ELR) was highest in mares mated 24-32 h after ovulation (75%). PR of mares mated 16-24 h post-ovulation (54.1%) did not differ significantly from any other group (p > 0.05); however, the ELR did increased markedly (34.6%) compared with inseminations before 16 h post-ovulation (<12%). At ≥ 30 days post-ovulation, PR of mares mated 16-24 h after ovulation (35.4%) was significantly lower than mares mated 0-16 h after ovulation (62%). Good PR with acceptable ELR can result from inseminations within 16 h of ovulation, at least with this specific post-mating routine treatment.  相似文献   

2.
The first (1 to 3) sperm-rich fractions of the ejaculate were collected from 4 stallions using an open-ended vagina. The volume of the collected fractions was 12 ± 8 ml with a density of 475 ± 200 million spermatozoa/ml. Before freezing, the semen was diluted with a skim-milk based extender 1:1 to 1: 8 (volume of semen: volume of extender), depending on the initial sperm concentration to achieve a final concentration of 100 million/ml. The total number of spermatozoa in an insemination dose ranged from 0.7 to 1 billion spermatozoa. Within 12 h after ovulation, 48 mares were inseminated in 70 cycles. The total single-cycle pregnancy rate at day 21 was 24%, but varied from 10% to 33% per cycle among the stallions.  相似文献   

3.
The "effect" of stallion, mare and management-related factors on the odds of pregnancy per cycle in the horse were identified and quantified from the breeding records of Dutch Warmblood (n=4491), Friesian (n=1467) and Shetland-pony mares (n=3267) mated either naturally or by artificial insemination to one of the 88 stallions between 1992 and 1996. A mare was considered to be pregnant when she did not return to oestrous within 28 days of the last insemination. For Dutch Warmblood horses, the percentage of mares that did not return for service within 28 days (NR28) varied between studfarms and ranged from 61 to 82%. The NR28 for mares inseminated with fresh semen ranged from 67 to 74% and for mares inseminated with frozen/thawed semen this percentage was 59. Mares served at a second cycle had lower odds not to return than mares served at the third or subsequent cycle (OR=0.84). For Friesian horses, the NR28 for young mares was higher than that for older mares. Mares served before 1 May in any year had lower odds of non-return than mares served after 1 July (OR=0.69). The NR28 of mares inseminated once per cycle was 6% lower than that of mares inseminated three times or more per cycle. For Shetland ponies, the NR28 also varied between studfarms and ranged from 62 to 78%. Stallions < or =3 years old had lower odds of non-return compared to older stallion (> or =11) (OR=0.57). Mares served before 1 July had lower odds of non-return. Other significant factors for this breed were age of the mare, cycle number and insemination frequency. Stallion factors accounted for 5.9, 2.0 and 14.7% of the variation in the NR28 for Dutch Warmblood, Friesian horses and the Shetland ponies, respectively.  相似文献   

4.
This study on extended, cooled stallion spermatozoa aimed to compare the ability of three extenders to maintain sperm motility during 24 h of preservation, and to describe pregnancy and foaling rates after artificial insemination (AI) of stallion spermatozoa stored and transported in the extender chosen from the in vitro study. After 6 and 24 h of preservation, motility, both subjective and evaluated by the motility analyzer (total, progressive and rapid), was lower in non-fat, dried skim milk-glucose than in both other extenders: dried skim milk-glucose added to 2% centrifuged egg yolk, and ultra high temperature treated skim milk-sugar-saline solution added to 2% centrifuged egg yolk (INRA82-Y). Rapid spermatozoa and sperm velocity parameters, after 24 h, were significantly higher in INRA82-Y. In the fertility trial, semen collected from three Maremmano stallions, diluted in INRA82-Y, and transported in a refrigerated Styrofoam box, was used to inseminate 56 mares of the same breed. Pregnancy rates after the first cycle and per breeding season were significantly higher for the 31 mares inseminated in three AI centres (54.8 and 80.6%, respectively) than for the 25 mares inseminated at the breeder's facilities (28.0 and 52.0%). Foaling rates were not significantly different between the AI centres mares (54.8%) and the other mares (44.0%). In conclusion, INRA82-Y yielded satisfactory pregnancy and foaling rates, especially when employed in the more controlled situation of an AI centre, and can therefore be included among those available for cooled stallion semen preservation.  相似文献   

