首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two N balance studies were conducted to investigate the effects of feeding graded levels of pectin (a soluble nonstarch polysaccharide, NSP) on the utilization of ileal digestible threonine (Thr; Thr study) and lysine (Lys; Lys study) intake for body protein deposition (PD) in growing pigs. In each study, eight Yorkshire barrows with an average initial BW of 17.2 +/- 1.3 (Thr study) and 14.3 +/- 1.4 kg (Lys study) were fed each of five experimental diets during five subsequent experimental periods, according to a crossover design. Pigs were fed twice daily at 2.6 times maintenance energy requirements. The soybean- and cornstarch-based diets, in which either Thr or Lys was the first-limiting nutrient, were formulated to contain (as-fed basis) 0, 4, 8, or 12% pectin or 8% cellulose (water-insoluble NSP), respectively, and with NSP substituting cornstarch. Across treatments, the mean daily Thr and Lys intake were 5.42 +/- 0.04 g/d (Thr study) and 7.98 +/- 0.12 g/d (Lys study), respectively. Apparent and standardized ileal digestibilities of Thr and Lys were determined in a separate study. Mean PD was 93.4, 90.2, 82.1, 76.7, and 87.9 g/d (SEM = 1.3; Thr study) and 90.7, 88.6, 87.8, 85.3, and 88.1 g/d (SEM = 1.1; Lys study) for the five respective treatments. Utilization of ileal digestible Thr intake, but not of ileal digestible Lys intake, for PD decreased linearly with dietary pectin level, and was not influenced by diet cellulose level. The current study indicates that apparent and standardized ileal digestibility values do not provide an accurate predictor of dietary effects on the utilization of ileal digestible Thr intake for protein deposition in growing pigs fed diets containing soluble NSP.  相似文献   

2.
To determine the effect of dietary inclusion level of wheat shorts (WS; a high nonstarch poly-saccharide-containing feed ingredient) and casein (CS; a control) on the efficiency of utilizing ileal digestible Lys (kLys) and Thr (kThr) for whole body protein deposition (PD) in the growing pig, 2 separate N-balance studies were conducted with either Lys or Thr as first-limiting AA in cornstarch-based diets. For the Lys study, a basal diet (L-basal) was formulated to contain 0.24 g of standardized ileal digestible (SID) Lys per MJ of DE, to which 0.095 or 0.19 g of SID Lys per MJ of DE were added using either CS (L-CS2 or L-CS3, respectively) or WS (L-WS2 or L-WS3, respectively). A sixth diet was evaluated that was similar to L-CS3 but to which 6% pectin (L-pectin) was added as a source of soluble nonstarch polysaccharides. For the Thr study, the basal diet (T-basal) was formulated to contain 0.14 g of SID Thr per MJ of DE, to which 0.055 or 0.11 g of SID Thr per MJ of DE were added from CS (T-CS2 or T-CS3, respectively) or from WS (T-WS2 and T-WS3, respectively). A sixth diet was evaluated that was similar to T-CS3 but to which 6% pectin was added (T-pectin). Increasing SID Lys intake from CS did not influence kLys for PD (P > 0.10), whereas increasing SID Lys intake from WS reduced kLys for PD (P = 0.001; 89 vs. 79%). Inclusion of 6% pectin had no effect on kLys for PD (P > 0.10). Increasing SID Thr intake from CS also did not influence kThr for PD (P > 0.10), whereas kThr for PD was reduced at the greatest dietary inclusion level of WS (P < 0.001; 90 vs. 77%). Pectin inclusion had no effect on kThr for PD (P > 0.10). The inefficiency of utilizing ileal digestible Lys intake for PD may be attributed to nonreactive Lys in WS. The negative impact of including high levels of WS in the diet of pigs on kThr seems to be associated with fiber content of WS; it was not related to increased endogenous ileal AA losses at the distal ileum. The impact of dietary AA source on the use of ileal digestible Lys and Thr for PD, or other body functions, is substantial and should be considered in the formulation of pig diets. Further research is warranted to elucidate the mechanisms contributing to substantial dietary effects on Thr use for PD.  相似文献   

3.
Two experiments were conducted to determine the effects of feeding reduced-CP, AA-supplemented diets at two ambient temperatures (Exp. 1) or three levels of dietary NE (Exp. 2) on pig performance and carcass composition. In Exp. 1, 240 mixed-sex pigs were used to test whether projected differences in heat increment associated with diet composition affect pig performance. There were 10 replications of each treatment with four pigs per pen. For the 28-d trial, average initial and final BW were 28.7 kg and 47.5 kg, respectively. Pigs were maintained in a thermoneutral (23 degrees C) or heat-stressed (33 degrees C) environment and fed a 16% CP diet, a 12% CP diet, or a 12% CP diet supplemented with crystalline Lys, Trp, and Thr (on an as-fed basis). Pigs gained at similar rates when fed the 16% CP diet or the 12% CP diet supplemented with Lys, Trp, and Thr (P > 0.10). Pigs fed the 12% CP, AA-supplemented diet had a gain:feed similar to pigs fed the 16% CP diet when housed in the 23 degrees C environment but had a lower gain:feed in the 33 degrees C environment (diet x temperature, P < 0.01). In Exp. 2, 702 gilts were allotted to six treatments with nine replicates per treatment. Average initial and final BW were 25.3 and 109.7 kg, respectively. Gilts were fed two levels of CP (high CP with minimal crystalline AA supplementation or low CP with supplementation of Lys, Trp, Thr, and Met) and three levels of NE (high, medium, or low) in a 2 x 3 factorial arrangement. A four-phase feeding program was used, with diets containing apparent digestible Lys levels of 0.96, 0.75, 0.60, and 0.48% switched at a pig BW of 41.0, 58.8, and 82.3 kg, respectively. Pigs fed the low-CP, AA-supplemented diets had rates of growth and feed intake similar to pigs fed the high-CP diets. Dietary NE interacted with CP level for gain:feed (P < 0.06). A decrease in dietary NE from the highest NE level decreased gain:feed in pigs fed the high-CP diet; however, gain:feed declined in pigs fed the low-CP, AA-supplemented diet only when dietary NE was decreased to the lowest level. There was a slight reduction in longissimus area in pigs fed the low-CP diets (P < 0.08), but other estimates of carcass muscle did not differ (P > 0.10). These data suggest that pigs fed low-CP, AA-supplemented diets have performance and carcass characteristics similar to pigs fed higher levels of CP and that alterations in dietary NE do not have a discernible effect on pig performance or carcass composition.  相似文献   

