首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Three corticosteroid products (triamcinolone acetonide, fluocinonide, betamethasone valerate) and a control product composed of water, petrolatum, mineral oil, cetyl alcohol, steryl alcohol, sodium lauryl sulfate, cholesterol, and methylparaben each were applied topically to healthy dogs (5 dogs/product) once daily for 5 consecutive days. Plasma concentrations of immunoreactive adrenocorticotropic hormone (iACTH) and cortisol were determined before 1 microgram of ACTH/kg of body weight was given intravenously (pre-ACTH values) and cortisol was again measured 60 minutes after ACTH was given (post-ACTH values). Cortisol and iACTH concentrations were determined in each dog before, during, and after administration of the corticosteroid products. All 3 corticosteroids caused prompt and sustained pituitary-adrenocortical suppression. Compared with control applications, the application of corticosteroids resulted in significant reduction of plasma cortisol and iACTH concentrations by day 2 of treatment, and the lower concentrations continued to day 5. One week after the last application of the corticosteroids, plasma iACTH concentrations in the corticosteroid-treated dogs had returned to the range of values for the control dogs; however, pre- and post-ACTH cortisol concentrations remained suppressed in all corticosteroid-treated dogs. Two weeks after the last treatment, the pre-ACTH plasma cortisol concentrations of corticosteroid-treated dogs returned to those of the control dogs, but the post-ACTH plasma cortisol concentrations remained suppressed. By 3 weeks after the last treatment, post-ACTH plasma cortisol concentrations of dogs treated with triamcinolone acetonide had returned to the range of values for the control dogs, but remained suppressed in the other 2 groups of dogs. All indices of pituitary-adrenocortical activity were within the control range by 4 weeks after the last treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of single IV administered doses of dexamethasone on response to the adrenocorticotropic hormone (ACTH) stimulation test (baseline plasma ACTH, pre-ACTH cortisol, and post-ACTH cortisol concentrations) performed 1, 2, and 3 days (experiment 1) or 3, 7, 10, and 14 days (experiment 2) after dexamethasone treatment were evaluated in healthy Beagles. In experiment 1, ACTH stimulation tests were carried out after administration of 0, 0.01, 0.1, 1, and 5 mg of dexamethasone/kg of body weight. Dosages greater than or equal to 0.1 mg of dexamethasone/kg decreased pre-ACTH plasma cortisol concentration on subsequent days, whereas dosages greater than or equal to 1 mg/kg also decreased plasma ACTH concentration. Treatment with 1 or 5 mg of dexamethasone/kg suppressed (P less than 0.05) post-ACTH plasma cortisol concentration (on day 3 after 1 mg of dexamethasone/kg; on days 1, 2, and 3 after 5 mg of dexamethasone/kg). In experiment 2, IV administration of 1 mg of dexamethasone/kg was associated only with low (P less than 0.05) post-ACTH plasma cortisol concentration in dogs on day 3. In experiment 2, pre-ACTH plasma cortisol and ACTH concentrations in dogs on days 3, 7, 10, and 14 and post-ACTH plasma cortisol concentration on days 7, 10, and 14 were not affected by dexamethasone administration. The results suggest that, in dogs, a single IV administered dosage of greater than or equal to 0.1 mg of dexamethasone/kg can alter the results of the ACTH stimulation test for at least 3 days. The suppressive effect of dexamethasone is dose dependent and is not apparent 7 days after treatment with 1 mg of dexamethasone/kg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The plasma cortisol response to exogenous ACTH (ACTH stimulation test) was evaluated in 22 dogs with hyperadrenocorticism caused by adrenocortical neoplasia. The mean basal cortisol concentration (6.3 microgram/dl) was high, but 7 dogs had basal cortisol concentrations that were within normal range. Administration of exogenous ACTH increased the plasma cortisol concentrations in each dog. Normal post-ACTH cortisol concentrations were found in 9 (41%) of the 22 dogs; 13 (59%) had an exaggerated increase in cortisol concentrations after ACTH administration. In 9 of 13 dogs with carcinoma and in 4 of 9 with adenoma, the cortisol response was exaggerated. The mean post-ACTH cortisol concentration in the dogs with carcinoma was approximately 4 times that of the dogs with adenoma; the 7 dogs with the highest concentrations had carcinoma. Repeat studies were performed in 6 dogs 2 to 8 weeks after initial testing. In 5 of the 6 dogs, repeat testing yielded data of similar diagnostic significance. One dog, however, had an abnormally high post-ACTH cortisol concentration at initial evaluation, but had only a minimal response to ACTH administration, with a normal post-ACTH cortisol concentration, at time of resting. Although ACTH stimulation testing is useful in diagnosing hyperadrenocorticism, it can not reliably separate dogs with hyperfunction adrenocortical tumors from clinically normal dogs or from dogs with pituitary-dependent hyperadrenocorticism (bilateral adrenocortical hyperplasia).  相似文献   