5.
REASONS FOR PERFORMING STUDY: To compensate for the wide variation in the freezability of stallion spermatozoa, it has become common veterinary practice to carry out repeated ultrasonography of the ovaries of oestrous mares in order to be able to inseminate them within 6-12 h of ovulation with a minimum of 300-500 x 10(6) frozen-thawed spermatozoa. Furthermore, in order to achieve satisfactory fertility, this requirement for relatively high numbers of spermatozoa currently limits our ability to exploit recently available artificial breeding technologies, such as sex-sorted semen, for which only 5-20 x 10(6) spermatozoa are available for insemination. OBJECTIVES: This study was designed to evaluate and compare the efficacy of hysteroscopic vs. conventional insemination when low numbers of spermatozoa are used at a single fixed time after administration of an ovulation-inducing agent. METHODS: In the present study, pregnancy rates were compared in 86 mares inseminated once only with low numbers of frozen-thawed spermatozoa (3-14 x 10(6)) at 32 h after treatment with human chorionic gonadotrophin (hCG), either conventionally into the body of the uterus or hysteroscopically by depositing a small volume of the inseminate directly onto the uterotubal papilla ipsilateral to the ovary containing the pre-ovulatory follicle. RESULTS: Pregnancy rates were similarly high in mares inseminated conventionally or hysteroscopically with 14 x 10(6) motile frozen-thawed spermatozoa (67% vs. 64%). However, when the insemination dose was reduced to 3 x 10(6) spermatozoa, the pregnancy rate was significantly higher in the mares inseminated hysteroscopically onto the uterotubal junction compared to those inseminated into the uterine body (47 vs. 15%, P < 0.05). CONCLUSIONS: When inseminating mares with <10 x 10(6) frozen-thawed stallion spermatozoa, hysteroscopic uterotubal junction deposition of the inseminate is the preferred method. POTENTIAL CLINICAL RELEVANCE: Satisfactory pregnancy rates are achievable after insemination of mares with frozen-thawed semen from fertile stallions 32 h after administration of human chorionic gonadotrophin (Chorulon). Furthermore, these results were obtained when mares were inseminated with 14 x 10(6) progressively motile frozen-thawed spermatozoa from 2 stallions of proven fertility.  相似文献   

6.
Conception rates for mares bred with transported-cooled and fresh stallion semen were collected over a 4-yr period (1998–2002) for two stallions. Both stallions stood at a commercial breeding farm. Semen from both stallions was used immediately after collection on the farm and after 24 to 48 h of cold storage when transported to locations in the U.S. and Canada. Semen for insemination of mares located on the farm was extended with a commercially available skim milk glucose extender (SKMG). Spermatozoal motility following cold storage for spermatozoa diluted in SKMG extender was unacceptable. Thus, semen from both stallions was centrifuged, and spermatozoa were resuspended in SKMG supplemented with modified PBS. In a previous study, the percentage of motile spermatozoa increased following centrifugation and reconstitution of the sperm pellet in SKMG-PBS as compared with semen dilution in SKMG (Stallion A: 15% vs 47%; Stallion B: 18% vs 43%). In the current study, 22 of 25 (88%) and 3 of 4 (75%) mares conceived with transported-cooled semen from Stallions A and B, respectively. Conception rates for mares inseminated with transported semen did not differ (P>0.05) from those inseminated on the farm with fresh semen. These data illustrate that stallion owners can modify standard cooled semen processing procedures and semen extender composition to improve post-storage spermatozoa motility and to obtain acceptable fertility.  相似文献   

7.
The aim of this study was to determine whether there was an increase in pregnancy rates when frozen-thawed stallion semen was processed by single layer centrifugation (SLC) through a colloid before insemination. In addition, changes in semen parameters, including motility, were determined before and after SLC. Twenty light-horse mares (aged 3-16 years) and one Thoroughbred stallion (aged 16 years) having average fertility with fresh and cooled semen (>50% per cycle) and displaying a postthaw motility of >35% were used. Control mares were inseminated using 4- × 0.5-mL straws (200 × 106/mL) of frozen-thawed semen. Treatment mares were inseminated with 4 × 0.5 mL of frozen-thawed semen after processing by SLC. Pregnancy rates were compared using Fisher exact test, and continuous parameters were evaluated by a Student t test. The pregnancy rates at day 14 were not different for the mares inseminated with control versus SLC-processed semen, despite the difference in sperm number (171 × 106 ± 21, 59 × 106 ± 25 progressively motile sperm). After frozen-thawed semen was processed by SLC, the percentage progressively motile sperm improved (P < .05), and SLC processing resulted in a 21.8% recovery of spermatozoa. In summary, centrifugation of frozen-thawed semen through a single layer of colloid increased the percentage of motile spermatozoa, but did not improve pregnancy rates after deep horn insemination.  相似文献   