4.
The effects of piglet birth weight and liquid milk replacer supplementation of piglets during lactation on growth performance to slaughter weight was evaluated in a study carried out with 32 sows (PIC C-22) and their piglets (n = 384; progeny of PIC Line 337 sires). A randomized block design with a 2 x 2 factorial arrangement of treatments was used. Treatments were birth weight (Heavy vs Light) and liquid milk replacer (Supplemented vs Unsupplemented). The study was divided into two periods. At the start of period 1 (birth to weaning), pigs were assigned to either Heavy or Light (1.8 [SD = 0.09] vs 1.3 kg [SD = 0.07] BW, respectively, P < 0.001) litters of 12 pigs and half of the litters were given ad libitum access to supplemental milk replacer from d 3 of lactation to weaning (21 +/- 0.2 d). In period 2 (weaning to 110 kg BW), a total of 308 pigs were randomly selected from within previous treatment and sex subclasses and placed in pens of four pigs. Pigs were given ad libitum access to diets that met or exceeded nutrient requirements. Pigs in heavy litters were heavier at weaning (6.6 vs 5.7 kg BW; SE = 0.14; P < 0.001) and tended to have more pigs weaned (11.4 vs 10.9 pigs/litter; SE = 0.21; P = 0.10). After weaning, pigs in the Heavy litter had greater ADG (851 vs 796 g; SE = 6.7; P < 0.001) and ADFI (1,866 vs 1,783 g; SE = 17.6; P < 0.001), similar gain:feed (0.46 vs 0.45; SE = 0.003; P > 0.05), and required seven fewer days (P < 0.001) to reach slaughter weight compared to pigs in the Light treatment. Feeding supplemental milk replacer during lactation produced heavier pigs at weaning (6.6 vs 5.7 kg BW; SE = 0.14; P < 0.001) and tended to increase the number of pigs weaned (11.4 vs 10.9 pigs/litter; SE = 0.21; P = 0.10) but had no effect (P > 0.05) on growth performance from weaning to slaughter. However, pigs fed milk replacer required three fewer days (P < 0.01) to reach 110 kg BW. Sow feed intake and BW loss during lactation were not affected (P > 0.05) by either birth weight or milk replacer treatment. In conclusion, birth weight has a substantially greater impact on pig growth performance after weaning than increasing nutrient intake during lactation.  相似文献   

5.
Forty-eight barrows were used in a 2 x 6 factorial arrangement to test a hypothesis that feeding a protein-deficient diet affects subsequent growth response by altering the efficiency of protein utilization. Barrows were individually fed either a 9% crude protein (CP) diet or an 18% CP diet from 20 to 30 kg of body weight (BW) (depletion phase). From 30 to 45 kg BW (realimentation phase), pigs were fed one of six experimental diets with CP levels of 11.8, 13.1, 14.3, 15.6, 18.8, and 21.8%. Four pigs were slaughtered at 20 kg BW to determine initial body composition. Four pigs from each treatment in depletion phase (a total of eight) were slaughtered at 30 kg BW, and all pigs from each treatment in realimentation phase (a total of 36) were slaughtered at 45 kg BW for subsequent compositional analysis. Pigs were bled at 20, 30, and 40 kg BW for blood urea nitrogen (BUN), insulin-like growth factor (IGF)-I, and IGF-binding protein (IGFBP) assays. Pigs were given three times the maintenance digestible energy requirement (3 x 120 kcal BW(-0.75) x d(-1)) in three equal meals daily. The feed allowance was adjusted every 3 d. During the depletion phase, pigs fed the 18% CP diet grew faster and more efficiently (P < 0.01) and gained more (P < 0.01) water and protein than did pigs fed the 9% CP diet. Pigs fed the 18% CP diet showed higher (P < 0.01) BUN values, IGF-I concentrations, and IGFBP ratios than pigs fed the 9% CP diet. During the realimentation phase, pigs fed the 9% CP diet during the depletion phase grew faster (P < 0.05), tended to grow more efficiently (P = 0.066), gained more water (P < 0.01), and tended to gain more protein (P = 0.068) than pigs fed the 18% CP diet during the depletion phase. Pigs fed the 9% CP diet during the depletion phase tended (P = 0.069) to have a higher protein requirement during the realimentation phase than pigs fed the 18% CP diet during the depletion phase. When measured at 40 kg BW, pigs fed the 9% CP diet had a lower (P < 0.05) BUN than pigs fed the 18% CP diet during the depletion phase. However, the plasma IGF-I concentration and IGFBP ratio at 40 kg BW were not affected by dietary CP level fed during the depletion phase. This study indicates that pigs fed a protein-deficient diet exhibit compensatory growth. During the period of compensatory growth, the requirement of CP for those pigs is higher than that of pigs previously fed an adequate diet. This study also suggests BUN can be used as an indicator of protein utilization efficiency and compensatory growth.  相似文献   