4.
OBJECTIVE: To evaluate effect of alternate-day oral administration of prednisolone on endogenous plasma ACTH concentration and adrenocortical response to exogenous ACTH in dogs. ANIMALS: 12 Beagles. PROCEDURE: Dogs were allotted to 2 groups (group 1, 8 dogs treated with 1 mg of prednisolone/kg of body weight; group 2, 4 dogs given excipient only). During a 30-day period, blood samples were collected for determination of plasma ACTH and cortisol concentrations before, during, and after treatment with prednisolone. From day 7 to 23, prednisolone or excipient was given on alternate days. Sample collection (48-hour period with 6-hour intervals) was performed on days 1, 7, 15, 21, and 28; on other days, sample collection was performed at 24-hour intervals. Pre- and post-ACTH plasma cortisol concentrations were determined on days 3, 9, 17, 23, and 30. RESULTS: A significant difference was detected between treatment and time for group 1. Plasma ACTH concentrations significantly decreased for 18 to 24 hours after prednisolone treatment in group-1 dogs. At 24 to 48 hours, ACTH concentrations were numerically higher but not significantly different in group-1 dogs. Post-ACTH plasma cortisol concentration significantly decreased after 1 dose of prednisolone and became more profound during the treatment period. However, post-ACTH cortisol concentration returned to the reference range 1 week after prednisolone administration was discontinued. CONCLUSIONS AND CLINICAL RELEVANCE: Single oral administration of 1 mg of prednisolone/kg significantly suppressed plasma ACTH concentration in dogs for 18 to 24 hours after treatment. Alternate-day treatment did not prevent suppression, as documented by the response to ACTH.  相似文献   

5.
6.
The utility of a low dose (1 microgram/kg) synthetic ACTH challenge test in detecting moderate reductions in adrenocortical sensitivity in dogs was examined. First, the adrenocortical responses to an intravenous bolus of either 1 microgram/kg or 0.25 mg per dog of synthetic ACTH were compared in two groups of normal dogs. While plasma cortisol concentrations were similar in both groups 60 minutes after ACTH injection, dogs given 0.25 mg ACTH showed continued elevations in plasma cortisol concentrations at 90 and 120 minutes after ACTH injection. Later, the dogs previously tested with the 1 microgram/kg ACTH challenge were given a single intramuscular dose of prednisone (2.2 mg/kg) and retested with 1 microgram/kg of ACTH one week later. Plasma cortisol levels were significantly reduced after ACTH injection in dogs previously given prednisone demonstrating that a single intramuscular prednisone dose causes detectable adrenocortical suppression one week after administration. The 1 microgram/kg synthetic ACTH challenge test provides a sensitive means for evaluating adrenocortical suppression in dogs.  相似文献   