8.
Uterine fluid accumulation has been reported after insemination or natural breeding of mares. This retrospective study examined the factors affecting the incidence of uterine fluid after insemination of frozen semen. Specifically, this study determined the association between mare age, reproductive status, fluid accumulation, and pregnancy rates in mares. Records were available from 283 warmblood mares throughout 496 cycles. Mares were divided into maiden, foaling, and barren and age groups of 3 to 9, 10 to 16, and more than 16 years. Mares were inseminated only once with frozen semen within 4 to 8 hours before or after ovulation. Ultrasound examinations were performed 12 to 18 hours after insemination. A depth of at least 20 mm of fluid was considered significant. Mares with less than 20 mm were treated with oxytocin, and those with more than 20mm of fluid were given oxytocin and uterine lavage. Pregnancy determination was performed at 14 to 16 and 30 to 50 days after ovulation. Fluid level of more than 20 mm was recorded in 25% of the cycles. Barren mares and aged mares (10-16 and > 16 years) had a higher incidence of uterine fluid accumulations. Per-cycle pregnancy rate was lower (45%) in mares with uterine fluid than in mares without uterine fluid (51%). This difference was primarily due to the reduction in fertility of mares who were older than 16 years and retained fluid after insemination. Apparently, oxytocin and lavage treatments provided acceptable fertility in the other groups of mares that had uterine fluid.

Introduction

Use of equine frozen semen is accepted by the majority of horse registries. According to several field studies,[1, 2, 3, 4 and 5] insemination of frozen semen has resulted in acceptable pregnancy rates. Postbreeding fluid accumulation is a physiologic inflammation that clears the uterus of foreign material such as excess spermatozoa, seminal plasma, bacteria, and extenders. [6, 7, 8, 9 and 10] Uterine fluid can be easily diagnosed with ultrasonography. [10, 11 and 12] Persistent postbreeding uterine fluid has been associated with a decrease in fertility after natural mating or artificial insemination (AI) of fresh semen. [11, 12 and 13] Predisposing factors to persistent fluid accumulations are reduced myometrial contractions, poor lymphatic drainage, large overstretched uterus, and cervical incompetence. [7, 14 and 15] Normal mares are able to expel uterine fluid quickly after inseminations, whereas susceptible mares accumulate fluid in their uterine lumen for more than 12 hours after breeding or insemination. [10]It is commonly stated that insemination with frozen semen leads to greater post-AI fluid accumulation than insemination with fresh or cooled semen or after natural mating. Apparently, there is only 1 controlled study on this comparison.[7] The authors reported that infusion of frozen semen resulted in a greater inflammatory response than natural breeding. In a field study, [16] 16% of mares naturally mated had persistent postbreeding fluid accumulations compared with a 30% rate reported for mares inseminated with frozen semen. [1 and 2] More recently, Watson et al. [17] reported a postbreeding fluid accumulation rate of 16%, which is identical to that reported for natural mating. [16] It is difficult to compare studies because details of mare selection and insemination or breeding frequencies are not always reported. Obviously, a higher proportion of barren and aged mares in a study would increase the incidence of postbreeding fluid accumulation. [1 and 2]The study presented herein was a retrospective study designed to determine the incidence of postbreeding fluid accumulation in a large number of mares inseminated with frozen semen. Associations were determined between mare age, reproductive status and fluid accumulation, and pregnancy rate in mares with and without uterine fluid accumulation.

Materials and methods

Mares

Records were available from 283 warmblood mares inseminated with frozen semen at the Cristella Veterinary Clinic in Italy during 1998 to 2001. Mares ranging in age from 3 to 20 years were inseminated with semen that was frozen in 10 centers and was from 34 stallions. The broodmare population was subdivided into 3 reproductive groups: 89 maiden mares (mean age, 7.2 years), 106 foaling mares (mean age, 9.4 years), and 87 barren mares (mean age, 11.9 years). Maiden mares older than 7 years were selected with biopsy scores of 1 or 2 only. Barren mares were open for no more than 2 consecutive seasons and had negative cytology and bacteriology scores. Age groups were divided as follows: 3 to 9 years (n = 132), 10 to 16 years (n = 137) and older than 16 years (n = 14). Data from 496 cycles were used. Distribution of the estrous cycles was 172, 157, and 167 in the maiden, foaling, and barren groups, respectively; and 224, 244, and 28 in the youngest, intermediate, and oldest groups, respectively.