6.
The optimal ratio of tryptophan (Trp):lysine (Lys) relative to the ratio of threonine (Thr):Lys was studied in 288 crossbred (Cambrough 15 x Canabrid) nursery pigs from 7.1 to 15.6 kg BW. Treatments were arranged in a 3 x 3 factorial with three calculated ratios of true digestible Thr:Lys (0.55, 0.60, or 0.65) in combination with three Trp:Lys ratios (0.145, 0.170, or 0.195). Treatments were replicated with eight pens of four pigs each. The experiment lasted 28 day with Phase II (222.6 g CP and 11.9 g true digestible Lys/kg diet, initially 24 day of age and 7.1 kg BW) and Phase III (196.2 g CP and 10.1 kg true digestible Lys/kg diet, initially 38 day of age and 9.8 kg BW) diets each fed for 14 day. Threonine by Trp interactions were observed for average daily gain during each period, and for daily feed intake during Phase III and overall. Generally, Trp addition linearly increased gain and feed intake at a Thr:Lys ratio of 0.60 and 0.65 but not at a Thr:Lys ratio of 0.55. Gain:feed was increased linearly with increasing levels of Trp during both periods. There were no main effects of Thr in either time period or overall. Overall, optimal performance was obtained in pigs fed the true digestible Trp:Lys ratio of 0.195 at Thr:Lys ratios 0.60 or 0.65. These results indicate that Trp:Lys ratios above 0.195 may be needed to maximize performance in diets containing wheat and barley.  相似文献   

7.
Four experiments were conducted to determine the effects of adding a beta-mannanase preparation (Hemicell, ChemGen, Gaithersburg, MD) to corn-soybean meal-based diets on growth performance and nutrient digestibility of weanling and growing-finishing pigs. In Exp. 1, 156 weanling pigs (20 d, 6.27 kg BW) were allotted to four dietary treatments in a randomized complete block design. Treatments were a factorial arrangement of diet complexity (complex vs simple) and addition of 3-mannanase preparation (0 vs 0.05%). Pigs were fed in three dietary phases (Phase 1, d 0 to 14; Phase 2, d 14 to 28; and Phase 3, d 28 to 42). Pigs fed complex diets gained faster and were more efficient (P < 0.05) during Phase 1 compared with pigs fed simple diets. Overall, gain:feed ratio (G:F) tended to be improved (P < 0.10) for pigs fed complex diets and it was improved (P < 0.01) for those fed diets with beta-mannanase. In Exp. 2, 117 pigs (44 d, 13.62 kg BW) were allotted randomly to three dietary treatments. Dietary treatments were 1) a corn-soybean meal-based control, 2) the control diet with soybean oil added to increase metabolizable energy (ME) by 100 kcal/kg, and 3) the control diet with 0.05% beta-mannanase preparation. Beta-mannanase or soybean oil improved (P < 0.05) G:F compared with pigs fed the control diet. In Exp. 3, 60 pigs (22.5 kg BW) were allotted randomly to the three dietary treatments used in Exp. 2. Dietary treatments were fed in three phases (23 to 53 kg, 53 to 82 kg, and 82 to 109 kg with 0.95, 0.80, and 0.65% lysine, respectively). Overall, the addition of soybean oil tended to improve G:F (P < 0.10) compared with that of pigs fed the control diet, and G:F was similar (P > 0.54) for pigs fed diets with soybean oil or beta-mannanase. Also, addition of beta-mannanase increased ADG (P < 0.05) compared with that of pigs fed the control or soybean oil diets. There were no differences (P > or = 0.10) in longissimus muscle area or backfat; however, on a fat-free basis, pigs fed the diet with beta-mannanase had greater (P < 0.05) lean gain than pigs fed the control or soybean oil diets. In Exp. 4, 12 barrows (93 kg BW) were allotted randomly to one of the three dietary treatments used in Exp. 3. Addition of 3-mannanase had no effect (P > 0.10) on energy, nitrogen, phosphorus, or dry matter digestibility. These results suggest that beta-mannanase may improve growth performance in weanling and growing-finishing pigs but has minimal effects on nutrient digestibility.  相似文献   

8.
Thirty-six barrows were used in a series of 3 P-balance experiments in which growing and finishing pigs were fed highly digestible, semi-purified diets at or below the dietary available P requirement to estimate the effect of BW on endogenous P loss. Experiments 1, 2, and 3 were conducted with pigs averaging 27, 59, and 98 kg of BW, respectively. In each experiment, pigs were placed in metabolism crates and allotted by weight and litter to 3 dietary treatments. The basal diet consisted of sucrose, dextrose, cornstarch, and casein fortified with minerals (except P) and vitamins. Diets 1, 2, and 3 in Exp. 1 were the basal diet with 0, 0.078, or 0.157% added P, respectively, from monosodium phosphate. In Exp. 2 and 3, diets 1, 2, and 3 were the basal diet with 0, 0.067, and 0.134% added P, respectively, from monosodium phosphate. Within replicate, pigs were fed equal amounts of feed twice daily. Pigs were adjusted to treatments for 7 d before a 6-d, marker-to-marker collection of feces and urine. Phosphorus intakes for pigs fed the 3 diets ranged from 1.73 to 3.91 g/d in Exp. 1, from 2.18 to 5.32 g/d in Exp. 2, and from 1.96 to 6.26 g/d in Exp. 3. Fecal P excretion and P absorption increased linearly (P < 0.05) with increasing P intake. In the 3 experiments, urinary P excretion (g/d) was low for pigs fed diet 1 (0.010, 0.011, 0.019) and diet 2 (0.013, 0.058, 0.084) and was low for pigs fed diet 3 in Exp. 1 (0.037); however, urinary P was greater in pigs fed diet 3 in Exp. 2 and 3 (0.550 and 0.486, respectively). When P absorption (Y, g/d) was regressed on P intake (X, g/d) in Exp. 1, 2, and 3, the relationships were linear (P < 0.01): Y = -0.110 + 0.971X (R2 = 0.999), Y = -0.156 + 0.939X (R2 = 0.998), and Y = -0.226 + 0.8919X (R2 = 0.982), respectively. Thus, our estimates of endogenous P loss at zero P intake were 110, 156, and 226 mg/d for 27-, 59-, and 98-kg pigs, respectively. When these Y-intercepts were regressed on BW, the relationship was Y = 63.06 + 1.632X (R2 = 0.996), where Y = endogenous P loss in mg/d and X = BW in kg. Based on these data, we estimate the endogenous P loss of pigs fed highly digestible, semi-purified diets to increase by approximately 1.632 mg for each 1-kg increase in BW from 25 to 100 kg.  相似文献   