7.
OBJECTIVE: To assess serum 17-alpha-hydroxyprogesterone (17OHP) and corticosterone concentrations in dogs with nonadrenal neoplasia and dogs being screened for hyperadrenocorticism. DESIGN: Prospective study. ANIMALS: 16 clinically normal dogs, 35 dogs with nonadrenal neoplasia, and 127 dogs with suspected hyperadrenocorticism. PROCEDURE: ACTH stimulation tests were performed in all dogs. Baseline serum cortisol and corticosterone concentrations were measured in the healthy dogs; baseline serum cortisol concentration and ACTH-stimulated cortisol, corticosterone, and 17OHP concentrations were measured in all dogs. Endogenous plasma ACTH concentration was also measured before administration of ACTH in dogs with neoplasia. RESULTS: In 35 dogs with neoplasia, 31.4% had high serum 17OHP concentration and 22.9% had high serum corticosterone concentration. Of the 127 dogs with suspected hyperadrenocorticism, 59 (46.5%) had high ACTH-stimulated cortisol concentrations; of those, 42 of 59 (71.2%) and 32 of 53 (60.4%) had high serum 17OHP and corticosterone concentrations, respectively. Of dogs with serum cortisol concentration within reference range after ACTH administration, 9 of 68 (13.2%) and 7 of 67 (10.4%) had high serum 17OHP and corticosterone concentrations, respectively. In the dogs with neoplasia and dogs suspected of having hyperadrenocorticism, post-ACTH serum hormone concentrations were significantly correlated. CONCLUSIONS AND CLINICAL RELEVANCE: Serum concentrations of 17OHP or corticosterone after administration of ACTH may be high in dogs with nonadrenal neoplasia and no evidence of hyperadrenocorticism. Changes in serum 17OHP or corticosterone concentrations after administration of ACTH are proportionate with changes in cortisol concentration.  相似文献   

8.
Objective To characterise the effects of delmadinone acetate on the pituitary-adrenal axis, glucose tolerance and growth hormone concentration in normal male dogs and dogs with benign prostatic hyperplasia.
Design A prospective study involving nine normal male dogs and seven with prostatic hyperplasia.
Procedure Delmadinone acetate was administered to six normal male dogs and seven dogs with benign prostatic hyperplasia at recommended dose rates (1.5 mg/kg subcuta-neously at 0, 1 and 4 weeks). Three normal controls received saline at the same intervals. Blood concentrations of ACTH, cortisol, glucose, insulin and growth hormone were measured over 50 days. Intravenous glucose tolerance and ACTH response tests were performed before and after treatment in the nine normal animals.
Results A substantial suppression of basal and 2 h post-ACTH plasma cortisol secretion was demonstrated after one dose in all dogs given delmadinone acetate. Individual responses after the second and third administration varied between recovery in adrenal responsiveness to continued suppression. Plasma ACTH concentration was also diminished after one treatment. No effects were evident on glucose tolerance or serum growth hormone concentrations.
Conclusion Delmadinone acetate causes adrenal suppression from inhibition of release of ACTH from the pituitary gland. Treated dogs may be at risk of developing signs of glucocorticoid insufficiency if subjected to stressful events during or after therapy. Neither glucose intolerance nor hyper-somatotropism seems likely in male dogs given delmadinone acetate at the recommended dose rate, but the potential for excessive growth hormone secretion in treated bitches remains undetermined.  相似文献   