Mare reproductive management and artificial insemination protocol

During estrus, all mares underwent a daily ultrasound examination with a 5-mHz transrectal probe (SA 600 Vet; Medison Inc., Seoul, South Korea) until 1 or more 35-mm ovarian follicles were detected. Ovulation was then induced by the intravenous administration of 2000 IU of human chorionic gonadotropin (hCG). Ultrasound examination was performed 12 hours after hCG treatment and then every 4 to 8 hours until ovulation occurred. Mares were inseminated only once within a period of 4 to 8 hours before or after ovulation. The semen used was thawed according to the distribution center's instructions and had the following minimum post-thaw quality requirements: not less than 200 × 106 progressively motile spermatozoa per dose and a minimum of 30% progressive spermatozoal motility. Foaling mares were not inseminated at their first postpartum (“foal heat”) estrous period, because pregnancy rates are recognized to be lower than during the subsequent estrous periods.[18] During the first postpartum estrus, ovarian ultrasound scan examinations were performed every 2 to 3 days until an ovulation was detected. A prostaglandin F2α injection was given 5 days later to short-cycle the mare.

Postinsemination monitoring

An ultrasound examination of the reproductive tract was performed 12 to 18 hours after insemination to detect any intrauterine fluid accumulation. The presence and depth of intrauterine fluid was recorded. Twenty millimeters or more of grade II or III intrauterine fluid[19] was recorded as a significant amount of fluid. Mares with less than 20 mm of fluid were treated with an intravenous injection of 20 IU oxytocin. For mares with more than 20 mm of fluid, oxytocin was administered, and the uterus was flushed daily with buffered saline solution: 1-L aliquots were infused and recovered until the recovered fluid was clear. In these mares, oxytocin treatment was repeated up to 3 times daily. Post insemination treatments were performed for no more than 4 days after ovulation had occurred.Pregnancy diagnosis was performed with ultrasound at 14 to 16 days after ovulation. Scans were then repeated at 30 and 50 days of gestation to confirm the presence in the uterus of an apparently healthy developing conceptus.

Statistical analysis

χ2 Analysis was used to determine the effect of reproductive status and age on the incidence of fluid accumulation. In addition, the influence of persistent uterine fluid accumulation on pregnancy rates per cycle was determined for each reproductive class and age by using χ2 analysis.

Results

The per-cycle pregnancy rate at 14-16 days after ovulation was 49.3% (245/496 cycles). By the end of the season, 245 of 283 mares (86.5%) were confirmed pregnant. Fluid level of at least 20 mm (grade II or III) was recorded in 126 of the 496 cycles (25.4%). Barren mares had a higher (P < .05) incidence of postbreeding fluid accumulation (64/167; 38.3%) than maiden (34/172; 19.7%) and foaling (28/157, 17.8%; Table 1) mares. The incidence of fluid accumulation was also higher in mares older than 16 years (19/28; 67.8%) than those aged 10 to 16 years (69/244; 28.2%) and 3 to 9 years (38/224; 17%). The incidence of uterine fluid was also higher (P < .05) for mares aged 10 to 16 years than those aged 3 to 9 years (Table 2). Overall, the per-cycle pregnancy rate was lower (P < .05) for mares with post-AI fluid accumulations than for those with no uterine fluid or only a small quantity of fluid (57/126, 41.9% vs 188/360, 56.2%). Pregnancy rates were similar (P > .05) for mares with or without uterine fluid when comparisons were made within maiden and barren mare groups. However, more foaling mares became pregnant when no fluid was detected after insemination. Pregnancy rate for this group (68.1%) was higher than that for maiden (44.2%) and barren (44.6%) mares (Table 3). Older mares with uterine fluid accumulations had a lower per-cycle pregnancy rate (36.8%) than mares in the same group but without fluid. Surprisingly, if no fluid was detected, the highest pregnancy rates were in mares older than 16 years ( Table 4).  相似文献   