9.
Energy values and amino acid (AA) digestibility of dried yeast (DY) and soybean meal (SBM) were determined in 2 experiments with growing pigs. Experiment 1 was conducted to determine the digestible energy (DE) and metabolizable energy (ME) in DY and SBM. Thirty barrows with a mean initial body weight (BW) of 20.6 kg (SD = 1.04) were assigned to 5 dietary treatments in a randomized complete block design with period and BW as blocking factors. A reference diet was prepared with corn, canola meal, and soybean oil as energy-contributing ingredients. Four additional diets were prepared by adding 5% and 10% DY or SBM at the expense of energy-contributing ingredients in the reference diet. The ratio of corn, canola meal, and soybean oil was kept consistent across the experimental diets. Each experimental period consisted of 5-d adaptation and 5-d quantitative collection of feces and urine. Test ingredient-associated DE or ME intake (kcal/d) was regressed against test ingredient intake [kg dry matter (DM)/d] to estimate the DE or ME in test ingredients as the slope of linear regression model. The DE in DY was estimated at 3,933 kcal/kg DM, which was not different from the estimated DE in SBM at 4,020 kcal/kg DM. Similarly, there was no difference between DY and SBM in the estimated ME (3,431 and 3,756 kcal/kg DM, respectively). Experiment 2 was conducted to determine the standardized ileal digestibility (SID) of AA in DY and SBM. Twenty-one barrows with a mean initial BW of 20.0 kg (SD = 1.31) were surgically fitted with T-cannulas at the distal ileum and assigned to 3 dietary treatments in a randomized complete block design with BW as a blocking factor. Two semi-purified diets containing DY or SBM as the sole nitrogen source and one nitrogen-free diet (NFD) were prepared. The NFD was used to estimate the basal ileal endogenous losses of CP and AA. Pigs were fed the 3 diets for 5 d as adaptation, followed by 2 d of feeding with ileal digesta collection. The SID of AA, except Gly and Pro, in DY was less (P < 0.05) than in SBM. The SID of indispensable AA in DY ranged from 64.1% for Thr to 85.2% for Arg, and those in SBM ranged from 83.9% for Thr to 91.8% for Arg. In conclusion, energy values of DY are not different from those of SBM, whereas AA in DY is less digestible than in SBM. The estimated DE and ME as well as the SID of AA in DY and SBM can be used in diet formulation for growing pigs using these ingredients.  相似文献   

10.
Two trials were conducted to determine the replacement nutritive value of dried skim milk for growing-finishing pigs. In a three-phase feeding trial, 180 growing composite barrows (40.8 +/- 2.9 kg BW) were allotted to three dietary treatments. Each phase lasted 28 d. Treatment 1 comprised a basal corn-soybean meal diet supplemented with crystalline AA to contain true ileal digestible concentrations (as-fed basis) of 0.83, 0.66, and 0.52% Lys; 0.53, 0.45, and 0.40% Thr; and 0.51, 0.45, and 0.42% sulfur amino acids (SAA; Met + Cys) in Phases 1, 2, and 3, respectively. Treatments 2 and 3 were the basal diets with 5 and 10% (as-fed basis) dried skim milk added. The three diets at each phase were formulated to have the same quantities of DE, true ileal digestible Lys, Thr, Trp, SAA, Ca, and available P. Pigs were housed 10 per pen (six pens/treatment), allowed ad libitum access to feed, and slaughtered at 121.6 +/- 9.3 kg BW. No differences were detected between pigs fed the basal diet and the dried skim milk diets or between pigs fed the 5 and 10% dried skim milk diets, respectively, in 84-d ADG (P = 0.84 or P = 0.71), ADFI (P = 0.54 or P = 0.91), and G:F (P = 0.80 or P = 0.97), in hot carcass weight (P = 0.66 or P = 0.74), 45-min postmortem LM pH (P = 0.90 or P = 0.53), 10th-rib backfat thickness (P = 0.24 or P = 0.77), LM area (P = 0.13 or P = 0.63), weights of belly (P = 0.43 or P = 0.70), trimmed wholesale cuts (P = 0.18 to 0.85 or P = 0.06 to 0.53), and ham components (P = 0.25 to 0.98 or P = 0.32 to 0.63). In the N balance trial, four littermate pairs of finishing gilts (82.9 +/- 2.0 kg BW) were assigned within pair to the basal or the 10% dried skim milk (as-fed basis) finishing diet. Daily feed allowance was 2.6x maintenance DE requirement and was given in two equal meals. Total fecal collection from eight meals and a 96-h urine collection began on d 14 when gilts weighed 92.1 +/- 2.2 kg BW. No differences were found between dietary treatments in gilt's daily N intake (P = 0.33) and the daily output of urinary urea (P = 0.88), urinary N (P = 0.97), fecal N (P = 0.69), and total manure (P = 0.62), as well as apparent total-tract N digestibility (P = 0.84) and N retention (P = 0.84). It is concluded that growing-finishing pigs fed diets containing 10% dried skim milk would have growth performance, carcass traits, and N digestibility and use similar to those fed typical corn-soybean meal diets.  相似文献   