9.
Plasma aldosterone concentrations were measured in response to adrenocorticotropic hormone (ACTH) gel administration in clinically normal dogs, in dogs with hypoadrenocorticism, and in dogs (with electrolyte abnormalities) that did not have hypoadrenocorticism. Baseline plasma aldosterone concentrations were determined from specimens obtained every 10 minutes for 3 hours from 2 dogs and every 30 minutes for 7.5 hours from 2 other dogs. During the evaluation period, plasma aldosterone concentrations varied by at least 50% in each dog. A randomized crossover design was used to compare changes in plasma aldosterone concentrations after administration of ACTH gel and physiologic NaCl solution. Dogs had significantly (P = 0.002) higher plasma aldosterone concentrations after administration of ACTH gel than after administration of NaCl solution. Plasma cortisol concentrations increased as expected after ACTH gel administration. Analysis of cortisol and aldosterone concentrations in the same specimens obtained at 7 sample collection times did not reveal significant linear correlation, and scatterplots did not indicate a nonlinear association. In addition, plasma aldosterone concentrations were determined in response to ACTH administration alone and to ACTH combined with a high dose of dexamethasone (0.1 mg/kg, IV). The plasma aldosterone response to ACTH alone was not significantly different from the response to ACTH combined with dexamethasone. For both tests, plasma aldosterone concentrations at 60 and 120 minutes after ACTH administration were significantly (P less than 0.0005 and P = 0.0001, respectively, increased, compared with base-line values. Six dogs with adrenocortical hypofunction, as determined by plasma cortisol concentrations before and after ACTH administration, had plasma aldosterone concentrations that were diminished or did not increase after ACTH administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Plasma cortisol responses of 19 healthy cats to synthetic ACTH and dexamethasone sodium phosphate (DSP) were evaluated. After administration of 0.125 mg (n = 5) or 0.25 mg (n = 6) of synthetic ACTH, IM, mean plasma cortisol concentrations increased significantly (P less than 0.05) at 15 minutes, reached a peak at 30 minutes, and decreased progressively to base-line values by 120 minutes. There was no significant difference (P greater than 0.05) between responses resulting from the 2 dosage rates. After administration of 1 mg of DSP/kg of body weight, IV (n = 7), mean plasma cortisol concentrations decreased at postadministration hour (PAH) 1, and were significantly lower than control cortisol concentrations at PAH 4, 6, 8, 10, and 12 (P less than 0.01). Administration of 0.1 mg of DSP/kg, IV (n = 8) or 0.01 mg of DSP/kg, IV (n = 14) induced results that were similar, but less consistent than those after the 1 mg of DSP/kg dosage. Mean plasma cortisol concentrations returned to base-line values by PAH 24. There was not a significant difference between the 3 doses (P greater than 0.05) at most times. Measurement of endogenous ACTH in 16 healthy cats revealed plasma ACTH of less than 20 to 61 pg/ml. Seemingly, administration of synthetic ACTH consistently induced a significant (P less than 0.05) adrenocortical response in healthy cats. On the basis of time-response studies, post-ACTH stimulation cortisol samples should be collected at 30 minutes after ACTH administration to ensure detection of peak adrenocortical response.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
OBJECTIVE: To evaluate pituitary-adrenal function in critically ill dogs with sepsis, severe trauma, and gastric dilatation-volvulus (GDV). DESIGN: Cohort study. ANIMALS: 31 ill dogs admitted to an intensive care unit (ICU) at Washington State University or the University of Pennsylvania; all dogs had acute critical illness for < 48 hours prior to admission. PROCEDURES: Baseline and ACTH-stimulated serum cortisol concentrations and baseline plasma ACTH concentrations were assayed for each dog within 24 hours after admission to the ICU. The change in cortisol concentrations (Delta-cortisol) was calculated for each dog. Morbidity and mortality data were recorded for each patient. RESULTS: Overall, 17 of 31 (55%) acutely critically ill dogs had at least 1 biochemical abnormality suggestive of adrenal gland or pituitary gland insufficiency. Only 1 (3%) dog had an exaggerated response to ACTH stimulation. Dogs with Delta-cortisol < or = 83 nmol/L were 5.7 times as likely to be receiving vasopressors as were dogs with Delta-cortisol > 83 nmol/L. No differences were detected among dogs with sepsis, severe trauma, or GDV with respect to mean baseline and ACTH-stimulated serum cortisol concentrations, Delta-cortisol, and baseline plasma ACTH concentrations. CONCLUSIONS AND CLINICAL RELEVANCE: Biochemical abnormalities of the hypothalamic-pituitary-adrenal axis indicative of adrenal gland or pituitary gland insufficiency were common in critically ill dogs, whereas exaggerated responses to ACTH administration were uncommon. Acutely ill dogs with Delta-cortisol < or = 83 nmol/L may be more likely to require vasopressors as part of the treatment plan.  相似文献   