9.
To minimize the number of matings/inseminations, controlled ovulation has been practised since a long time ago. A potent short-term implant, releasing the GnRH analogue deslorelin (Ovuplant((R))) has been used in Australia and North America for several years for hastening the ovulation time in mares, but the product is not registered on the European market. This study was aimed to investigate: (1) ovulation time in mares implanted with Ovuplant when the largest follicle was 42 mm or more in size, (2) repeatability of ovulation time in successive oestruses when treated with Ovuplant, (3) pregnancy rate after single insemination with frozen-thawed semen near ovulation. This study included 11 mares, and altogether 17 timed ovulations. Follicular growth and ovulation were determined by palpation per rectum and by ultrasonography in the morning (at 7:00 hours) every second day until observation of a follicle of at least 42 mm in diameter. Then the mares were re-examined in the afternoon (at 19:00 hours), and an Ovuplant was inserted in the mucosa of the vulva. For detection of ovulation, the mares were palpated and ultrasounded repeatedly from 36-42 h after the insert. The mares were inseminated with frozen-thawed semen once at ovulation. All mares ovulated at 36-48 h after treatment and 94% at 38-42 h after treatment. The six mares that were treated at two oestruses ovulated at 39.9 and 39.7 h, respectively. Five of 11 mares (45.4%), inseminated with frozen-thawed semen at the first oestrous cycle were pregnant day 14-16 after ovulation. Using this protocol, there is no need of palpation/ultrasonography during night hours, and examination at 36 and 41 h after implantation might be enough for estimation of ovulation time.  相似文献   

10.
The effects of pre-ovulatory and post ovulatory insemination on pregnancy rate and embryonic-loss rate were studied in 268 mares in two experiments. Within each experiment mares were randomised within replicates as follows: to be inseminated on the day the pre-ovulatory follicle reached 35 mm (pre-ovulatory group), to be inseminated on the day of ovulation (Day 0 group), and to be inseminated on the day after ovulation (Day 1 group). Ultrasonic pregnancy diagnoses were performed on Days 11, 12, 13 and 14 (Experiment 1) and Days 11, 12, 13, 14, 15, 20 and 40 (Experiment 2). Combined for the two experiments, pregnancy rates were different (P less than 0.01) among the three groups. For Experiment 2, pregnancy rate within the pre-ovulatory group was lower (P less than 0.05) for insemination 4 days or more before ovulation than for up to 3 days before ovulation. Pregnancy rate was lower (P less than 0.05) for the Day 0 group than for the pre-ovulatory group inseminated up to 3 days before ovulation. In Experiment 2, ovulation was detected by examinations every 6 h; pregnancy rate was greater (P less than 0.05) for mares inseminated 0 to 6 h after ovulation than for mares inseminated at 18 to 24 h. No pregnancies occurred when mares were inseminated 30 h or more after ovulation. The mean day of first detection of the embryonic vesicle was different (P less than 0.0001) among the three groups. Diameter of embryonic vesicle averaged over Days 11 to 15 also differed (P less than 0.0001) among groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
OBJECTIVE: To compare the effect of semen extender and seminal plasma on postthaw motility and filtration through a glass wool-Sephadex (GWS) filter for frozen stallion semen. SAMPLE POPULATION: 7 stallions from which we collected > or = 3 ejaculates/stallion. PROCEDURES: 4 experiments were conducted to evaluate postthaw quality of frozen stallion semen. Kenney extender was compared with glucose-EDTA extender by use of various dilution rates that resulted in differing concentrations of seminal plasma. Stallions known to produce semen with poor postthaw quality were used to investigate whether a particular extender or dilution rate could improve ability of such semen to survive freeze-thaw procedures. RESULTS: Use of Kenney extender as the centrifugation extender significantly improved postthaw motility and GWS filtration, compared with glucose-EDTA. Extending semen at a dilution of 1:3 was significantly better than 1:1 for both motility and GWS filtration. In addition, including seminal plasma at a concentration of 5% in the cryopreserved semen resulted in significantly higher yield of spermatozoa after GWS filtration, compared with complete removal of SP or use of seminal plasma at 25%. Lastly, semen with poor postthaw quality had significantly improved postthaw quality in regard to motility and GWS filtration when semen was frozen with seminal plasma at a concentration of 5%, compared with semen frozen with seminal plasma at a concentration of 25%. CONCLUSIONS AND CLINICAL RELEVANCE: Use of Kenney extender at a high dilution (> or = 1:3) immediately after collection of semen can improve postthaw quality of frozen stallion semen.  相似文献   

