首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
研究通过分子生物学方法证明TaDREB3a基因已整合至大豆基因组中,对T1~T3连续3代大豆植株作筛选鉴定并分析遗传稳定性,初步评价室内和田间抗旱表现。通过除草剂筛选获得T1代135株抗性植株,经PCR检测其中96株扩增出基因目的条带,获得15个阳性TaDREB3a过表达大豆T1代株系;T2代转基因大豆株系经PEG模拟干旱处理和PCR鉴定获得阳性TaDREB3a过表达大豆T2代株系共10个;T3代转基因大豆株系经PCR鉴定、半定量PCR鉴定、Bar基因试纸条检测、Southern blot分析、Western blot分析,获得6个转基因阳性株系,证实TaDREB3a基因已整合于大豆基因组,可转录完整目的mRNA,其中4个株系检测到目的蛋白表达。盆栽干旱试验显示,TaDREB3a过表达可改善转基因大豆干旱条件下生长状况,转基因植株株高和荚数明显优于对照组植株;大田干旱试验结果显示,TaDREB3a过表达株系提高大豆抗旱性、改善干旱条件下地上形态,减少产量损失。  相似文献   

2.
【目的】克隆大豆查尔酮还原酶1(CHR1)基因,以构建的过表达载体pCAMBIA3301-CHR1转化大豆,获得含有CHR1基因的阳性植株,为研究该基因的功能奠定基础。【方法】以大豆基因组DNA为模板,通过PCR扩增克隆CHR1基因,构建植物过表达载体pCAMBIA3301-CHR1,对其进行PCR及双酶切鉴定。采用农杆菌介导法将该载体转入大豆"吉农28"中,对转基因植株进行PCR、Southern杂交检测,对CHR1基因mRNA相对表达量进行荧光定量PCR检测。【结果】克隆得到的CHR1基因大小为1 100bp。成功构建了植物过表达载体pCAMBIA3301-CHR1,将其转化大豆后,通过PCR检测获得T1代转基因大豆植株12株;Southern杂交检测结果显示,CHR1基因以单拷贝形式整合入大豆基因组中;荧光定量PCR检测结果显示,转基因植株的CHR1mRNA相对表达量高于非转基因大豆植株。【结论】成功构建了过表达载体pCAMBIA3301-CHR1,并获得了CHR1基因表达量高的转基因大豆。  相似文献   

3.
通过花粉管通道法将pCMBIA3300-Cry1Iem载体中的Cry1Iem基因转入大豆品种"吉农28"中,对经过抗草铵膦筛选的转基因植株进行PCR检测,初步确定阳性植株,对转基因阳性植株进行Southern blotting检测,结果发现有5株出现杂交信号,证明Cry1Iem基因整合到受体的基因组中。利用实时荧光定量PCR测定T1代阳性植株的Cry1Iem基因在mRNA水平上的表达量,证明Cry1Iem基因在受体材料中获得了表达。  相似文献   

4.
Na~+转运蛋白SKC1基因转化大豆的研究   总被引:1,自引:0,他引:1  
本研究构建了水稻Na+转运蛋白SKC1基因植物表达载体pTF-SKC1,标记基因为Bar基因。以子叶节为外植体,利用农杆菌介导法将SKC1导入大豆中。经过除草剂抗性筛选后获得的再生植株经PCR方法鉴定,转基因植株阳性率为50%,初步证明SKC1基因已整合到大豆基因组中。耐盐性试验结果表明,转基因植株的耐盐性高于对照。  相似文献   

5.
hrpZpsta抗病基因大豆的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】将具有广谱抗病性的hrpZpsta基因导入大豆,为培育抗灰斑病的转基因大豆新品系奠定基础。【方法】采用农杆菌介导法,以大豆子叶节为受体,将具有广谱抗性的hrpZpsta基因转入大豆品种"吉林30"中,以耐盐基因badh作为筛选标记性基因,经过抗性筛选,对转基因植株进行PCR检测、Southern杂交和RT-PCR检测分析。【结果】确定的NaCl筛选浓度为200mmol/L。对T1、T2和T3代转基因植株进行PCR检测,得到T1代阳性植株30株,T2代45株,T3代284株,说明外源hrpZpsta基因在转基因后代中能够遗传。Southern杂交结果表明,外源目的基因hrpZpsta已经整合进大豆基因组中,且整合位点不尽相同。RT-PCR结果表明,hrpZpsta基因在受体大豆中获得表达。【结论】获得了hrpZpsta基因遗传表达的T3代转基因大豆株系。  相似文献   