12.
Effects of etomidate on adrenocortical function in canine surgical patients   总被引:1,自引:0,他引:1  
Adrenocortical function in canine surgical patients given etomidate at 1 of 2 dosages (1.5 mg/kg of body weight or 3 mg/kg, IV) was evaluated and compared with that of dogs given thiopental (12 mg/kg, IV). The adrenocortical function was evaluated by use of adrenocorticotropic hormone (ACTH) stimulation tests and determination of plasma cortisol concentrations at 0 minute (base line) and 60 minutes after ACTH administration. At 24 hours before administration of either drug (ie, induction of anesthesia), each dog had an increase in plasma cortisol concentration when given ACTH. The ACTH stimulation tests were repeated 2 hours after induction of anesthesia. Dogs given thiopental had base-line plasma cortisol concentrations greater than preinduction base-line values, but did not increase plasma cortisol in response to ACTH stimulation. Postinduction ACTH stimulation tests in dogs given etomidate at either dose indicated base-line and 60-minute plasma cortisol concentrations that were not different from preinduction base-line values. Therefore, adrenocortical function was suppressed 2 and 3 hours after the administration of etomidate in canine surgical patients.  相似文献   

13.
Results of routine hematologic and serum biochemical analyses from 12 healthy adult male dogs that were given prednisone (0.55 mg/kg of body weight, PO, q 12 h) for 35 days were compared with those of a control group of 6 dogs that were given gelatin capsules. Analyses were performed at 2-week intervals during and after prednisone administration. Lymphocyte and eosinophil counts were significantly (P less than 0.005) decreased after 2 and 4 weeks of prednisone treatment, compared with controls. Two weeks after treatment, eosinophil counts in prednisone-treated dogs were similar to those of control dogs, whereas lymphocyte counts remained low 4 weeks after treatment in treated dogs (1,869 +/- 145 cells/microliters), compared with that in control dogs (3,662 +/- 548 cells/microliters). Neutrophil and monocyte counts did not significantly change during glucocorticoid administration. Mean platelet volume significantly (P less than 0.001) decreased after 4 weeks of prednisone treatment, but returned to pretreatment values by 2 weeks after treatment. Four weeks of prednisone treatment did not cause significant increased activity in serum alanine transaminase, total alkaline phosphatase or the steroid-induced isoenzyme of alkaline phosphatase. Significant increases in serum albumin (P less than 0.001) and total protein (P less than 0.05) concentrations were detected after 4 weeks of treatment, but mean values were not significantly different from those of controls 2 weeks after treatment ended. Results of our study indicate that eosinophil and lymphocyte counts are the most sensitive indicators of long-term glucocorticoid administration at anti-inflammatory dosages of 1.1 mg/kg daily.  相似文献   

14.
OBJECTIVE: To determine whether a program of human interaction or alterations in diet composition would alter activity of the hypothalamic-pituitary-adrenal (HPA) axis in dogs housed in an animal shelter. DESIGN: Prospective study. ANIMALS: 40 dogs. PROCEDURE: Dogs were (n = 20) or were not (20) enrolled in a program of regular supplemental human interaction (20 min/d, 5 d/wk, for 8 weeks) involving stroking, massaging, and behavioral training. In addition, half the dogs in each group were fed a typical maintenance-type diet, and the other half were fed a premium diet. Plasma cortisol and ACTH concentrations were measured during weeks 0, 2, 4, and 8 and before and after exposure to a battery of novel situations during weeks 0 and 8. RESULTS: Plasma cortisol concentration was significantly decreased by week 2, but plasma ACTH concentration was not significantly decreased until week 8 and then only in dogs fed the premium diet. Following exposure to novel situations, plasma cortisol and ACTH concentrations were significantly increased. However, during week 8, dogs enrolled in the program of human interaction had significantly lower increases in cortisol concentration than did dogs not enrolled in the program. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that both a program of human interaction and alterations in diet composition have moderating effects on activity of the HPA axis in dogs housed in an animal shelter and that activity of the HPA axis may be increased for a longer period during shelter housing than measurement of plasma cortisol concentration alone would suggest.  相似文献   