12.
Pregnancy rates reported after artificial insemination with frozen–thawed jack spermatozoa have been relatively low compared with those attained in other species. Cholesterol is known to influence post-thaw fertility of both jack and stallion semen, and altering the amount of cholesterol in the freezing extender may help improve the fertility of frozen–thawed jack semen samples. In this study, we report clinical work that was performed using semen samples collected from a single jack. Samples were extended in EZ Mixin OF and then slowly cooled to 5°C. Extended semen samples were centrifuged at 400 × g for 10 minutes and the supernatant was discarded. Spermatozoa were resuspended in freezing medium to a final concentration of 400 × 106 cells/mL and were later frozen in liquid nitrogen vapor. Freezing extender treatments containing 2% ethylene glycol included the following: (1) 20% egg yolk (EY), (2) 5% EY, and (3) 20% EY + 60 mM hydroxypropyl-β-cyclodextrin (β-CD). For this study, a total of 28 mares aged 2 to 18 years was used over five breeding seasons (82 total cycles). Mares were administered human chorionic gonadotropin to induce ovulation when the dominant follicle was ≥35 mm in diameter. They were inseminated within 6 hours before ovulation and again within 6 hours after ovulation. Pregnancy rates obtained were as follows: (1) 6.25% (one of 15 matings) for 20% EY, (2) 46.5% (20 of 43 matings) for 5% EY, and (3) 58.5% (14 of 24 matings) for 20% EY + 60 mM β-CD. These data suggest that binding of cholesterol with β-CD enhances post-thaw fertility of jack semen samples. We conclude that acceptable pregnancy rates could be achieved with frozen–thawed jack semen samples cryopreserved in 5% EY or 20% EY + 60 mM β-CD using direct post-thaw insemination.  相似文献   

13.
Objective To evaluate the reproductive efficiency of horse farms in north-east Victoria and identify aspects of management to be targeted for improving reproductive efficiency. Design Retrospective study. Procedure Records from seven Thoroughbred (TB) and four Standardbred (STB) studs in north-east Victoria from 1990 to 2001 were reviewed; 8813 cycles in 4455 mares were analysed. TB mares were inseminated by natural mating, whereas STB mares (89%) were artificially inseminated. Results The overall early pregnancy rate per cycle was 68.8% for TB mares and for STB mares, 68.3%. Multiple pregnancy per cycle was more frequent in TB (8.3%) than in STB (4.6%) mares (P < 0.001). Early embryonic death occurred in 7.1% of TB and 7.5% of STB pregnancies. TB mares had fewer inseminations per cycle (1.03) than STB mares (1.43) (P < 0.001). There was a significantly lower proportion of barren reproductive status within the TB than the STB mares. Pregnancy rate per cycle among stallions ranged from 48% to 79%. Conclusions On-farm pregnancy rates in both breeds were higher than previously reported and likely reflect improvements in reproductive management. The disparity between breeds in the inseminations per cycle and proportion of barren mares exposed the differing structures of the two industries, and presents a target for improving the reproductive efficiency in STBs. The difference between breeds in the multiple pregnancy rate per cycle likely reflects the higher ovulation rate of TB mares. The variability in pregnancy rate per cycle between the 22 stallions was associated with differences in individual inherent fertility and the quality of stallion management.  相似文献   

14.
Contents: An insemination trial using frozen semen is described. The freezing procedure was slightly modified from the Hannover method. The insemination dose consisted of 7 medium straws containing approx 1 109 spermatozoa. A total of 28 mares of the Norwegian Trotter breed were inseminated during the 1991 season. During oestrus the mares were examined at 12 hour intervals, and the insemination was carried out after detection of ovulation. The pregnancy rate was 43% after the first insemination, increased to 68% after second and further to 75% after the third and last insemination. The foaling rate was 61.5%.  相似文献   