6.
【目的】构建β-伴大豆球蛋白α′-亚基基因具有功能性间隔序列的发夹结构(Intron-hairpin RNAi,ihp-RNA)的RNA干扰(ihp-RNAi)表达载体并转化大豆,为通过RNA干扰技术改良大豆的营养品质奠定基础。【方法】以大豆总RNA反转录获得的cDNA为模板,通过PCR扩增克隆了β-伴大豆球蛋白α′-亚基基因的核心保守序列(400 bp),并将该片段的反义和正义片段插入到重组植物表达载体p3301P的种子特异性启动子7αp下游,将功能性间隔序列intron-SSR插入反义片段与正义片段之间,构建α′-亚基基因ihp-RNAi安全型表达载体p3301-PFNZ-α′-BADH,并进行PCR及双酶切鉴定。利用农杆菌介导法将带有p3301-PFNZ-α′-BADH 的菌株转化“吉农27”大豆植株,对转基因植株进行PCR、Southern杂交检测,并对转基因植株α′-亚基基因的表达量进行RT-PCR。【结果】成功构建了β-伴大豆球蛋白α′-亚基基因ihp-RNAi表达载体p3301-PFNZ-α′-BADH,利用农杆菌介导法转化大豆得到7株阳性转化植株;Southern杂交结果显示,外源基因以1~2个拷贝整合于大豆基因组中;RT-PCR检测表明,β-伴大豆球蛋白α′-亚基基因的表达被明显抑制。【结论】成功构建了β-伴大豆球蛋白α′-亚基基因ihp-RNAi表达载体,获得了α′-亚基基因被明显抑制的转基因大豆植株,为应用基因工程技术进行大豆品质改良奠定了基础。  相似文献   

7.
为获得含有天花粉蛋白(TCS)的转基因大豆植株,提高大豆的抗病虫能力,进行了植物表达载体的构建及转入大豆的研究。首先构建植物表达载体p C-t Pro-TCS-GUS,将其转化E.coli DH5α,经SDS-PAGE结果表明:克隆得到的TCS基因可以在大肠杆菌中表达。通过根癌农杆菌介导法,将TCS基因导入大豆合丰35中,获得了19株T0代转基因大豆,转化率为1.033%。选取T0代种子种植在大田中共获得18株T1代转基因大豆,对获得的T0代和T1代转基因植株进行PCR和PCR-Southern检测,证实外源天花粉蛋白基因己经整合到大豆基因组中。  相似文献   

8.
为获得磷高效利用转基因大豆新材料,构建紫色酸性磷酸酶基因GmPAP14超表达载体pBI121-GmPAP14与pCAMBIA3301-GmPAP14,通过农杆菌介导子叶节转化技术将2个载体分别转入高产优质大豆品种,并分析了GmPAP14在转基因植株内的表达情况。结果显示,利用PCR和DNA测序分析可检测到转化植株中的目的条带,其中,转入p BI121-GmPAP14载体的保豆3号阳性植株有6株;转入pCAMBIA3301-GmPAP14载体的中豆32有9株,冀豆12有11株,农大豆2号20株。进一步将上述T0植株自交,目前已获得T_1转基因后代;经实时定量PCR检测,部分株系的GmPAP14表达量显著高于野生型对照,说明GmPAP14已整合到大豆基因组,并能够在转录水平正常表达。  相似文献   

9.
《吉林农业科学》2016,(2):35-38
本研究利用农杆菌介导法将甜菜碱醛脱氢酶(BADH)基因导入大豆,以提高大豆的耐盐性。对132棵转化植株进行了PCR检测,获得64棵阳性植株,阳性率达到48%。对PCR阳性植株进一步进行Southern杂交分析,证明BADH基因已经整合到大豆基因组中。  相似文献   