15.
A retrospective study on stored plasma from normal dogs and dogs with pituitary dependent hyperadrenocorticism (PDH), pituitary dependent hyperadrenocorticism controlled by mitotane (o,p'-DDD),* iatrogenic hyperadrenocorticism, and hypoadrenocorticism was conducted to determine if alterations in aldosterone production exist in these disorders. The plasma aldosterone concentration (PAC) was measured by radioimmunoassay immediately before and 1 hour after adrenocorticotropic hormone (ACTH) administration (0.5 IU/kg, intravenously [IV]). PACs increased significantly when ACTH was administered to normal dogs. Dogs with PDH had a lower baseline PAC, but their PAC increased to levels similar to that of normal dogs after ACTH administration. In dogs with PDH controlled by o,p'-DDD therapy, the response to ACTH was significantly less than that of normal dogs or dogs with untreated PDH. Dogs with iatrogenic hyperadrenocorticism had a lower baseline and post-ACTH PAC than normal dogs. Dogs with hypoadrenocorticism had a normal basal PAC, but showed no significant increase in PAC following ACTH administration. These findings suggest that PACs are significantly altered in a variety of adrenal diseases, and that the ACTH stimulation test may be useful when evaluating aldosterone secretion in adrenopathic disorders. In addition, at therapeutic dosages, o,p'-DDD treatment was associated with a decrease in basal and post-ACTH PACs in dogs with PDH.  相似文献   

16.
OBJECTIVE: To determine whether low doses of synthetic ACTH could induce a maximal cortisol response in clinically normal dogs and to compare a low-dose ACTH stimulation protocol to a standard high-dose ACTH stimulation protocol in dogs with hyperadrenocorticism. DESIGN: Cohort study. ANIMALS: 6 clinically normal dogs and 7 dogs with hyperadrenocorticism. PROCEDURE: Each clinically normal dog was given 1 of 3 doses of cosyntropin (1, 5, or 10 micrograms/kg [0.45, 2.3, or 4.5 micrograms/lb] of body weight, i.v.) in random order at 2-week intervals. Samples for determination of plasma cortisol and ACTH concentrations were obtained before and 30, 60, 90, and 120 minutes after ACTH administration. Each dog with hyperadrenocorticism was given 2 doses of cosyntropin (5 micrograms/kg or 250 micrograms/dog) in random order at 2-week intervals. In these dogs, samples for determination of plasma cortisol concentrations were obtained before and 60 minutes after ACTH administration. RESULTS: In the clinically normal dogs, peak cortisol concentration and area under the plasma cortisol response curve did not differ significantly among the 3 doses. However, mean plasma cortisol concentration in dogs given 1 microgram/kg peaked at 60 minutes, whereas dogs given doses of 5 or 10 micrograms/kg had peak cortisol values at 90 minutes. In dogs with hyperadrenocorticism, significant differences were not detected between cortisol concentrations after administration of the low or high dose of cosyntropin. CLINICAL IMPLICATIONS: Administration of cosyntropin at a rate of 5 micrograms/kg resulted in maximal stimulation of the adrenal cortex in clinically normal dogs and dogs with hyperadrenocorticism.  相似文献   