15.
A prospective observational study was conducted in two Australian dairy herds to assess the potential for improving pregnancy rates (proportions of inseminations that result in pregnancy) to artificial insemination (AI) if the time of ovulation could be predicted with more certainty. Herd 1 calved year‐round and inseminations were performed during two periods each day. Herd 2 calved during autumn–winter and inseminations were performed only after the morning milking each day. In both herds, the AI to ovulation interval of enrolled cows was determined by trans‐rectal ovarian ultrasonography approximately 0, 12, 24 and 36 h after AI, and pregnancy was assessed by palpation per rectum 35–56 days after AI. Also, in Herd 1 vaginal electrical resistance (VER) measurements were taken at approximately 0, 12, 24 and 36 h after AI, and in Herd 2 cows were fitted with neck mounted activity meters that monitored cow activity count in 2‐h periods. There was substantial variation in the intervals from AI to ovulation within and between herds (mean ± SD 21.2 ± 10.7, n = 102; 14.7 ± 10.4, n = 100 in herds 1 and 2, respectively). Pregnancy rates were higher for inseminations close to, but preceding, ovulation. Using combined herd data (n = 202), the highest pregnancy rate (50.8%) was observed for inseminations between 0 and 16 h before ovulation, a period in which only a modest proportion of inseminations (31.2%) occurred. In contrast, pregnancy rate was significantly lower (28.7%; risk ratio 0.6; 95% CI 0.4–1.0; p = 0.039) for inseminations between 16 and 32 h before ovulation, a period where the highest proportion of inseminations (53.2%) occurred. Thus pregnancy rates could potentially be improved if a greater proportion of inseminations were conducted shortly before ovulation. In Herd 1, mean VER during the peri‐ovulatory period varied with time from ovulation. Lowest values (mean ± SEM, VER = 64.8 ± 1.2, n = 55) occurred approximately 18 h before ovulation and were significantly lower than measurements approximately 6 h before ovulation (67.4 ± 1.0; n = 73; p = 0.003). Further work is required to determine if VER can be used to identify ovulation time and hence the optimal time to inseminate in individual animals. In Herd 2 a modest proportion of inseminations (26.9%) occurred between 24 and 40 h after the onset of increased cow activity where the highest pregnancy rate (67.9%) was observed, whereas a significantly lower pregnancy rate (42.4%; risk ratio 0.6; 95% CI 0.4–0.9; p = 0.036) was observed for inseminations between 8 and 24 h after the onset of increased cow activity where the highest proportion of inseminations (56.7%) occurred. Thus cow activity monitoring may be useful to identify the optimal time to inseminate cows. Results from this study indicate that improved methods of ovulation prediction may allow better insemination timing relative to ovulation and consequently increased pregnancy rates.  相似文献   

16.
The objectives of this study were 1) to compare pregnancy rates resulting from 2 methods of insemination using low sperm numbers and 2) to compare pregnancy rates resulting from hysteroscopic insemination of 5 x 106 nonsorted and 5 x 106 spermatozoa sorted for X- and Y-chromosome-bearing populations (flow sorted). Semen was collected with an artificial vagina from 2 stallions of known acceptable fertility. Oestrus was synchronised (June to July) in 40 mares, age 3-10 years, by administering 10 ml altrenogest orally for 10 consecutive days, followed by 250 microg cloprostenol i.m. on Day 11. All mares were given 3000 iu hCG i.v. at the time of insemination to induce ovulation. Mares were assigned randomly to 1 of 3 treatment groups: mares in Treatment 1 (n = 10) were inseminated with 5 x 10(6) spermatozoa deposited deep into the uterine horn with the aid of ultrasonography. Mares in Treatment 2 (n = 10) were inseminated with 5 x 10(6) spermatozoa deposited onto the uterotubal junction papilla via hysteroscopic insemination. Mares in Treatment 3 (n = 20) were inseminated using the hysteroscopic technique with 5 x 10(6) flow sorted spermatozoa. Spermatozoa were stained with Hoechst 33342 and sorted into X- and Y-chromosome-bearing populations based on DNA content using an SX MoFlo sperm sorter. Pregnancy was determined ultrasonographically at 16 days postovulation. Hysteroscopic insemination resulted in more pregnancies (5/10 = 50%) than did the ultrasound-guided technique (0/10 = 0%; P<0.05) when nonsorted sperm were inseminated. Pregnancy rates were not significantly lower (P>0.05) when hysteroscopic insemination was used for sorted (5/20 = 25%) and nonsorted spermatozoa (5/10 = 50%). Therefore, hysteroscopic insemination of low numbers of flow sorted stallion spermatozoa resulted in reasonable pregnancy rates.  相似文献   