10.
为探索桃(Prunus persica L.)铜/锌超氧化物歧化酶基因(PpCuZnSOD)在植物抗干旱胁迫中的作用,应用农杆菌介导法,将PpCuZnSOD基因转入大豆品种中黄13中。Southern印迹分析证实PpCuZnSOD基因已整合到大豆基因组中。定量PCR分析结果表明,转基因大豆中PpCuZnSOD表达水平均明显增加。用15%PEG4000模拟干旱胁迫时,转基因大豆种子萌发率与主根长显著高于非转基因大豆。在干旱10 d条件下,转基因大豆与非转基因大豆相比,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性增加,而丙二醛(MDA)含量下降,叶绿素含量降低较少。活性氧(ROS)染色结果显示,转基因植株在干旱胁迫下活性氧少于非转基因植株。复水后4 d,转基因大豆的成活率显著高于非转基因大豆。这些结果表明,PpCuZnSOD能提高大豆的耐旱性。  相似文献   

11.
[目的]探讨将完整的含柑橘cNHX1基因转化为草莓植株。[方法]以弗吉尼亚草莓品种为试材构建了含柑橘cNHX1基因的植物表达载体,并进行了酶切鉴定,然后将表达载体导入农杆菌EHA105中,获得了工程菌株;利用农杆菌转化法,把cNHX1基因转化成草莓植株,并利用PCR方法鉴定了转化植株。[结果]利用农杆菌转化法获得了转cNHX1基因,通过进一步利用含Kam的平板进行筛选,获得了纯合的转基因植株;对获得的转基因草莓植株提取叶片DNA,利用引物F01和R02进行扩增,结果在草莓基因组中可以扩增出1.63kb的目的条带,证明cNHX1基因已经整合到草莓基因组。[结论]为获得耐盐程度显著提高的转基因草莓奠定了初步基础。  相似文献   

12.
使用In-Fusion试剂盒构建表达载体pCUB-Zein::ferritin-35s::bar,以玉米自交系齐319茎尖分生组织为受体,采用农杆菌介导法,将玉米胚乳特异启动子基因15 kDβ-Zein驱动的大豆铁蛋白ferritin基因转入玉米,共筛选出272株除草剂(草铵膦)抗性植株,其中108株PCR检测呈阳性,转化率达3.6%,初步判断Zein::ferritin基因已转入玉米基因组中。  相似文献   

13.
cry2Aa9m基因编码的杀虫晶体蛋白(ICPs)对鳞翅目(Lepidoptera)和双翅目(Dipter)昆虫具有显著的毒杀作用,可防治大豆食心虫等害虫。试验构建了由豆荚特异性启动子Pmsg调控的cry2Aa9m基因的植物表达载体pCMB2A,以抗除草剂bar基因为筛选标记,通过农杆菌介导法对绥农28大豆子叶节进行遗传转化,获得抗性株系8株。经PCR和RT-PCR检测结果证明,cry2Aa9m基因已经整合到大豆基因组中并得以表达。研究为抗大豆食心虫转基因育种产业化奠定基础。  相似文献   

14.
大豆胞囊线虫(Soybean cyst nematode,SCN)是大豆生产上一种危害严重的世界性害虫,给大豆的产量和品质造成极大的损失。大豆抗性品种选育是其防治措施中最经济、有效的方法。文章拟利用RT-PCR方法克隆得到大豆胞囊线虫抗性候选基因Rhg1,通过构建植物过量表达载体pCAMBIA3301/Rhg1,并采用根癌农杆菌介导的大豆子叶节方法转化大豆东农50。PCR检测草丁膦抗性植株,表明目的基因已经整合到了大豆基因组中;实时荧光定量PCR结果也进一步证实,目的基因在转基因植株中有较高水平的表达丰度。在胞囊线虫的侵蚀下,转基因植株体内的超氧化物歧化酶含量显著高于野生型植株,而丙二醛含量低于野生型植株。研究证实了Rhg1为大豆胞囊线虫的主抗基因,同时为大豆胞囊线虫的分子抗性育种提供理论基础。  相似文献   