11.
Two experiments were conducted to determine the effects of including distiller's dried grains with solubles in nursery diets on growth performance, and to establish maximum inclusion rates for corn distiller's dried grains with solubles originating from modern, "new-generation" ethanol plants (built since 1990). Ninety-six crossbred pigs (BW = 6.18 +/- 0.14 kg) were blocked by gender and ancestry, and pigs within each block were randomly assigned to one of six dietary treatments (four pigs/pen, four pens/dietary treatment) in each of two growth performance experiments. Dietary treatments provided 0, 5, 10, 15, 20, or 25% distiller's dried grains with solubles during Phases 2 and 3 of a three-phase nursery feeding program for early-weaned pigs. Pigs in Exp. 1 were slightly older (19.0 vs. 16.9 d of age) and heavier (7.10 vs. 5.26 kg) at the beginning of the experiment compared to pigs in Exp. 2. All pigs in both experiments were provided a commercial pelleted Phase 1 diet for the first 4 d after weaning and were then switched to their respective experimental Phase 2 diets, which were fed for 14 d, followed by their respective Phase 3 experimental diets, which were fed for a subsequent 21-d feeding period. Experimental diets were formulated to contain equivalent apparent ileal digestible lysine (1.35 and 1.15%), apparent ileal digestible methionine + cystine (0.80 and 0.65%), ME (3,340 and 3,390 kcal/kg), calcium (0.95 and 0.80%), and total phosphorus (0.80 and 0.70%) within Phases 2 and 3, respectively. Overall growth rate, ending body weight, and feed conversion were similar among pigs regardless of dietary distiller's dried grains with solubles level for both experiments. In Exp. 1, feed intake was not affected by dietary treatment (P > 0.10). In Exp. 2, however, increasing the level of distiller's dried grains with solubles linearly decreased feed intake (P < 0.02) during Phase 2 and tended to decrease voluntary feed intake (P < 0.09) over the length of the experiment. These results suggest that the corn distiller's dried grains with solubles used in this study can be included in Phase 3 diets for nursery pigs at dietary levels of up to 25% without negatively affecting growth performance after a 2-wk acclimation period. Including high levels of corn distiller's dried grains with solubles in diets for pigs weighing less than 7 kg in BW, however, may negatively influence feed intake and growth.  相似文献   

12.
Two experiments, each with 36 barrows with high-lean-gain potential, were conducted to evaluate apparent nutrient digestibilities and performance and plasma metabolites of pigs fed corn-soybean meal diets (CONTROL) and low-protein diets. The low-protein diets were supplemented with crystalline lysine, threonine, tryptophan, and methionine either on an ideal protein basis (IDEAL) or in a pattern similar to that of the control diet (AACON). Amino acids were added on a true ileally digestible basis. The initial and final BW were, respectively, 31.5 and 82.3 kg in Exp. 1 and 32.7 and 57.1 kg in Exp. 2. In Exp. 1, the CONTROL and IDEAL diets were offered on an ad libitum basis or by feeding 90 or 80% of ad libitum intake. Pigs were fed for 55 d. In Exp. 2, the CONTROL, IDEAL, and AACON diets were offered on an ad libitum basis or by feeding 80% of the ad libitum intake. Pigs were fed for 27 d. Pigs fed the CONTROL diet had greater (P < 0.05) ADG and feed efficiency (G/F) than pigs fed the IDEAL (Exp. 1 and 2) and AACON diets (Exp. 2). As the level of feed intake decreased, ADG decreased (P < 0.05), but G/F tended to improve (P < 0.10) for pigs fed 90% of ad libitum in Exp. 1 and for pigs fed 80% of ad libitum in Exp. 2. In Exp. 1, the apparent total tract digestibilities of DM and energy were greater (P < 0.01) for pigs fed the IDEAL diet than for pigs fed the CONTROL diet. In Exp. 2, the apparent total tract digestibility of protein was greatest in pigs fed the CONTROL diet (P < 0.05) and was greater (P < 0.05) in pigs fed the AACON diet than in pigs fed the IDEAL diet. Plasma urea concentrations were lower in pigs fed the IDEAL diet than in pigs fed the CONTROL diet, regardless of feeding level. For pigs fed the CONTROL diet, plasma urea concentrations were lower when feed intake was 80% of ad libitum (diet level, P < 0.01). In summary, pigs fed the IDEAL and the AACON diets gained less and had lower plasma urea concentrations than pigs fed the CONTROL diet. Based on these data, it seems that the growth potential of pigs fed the IDEAL and AACON diets may have been limited by a deficiency of lysine, threonine, and(or) tryptophan and that the amino acid pattern(s) used was not ideal for these pigs.  相似文献   