17.
The duration of adrenocortical suppression resulting from a single IV dose of dexamethasone or dexamethasone sodium phosphate was determined in dogs. At 0800 hours, 5 groups of dogs (n = 4/group) were treated with 0.01 or 0.1 mg of either agent/kg of body weight or saline solution (controls). Plasma cortisol concentrations were significantly (P less than 0.01) depressed in dogs given either dose of dexamethasone or dexamethasone sodium phosphate by posttreatment hour (PTH) 2 and concentrations remained suppressed for at least 16 hours. However, by PTH 24, plasma cortisol concentrations in all dogs, except those given 0.1 mg of dexamethasone/kg, returned to control values. Adrenocortical suppression was evident in dogs given 0.1 mg of dexamethasone/kg for up to 32 hours. The effect of dexamethasone pretreatment on the adrenocortical response to ACTH was studied in the same dogs 2 weeks later. Two groups of dogs (n = 10/group) were tested with 1 microgram of synthetic ACTH/kg given at 1000 hours or 1400 hours. One week later, half of the dogs in each group were given 0.01 mg of dexamethasone/kg at 0600 hours, whereas the remaining dogs were given 0.1 mg of dexamethasone/kg. The ACTH response test was then repeated so that the interval between dexamethasone treatment and ACTH injection was 4 hours (ACTH given at 1000 hours) or 8 hours (ACTH given at 1400 hours). Base-line plasma cortisol concentrations were reduced in all dogs given dexamethasone 4 or 8 hours previously.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Three groups of eight normal dogs each were orally given prednisone at doses of 0.22 mg/kg of body weight/day, 0.55 mg/kg/day, or 1.1 mg/kg on alternate mornings. Four dogs served as nontreated controls. Samples were obtained from members of each group to determine baseline serum cortisol and ACTH-stimulated cortisol values and histologic features in the lateral thoracic skin before prednisone administration, and after 1, 2, 3, and 4 weeks of administration. Some animals from each group were necropsied after 1, 2, 3, and 4 weeks of prednisone administration. Each course of prednisone administration resulted in adrenocortical atrophy and hypofunction, but adrenocortical suppression was less severe and slower in onset in the group given prednisone on alternate days. Extra-adrenal effects observed were atrophy of the skin and focal, fatty change of the liver. These changes were most evident in dogs given daily pharmacologic doses of prednisone (0.55 mg/kg/day). Fewer extra-adrenal effects were observed in dogs given alternate-day therapy. There were no extra-adrenal lesions in the dogs given equivalent glucocorticoid replacement doses (0.22 mg/kg/day).  相似文献   

19.
Cats were given megestrol acetate (MA, 5 mg once daily for 14 days), subcutaneous proligestone (PRG, 100 mg on two occasions one week apart) or subcutaneous saline (1 ml as for PRG). In cats given saline (n = 6) basal cortical concentrations, cortisol concentrations after adrenocorticotrophic hormone (ACTH) administration and fasting blood glucose concentrations did not change significantly during the following seven weeks. Cats given MA (n = 7) developed suppression of basal and ACTH-stimulated cortisol concentrations and fasting hyperglycaemia during treatment. Effects on cortisol persisted for two weeks after MA dosage ceased. In cats given PRG (n = 7), basal cortisol concentrations were reduced overall, but only three cats had persistently suppressed post-ACTH cortisol concentrations. Adrenal suppression continued for 14 weeks in one of these and for at least 22 weeks in two cats. Fasting blood glucose concentrations were unchanged in PRG-treated cats.  相似文献   

20.
Plasma cortisol and immunoreactive (IR)-ACTH responses to 125 micrograms of synthetic ACTH (cosyntropin) administered IV or IM were compared in 10 clinically normal cats. After IM administration of cosyntropin, mean plasma cortisol concentration increased significantly (P less than 0.05) within 15 minutes, reached maximal concentration at 45 minutes, and decreased to values not significantly different from baseline concentration by 2 hours. After IV administration of cosyntropin, mean plasma cortisol concentration also increased significantly (P less than 0.05) at 15 minutes, but in contrast to IM administration, the maximal cortisol response took longer (75 minutes) and cortisol concentration remained significantly (P less than 0.05) higher than baseline cortisol concentration for 4 hours. Mean peak cortisol concentration (298 nmol/L) after IV administration of cosyntropin was significantly (P less than 0.05) higher than the peak value (248 nmol/L) after IM administration. All individual peak plasma cortisol concentrations and areas under the plasma cortisol response curve were significantly (P less than 0.05) higher after IV administration of cosyntropin than after IM administration. Mean plasma IR-ACTH concentration returned to values not statistically different from baseline by 60 minutes after IM administration of cosyntropin, whereas IR-ACTH concentration still was higher than baseline concentration 6 hours after IV administration. Peak plasma IR-ACTH concentration and area under the plasma IR-ACTH response curve also were significantly (P less than 0.05) higher after IV administration of cosyntropin. Results of the study confirmed that IV administration of cosyntropin induces significantly (P less than 0.05) greater and more prolonged adrenocortical stimulation than does IM administration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号