15.
SYBR Green实时定量PCR检测转基因大豆中外源基因拷贝数   总被引:1,自引:0,他引:1  
采用SYBR Green I real-time PCR方法检测转基因大豆中外源基因35S边界基因的拷贝数,以大豆凝集素基因(Lectin)作为内参照基因,以转基因大豆基因组DNA为内参照基因标准品,初始浓度为0.43μg·μL-1,进行5倍梯度稀释得到内参照基因CT值与起始模板量的相关性标准曲线:y=-2.9915x...  相似文献   

16.
【目的】获得大豆疫霉根腐病抗性相关基因,为培育大豆抗病品种提供理论依据。【方法】在以大豆抗病品种绥农10构建的受疫霉菌诱导后差异表达的cDNA消减文库的基础上,选取文库中一条与其它植物的DR1基因具有较高同源性且上调表达的EST序列。通过RT-PCR方法从绥农10中克隆该基因,并构建到植物表达载体pCAMBIA3301上,以感病品种东农50的子叶节为外植体通过根癌农杆菌介导的方法进行大豆遗传转化。【结果】该基因全长805 bp,开放读码框为471 bp,编码156个氨基酸,在此命名为SDR1。遗传转化获得转基因PCR鉴定阳性植株5株,Real-time PCR检测T1转基因植株较非转基因植株SDR1表达量提高20倍以上的有3株,经Southern杂交分析表明,出现杂交信号的有3株。经离体叶片接种大豆疫霉菌,转基因大豆的抗性较非转基因大豆明显提高。【结论】成功克隆了大豆疫霉根腐病抗性相关基因SDR1,并通过对过量表达的大豆转基因植株的抗病性鉴定初步确定了SDR1的抗病功能。  相似文献   

17.
Obtaining transgenic plants is a common method for analyzing gene function. Unfortunately, stable genetic transformation is difficult to achieve, especially for plants(e.g., soybean), which are recalcitrant to genetic transformation. Transient expression systems, such as Arabidopsis protoplast, Nicotiana leaves, and onion bulb leaves are widely used for gene functional studies. A simple method for obtaining transgenic soybean callus tissues was reported recently. We extend this system with simplified culture conditions to gene functional studies, including promoter analysis, expression and subcellular localization of the target protein, and protein-protein interaction. We also evaluate the plasticity of this system with soybean varieties, different vector constructs, and various Agrobacterium strains. The results indicated that the callus transformation system is efficient and adaptable for gene functional investigation in soybean genotype-, vector-, and Agrobacterium strain-independent modes. We demonstrated an easy set-up and practical homologous strategy for soybean gene functional studies.  相似文献   

18.
【目的】构建包含抗鳞翅目害虫基因cry1Ab13的重组植物表达载体,并利用其创制对玉米螟Ostrinia furnacalis具有优良抗性的转基因玉米Zea may L.新种质。【方法】利用同源重组法将cry1Ab13基因连接到表达载体pCAMBIA3300-Bar上,获得以抗除草剂Bar基因为筛选标记的植物表达载体pCAMBIA3300-cry1Ab13-Bar。通过农杆菌介导法转化玉米自交系H99幼胚,对再生植株进行逐代除草剂筛选、PCR检测及T2代植株的Southern blotting检测、实时荧光定量PCR检测,并对转基因植株进行田间及室内抗虫性鉴定。【结果】构建了cry1Ab13基因的植物表达载体,转化玉米获得3株高抗玉米螟和1株抗玉米螟的T2代转基因植株。Southern blotting证明cry1Ab13基因已经整合到玉米基因组中,实时荧光定量PCR结果表明cry1Ab13基因已经在玉米植株内表达。抗虫性鉴定结果表明,与对照相比转基因植株对玉米螟的抗性显著提高。【结论】将cry1Ab13基因导入玉米并成功表达,显著提高了转基因玉米对玉米螟的抗性,为抗虫玉米新种质的创制奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号