13.
Four experiments were conducted to determine the effects of supplemental Trp on meat quality, plasma and salivary cortisol, and plasma lactate. Experiment 1 was a preliminary study to measure plasma cortisol concentrations in 4 barrows (50 kg of BW) that were snared for 30 s at time 0 min. Pigs were bled at -60, -30, -15, 2, 4, 6, 8, 10, 15, 20, 25, 30, 45, 60, 90, and 120 min. Plasma cortisol was near maximum 10 min after the pigs were snared. In Exp. 2, 20 barrows (50 kg of BW) were allotted to a basal corn-soybean meal diet or the basal diet with 0.5% supplemental l-Trp for 5 d. After the 5-d feeding period, pigs were snared for 30 s and bled at -10, 0, 2, 4, 6, 8, 10, 15, 20, 25, 30, 45, 60, 90, and 120 min after snaring. Pigs fed the diet with supplemental Trp had a lower (P < 0.01) mean plasma cortisol than pigs fed the basal diet. Plasma lactate also was decreased (P < 0.07) by supplemental Trp. In Exp. 3, the same pigs and treatments were used as in Exp. 2, but 5 pigs were snared and 15 pigs adjacent to those being snared were bled to determine if pigs are stressed when they are adjacent to pigs being snared. For pigs adjacent to snared pigs, the area under the curve (P < 0.06) and mean for plasma cortisol was lower (P < 0.01) in pigs fed Trp relative to those fed the basal diet. In Exp. 4, 90 barrows (initial BW of 106 kg) were allotted to 6 treatments in a 3 x 2 factorial arrangement. Three diets with Trp (basal diet, basal supplemented with 0.5% Trp for 5 d, or pigs fed the basal diet with a 0.1 g/kg of BW Trp bolus given 2 h before slaughter) were combined with 2 handling methods (minimal and normal handling). Dressing percent, 24-h pH, and 24-h temperature were reduced in the minimally handled pigs (P < 0.10) compared with the normally handled pigs. Pigs fed Trp in the diet relative to those fed the basal diet had increased 45-min temperature, Commission Internationale de l'Eclairage (CIE) redness (a*) and yellowness (b*) values, and drip and total losses (P < 0.10). Tryptophan in bolus form decreased 45-min pH in the minimally handled pigs but increased 45-min pH in the normally handled pigs (handling x Trp bolus interaction, P = 0.08). Tryptophan in the diet increased CIE lightness (L*) in minimally handled pigs but decreased CIE L* in the normally handled pigs (handling x Trp diet interaction, P = 06). No other response variables were affected by handling method or Trp. Results indicate that Trp decreases plasma cortisol but has no positive effect on meat quality.  相似文献   

14.
A balance study was performed in order to quantify the effect of continuously increased phosphorus (P) intake on faecal and urinary P excretion. The aim was to quantify the level of intake where regulatory P excretion becomes relevant for comparative digestibility measurements on P, and when the pig adapts its urinary P excretion to increased P intake. Phosphorus intake of growing pigs was continuously increased on a daily basis starting at a marginal level and P excretion via faeces and urine was continuously followed for 92 days. Two semi-synthetic diets were prepared with different proportions of Na2HPO4 resulting in 2.4 (diet 1) and 6.3 (diet 2) g P/kg DM. Concentration of Ca was adapted to achieve a Ca supply approximately 3.1 fold the digestible P supply. Six castrated male crossbred pigs (31 kg BW) were kept individually in metabolism crates after they had undergone a 14 d P depletion period during which they were fed diet 1 solely. Pigs received 1.04kg of diet 1 per day throughout the experiment, and each day the amount of feed and P supplied to pigs from diet 2 was increased by 12 g and 69 mg, respectively. ME supply was approximately 2.4 fold maintenance and average daily BW gain of pigs during the entire experiment was 690 +/- 30 g. While intake increased linearly, faecal excretion of P and Ca increased non-linearly and could be best described by third order polynomial functions. The proportion of ingested P not excreted via faeces followed a quadratic type of curve with a maximum of 81% at 25 days on experiment and P intake of 4.0 g/d. Thereafter, the proportion decreased continuously. The digestibility of P from diet 2, determined by the slope ratio technique, was constant and not affected by P intake up to a P intake of 5 g/d. Renal P excretion did not exceed inevitable losses until day 60 and increased exponentially thereafter when body P reserves were restored. It is concluded, that an adaptation to surplus P supply occurred earlier on the intestinal than on the renal level. While faecal P excretion appeared regulated depending on the actual requirement for P retention, the regulation via urine depended on the P status of the pig. Once the renal P excretion of growing pigs exceeds a level of 25 mg/d, intake of digestible P cannot be regarded sufficiently low to measure P digestibility as a capacity of the feedstuff.  相似文献   