17.
OBJECTIVE: To determine the effect on fertility of large-volume uterine lavage with lactated Ringer's solution (LRS) performed immediately prior to insemination in mares. DESIGN: Prospective randomized controlled study. ANIMALS: 20 mares. PROCEDURE: Control mares (n = 10) were inseminated with 1 billion (estimated before cooling) progressively motile spermatozoa that had been cooled in a passive cooling unit for 24 hours. Mares (n = 10) in the treatment group were inseminated with 1 billion progressively motile spermatozoa (cooled as described for control mares) immediately after uterine lavage with 4 L of sterile LRS. RESULTS: There were no significant differences in pregnancy rates or size of the embryonic vesicle on days 12, 13, and 14 after ovulation between control and treated mares. CONCLUSIONS AND CLINICAL RELEVANCE: Results indicate that uterine lavage with LRS can be performed immediately prior to insemination without adversely affecting fertility in mares. This is clinically important, because insemination may be necessary when a mare has inflammation-associated fluid (detectable ultrasonographically) in the uterus; removal of the fluid is desirable, because it adversely affects spermatozoal motility and fertility. This situation typically arises when mares require rebreeding after they have developed persistent mating-induced endometritis or are inseminated multiple times in a 24-hour period (during the period of physiologic mating-induced inflammation), which is a common practice when using cooled or frozen-thawed semen.  相似文献   

18.

Background

One of the challenges faced by equine breeders is ensuring delivery of good quality semen doses for artificial insemination when the mare is due to ovulate. Single Layer Centrifugation (SLC) has been shown to select morphologically normal spermatozoa with intact chromatin and good progressive motility from the rest of the ejaculate, and to prolong the life of these selected spermatozoa in vitro. The objective of the present study was a proof of concept, to determine whether fertilizing ability was retained in SLC-selected spermatozoa during prolonged storage.

Findings

Sixteen mares were inseminated with SLC-selected sperm doses that had been cooled and stored at 6°C for 48 h, 72 h or 96 h. Embryos were identified in 11 mares by ultrasound examination 16–18 days after presumed ovulation.

Conclusion

SLC-selected stallion spermatozoa stored for up to 96 h are capable of fertilization.  相似文献   

19.
Stallion semen cryopreservation is often associated with poor post-thaw sperm quality. Sugars act as nonpermeating cryoprotectants. The aim of the present study was to evaluate the cryoprotective effect of trehalose on stallion sperm quality and field fertility rates subjected to cooling and freeze–thaw process. Semen samples were collected from six Arabian stallions, divided into five different treatments in a final concentration of 100 × 106 sperm/mL by using INRA-82 extender containing 0, 25, 50, 100, and 200 mM of trehalose then subjected to both cold storage and cryopreservation. Sperm motility, acrosome, plasmatic membrane, and DNA integrity were analyzed, and 57 mares were used to evaluate the field fertility of chilled and frozen-thawed semen. Results showed that the extender containing 100 mM trehalose only increased the functional acrosomal, plasma membrane, and DNA integrities. The inclusion of 50 mM trehalose in semen extender resulted in significantly (P < .05) increased post-thaw total motility compared to the control group, and chilled semen achieved higher pregnancy rates compared to the frozen-thawed one. Pregnancy rate of mares inseminated with frozen-thawed semen (P < .05; 46.15% vs. 36.36%, respectively) was lower than those inseminated with chilled semen (76.47% vs. 68.75%, respectively) but higher than control. In conclusion, addition of 50 mM trehalose yielded the highest quality stallion semen after cooling and post-thawing in terms of motility, integrities of acrosome, membrane, and DNA as well as improved field fertility.  相似文献   

20.
The objective of this case study was to investigate whether semen centrifugation and low-dose insemination techniques would improve fertility of an aged subfertile Quarter Horse stallion with low sperm concentration, motility, and morphology in ejaculates. Forty-five mares were bred by one of five treatments (n = 9 per group) using the entire ejaculate as follows: (1) Group Body: body insemination with ejaculate diluted 1:1 in TAMU extender; (2) Group Body-Cent: body insemination after centrifugation and re-suspension of sperm pellet to 1 mL in TAMU extender; (3) Group Horn-Cent: deep horn insemination after centrifugation and re-suspension of sperm pellet to 1 mL in TAMU extender; (4) Group Cent-Hys: hysteroscopic insemination onto the uterotubal papilla after centrifugation and re-suspension of sperm pellet to 200 μL in Kenney-Modified Tyrode’s extender; and (5) Group Dens-Hys: hysteroscopic insemination onto the uterotubal papilla after discontinuous density gradient centrifugation and re-suspension of the sperm pellet in 200-μL Kenney-Modified Tyrode’s extender. Pregnancy rates did not differ among treatment groups (P = .77). Semen centrifugation for low dose insemination did not appear to improve fertility of this subfertile stallion, despite use of entire ejaculates for each individual insemination dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号