15.
The purpose of this investigation was to compare the growth performance of grower pigs fed low-CP, corn-soybean meal (C-SBM) AA-supplemented diets with that of pigs fed a positive control (PC) C-SBM diet with no supplemental Lys. Five experiments were conducted with Yorkshire crossbred pigs, blocked by BW (average initial and final BW were 21 and 41 kg, respectively) and assigned within block to treatment. Each treatment was replicated 4 to 6 times with 4 or 5 pigs per replicate pen. Each experiment lasted 28 d and plasma urea N was determined at the start and end of each experiment. All diets were formulated to contain 0.83% standardized ileal digestible Lys. All the experiments contained PC and negative control (NC) diets. The PC diet contained 18% CP and was supplemented with only DL-Met. The NC diet contained 13% CP and was supplemented with L-Lys, DL-Met, L-Thr, and L-Trp. The NC + Ile + Val diet was supplemented with 0.10% Val + 0.06% Ile. The NC + Ile + Val diet was supplemented with either His (Exp. 1), Cys (Exp. 2), Gly (Exp. 2, 3, and 4), Glu (Exp. 3), Arg (Exp. 4), or combinations of Gly + Arg (Exp. 4 and 5) or Gly + Glu (Exp. 5). Treatment differences were considered significant at P < 0.10. In 3 of the 4 experiments that had PC and NC diets, pigs fed the NC diet had decreased ADG and G:F compared with pigs fed the PC diet. The supplementation of Ile + Val to the NC diet restored ADG in 4 out of 5 experiments. However, G:F was less than in pigs fed the PC diet in 1 experiment and was intermediate between the NC and PC diets in 3 experiments. Pigs fed supplemental Ile + Val + His had decreased G:F compared with pigs fed the PC. Pigs fed supplemental Cys to achieve 50:50 Met:Cys had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.224% supplemental Gly had similar ADG, greater ADFI, and decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.52% supplemental Gly had ADG and G:F similar to that of pigs fed the PC. Pigs fed supplemental Glu had decreased G:F compared with pigs fed the PC. Pigs fed Ile + Val + 0.48% supplemental Arg had decreased G:F compared with pigs fed the PC. Pigs fed the diet supplemented with Gly + Arg had ADG and G:F similar to pigs fed the PC. Pigs fed the low-CP diets had reduced plasma urea N compared with pigs fed PC. The results of these experiments indicate that supplementing Gly or Gly + Arg to a low-CP C-SBM diet with 0.34% Lys, Met, Thr, Trp, Ile, and Val restores growth performance to be similar to that of pigs fed a PC diet with no Lys supplementation.  相似文献   

16.
Two experiments were conducted to determine the effect of soy isoflavones on growth, meat quality, and carcass traits of growing-finishing pigs. In Exp. 1, 36 barrows (initial and final BW, 26 and 113 kg, respectively) were used and each treatment was replicated four times with three pigs each. The dietary treatments were 1) corn-soybean meal (C-SBM), 2) corn-soy protein concentrate (low isoflavones, C-SPC), or 3) C-SPC + isoflavones (isoflavone levels equal to those in C-SBM). Daily gain and ADFI were increased (P < 0.10) in pigs fed the C-SPC relative to pigs fed the C-SPC + isoflavone diet in the late finishing period; otherwise, growth performance was not affected (P > 0.10) by diet. Longissimus muscle area, 10th-rib fat depth, percentage muscling (National Pork Producers Council), 24-h pH and temperature, color, firmness-wetness, marbling, drip loss, and CIE L*, a*, and b* color values were not affected (P > 0.10) by diet. Dressing percentage, carcass length, weight and percentage of fat-free lean in ham and carcass, lean gain per day, lean:fat, and ham weight were increased (P < 0.10), and ham fat and percentage fat in ham and carcass were decreased (P < 0.10) in pigs fed the C-SPC + isoflavone diet compared with pigs fed the C-SPC diet. Pigs fed the C-SPC + isoflavone diet had similar (P > 0.10) carcass traits as pigs fed the C-SBM diet, except carcass length, percentage ham lean and thaw loss were greater (P < 0.10), and total ham fat was less (P < 0.10) in pigs fed the C-SPC + isoflavone diet. In Exp. 2, 60 gilts (initial and final BW, 31 and 116 kg, respectively) were used, and each treatment was replicated five times with four pigs per replicate. The treatments were 1) C-SBM, 2) C-SBM + isoflavone levels two times those in C-SBM, and 3) C-SBM + isoflavone levels five times those in C-SBM. Daily feed intake was linearly decreased (P < 0.10) in the growing phase and increased (P < 0.10) in the late finishing phases as isoflavone levels increased; otherwise, growth performance was not affected (P > 0.10) by diet. Diet did not affect (P > 0.10) carcass traits; however, CIE a* and b* color scores and drip loss were decreased (P < 0.06) as isoflavone levels increased. Soy isoflavones decreased fat and increased lean in barrows when fed within the dietary concentrations found in typical C-SBM diets but not when fed to gilts at concentrations above those present in C-SBM diets.  相似文献   

17.
A study was conducted to evaluate the extent and dynamics of whole body protein deposition (Pd) and changes in chemical and physical body composition after a period of AA intake restriction in entire male pigs with high lean-tissue growth potentials. Fifty-eight entire male pigs (initial BW 15.8 +/- 0.9 kg) were allotted to 1 of 3 dietary AA levels between 15 and 38 kg of BW: control (15% above requirements), AA-15% (15% below requirements), and AA-30% (30% below requirements). Thereafter, pigs were fed diets not limiting in AA content. Throughout the experiment, pigs were scale-fed at 90% of estimated voluntary daily DE intake. Representative pigs were slaughtered at 15, 38, 53, 68, or 110 kg of BW to monitor changes in body composition. Between 15 and 38 kg of BW, restriction of AA intake reduced BW gain (P < 0.01; 794, 666, and 648 g/d for control, AA-15%, and AA-30%, respectively). At 38 kg of BW, AA intake restriction increased whole body lipid (LB) content (P < 0.01; 11.3, 14.3, 17.5% of empty BW), and the LB-to-whole body protein (PB) ratio (LB/PB; P < 0.02; 0.68, 0.88, 1.10 for control, AA-15%, and AA-30%, respectively). Relationships between PB versus whole body water and PB versus whole body ash were not affected by dietary treatments (P > 0.10). At 110 kg of BW and based on BW, PB, and LB/PB, complete compensatory growth (CG) was achieved. Body weight gain between 38 and 110 kg of BW was inversely related to previous dietary AA levels (P < 0.01; 1,089, 1,171, and 1,185 g/d for control, AA-15%, and AA-30%, respectively). For pigs on the control diet, and based on N-balance data, Pd increased with BW, from 172 g/d at 40 kg of BW to 226 g/d at 82 kg of BW. At 40 kg of BW, Pd was greater (P < 0.05) for pigs on the AA-15% (205 g/d) and AA-30% (191 g/d) diets than pigs on the control diet (172 g/d). These findings indicate that pigs with high lean-tissue growth potentials are more likely to express compensatory Pd and their genetically determined upper limit to Pd (PdMax) after a period of AA intake restriction. This study confirms previous findings that BW effects on PdMax are small in growing pigs between 40 and 80 kg of BW. It is suggested that CG and compensatory Pd after a period of AA intake restriction is constrained by the pig's PdMax and is driven by a target LB/PB. Combined with previous observations in our laboratory, these results suggest that CG after a period of AA intake restriction tends to occur only when pigs are within the energy-dependent phase of lean-tissue growth and not when the genetically determined upper limit to lean-tissue growth, or PdMax, determines growth performance.  相似文献   

18.
Two experiments determined the efficacy of an Escherichia coli phytase (ECP) added to P-deficient, corn-soybean meal diets fed to finishing pigs and second-cycle laying hens. Sixty finishing pigs (49 +/- 0.9 kg) were formed into blocks within sex based on weight and ancestry and allotted to a P-deficient diet unsupplemented or supplemented with 0.10% inorganic P (iP) from KH2PO4 or ECP at 250, 500, 1,000, or 10,000 phytase units (FTU)/kg. Individually fed pigs were allowed ad libitum access to the experimental diets until a BW of 120 +/- 3 kg was achieved, at which time the pigs were euthanized and the left fibula and fourth metatarsal were excised for determination of bone ash. Pigs were fed a 2-phase diet program for early- and late-finishing pigs; available P in the basal diets was set 0.10% below the requirement. Dietary supplementation of iP or ECP increased weight gain (P < 0.10) and G:F (P < 0.01); performance was not different (P > 0.13) among the phytase-supplemented groups. Fibula ash was greatest (P < 0.01) for pigs fed diets containing 10,000 FTU of ECP/kg. Two hundred forty second-cycle hens were allotted to a P-deficient diet or a P-deficient diet supplemented with 0.10% iP or ECP at 150, 300, or 10,000 FTU/kg for a 12-wk experiment. The basal diet was a corn-soybean meal diet with no added iP (17% CP, 3.8% Ca, 0.10% available P). Hens fed the P-deficient diet were removed from the experiment after 4 wk due to poor egg production. Supplementation of iP or ECP resulted in increased (P < 0.01) feed intake, egg weight, and egg production during the first 4 wk. During the entire 12-wk period, there were no differences (P > 0.28) between the iP- and ECP-supplemented groups in feed intake, egg weight, or egg production. These experiments reveal that ECP was as efficacious as supplemental iP and that supplementation of an excess dose of ECP was efficacious and without negative effects in finishing pigs and laying hens.  相似文献   

19.
Three experiments were conducted to determine the optimal true ileal digestible (TID) Trp:Lys ratio for 90- to 125-kg barrows. Basal diets contained 0.55% TID Lys and were either corn-based (Exp. 1) or corn- and soybean meal-based (Exp. 2 and 3) diets supplemented with crystalline AA. In addition, each experiment contained a corn-soybean meal control diet. The number of pigs per pen progressively increased, with pigs housed in 2 (n = 82; initial and final BW of 88.5 and 113.6 kg, respectively), 7 (n = 210, initial and final BW of 91.2 and 123.3 kg, respectively), or 20 to 22 (n = 759; initial and final BW of 98.8 and 123.4 kg, respectively) pigs per pen for each successive experiment. Pigs in Exp. 1 were fed 6 incremental additions of L-Trp, equating to TID Trp:Lys ratios of 0.109, 0.145, 0.182, 0.218, 0.255, and 0.290. For the 28-d period, there was a quadratic improvement in G:F (P = 0.05) and ADG (P = 0.08) with increasing TID Trp:Lys, characterized by an improvement in performance of pigs fed the basal diet compared with those consuming diets with a 0.145 TID Trp:Lys ratio, with a plateau thereafter as TID Trp:Lys increased. Pigs fed the control diet had less increase in backfat depth than the average of pigs fed the titration diets (1.30 vs. 4.09 mm, respectively; P = 0.02), but pork quality was unaffected by dietary treatment. Pigs in Exp. 2 were fed 4 incremental additions of L-Trp, equating to TID Trp:Lys ratios of 0.130, 0.165, 0.200, and 0.235. Average daily gain and ADFI increased in a linear fashion with increasing TID Trp:Lys for the 29-d trial (P < 0.01), with quadratic improvements in d-29 BW (P = 0.06) and G:F (P = 0.05). Pigs fed the diet containing a TID Trp:Lys ratio of 0.165 had greater d-29 BW, ADG, G:F, and lower serum urea N concentration than pigs fed the basal diet (P < 0.05), but were similar to pigs fed TID Trp:Lys ratios of 0.200 and 0.235 for all criteria measured. In Exp. 3, TID Trp:Lys ratios of 0.13, 0.15, 0.17, 0.19, and 0.21 were evaluated. The response to increasing TID Trp:Lys was limited to a quadratic (P < 0.10) improvement in G:F with increasing TID Trp:Lys ratios. Maximum G:F was noted at a TID Trp:Lys ratio of 0.17. No relationship was noted between TID Trp:Lys and carcass characteristics. These experiments demonstrate that the minimum TID Trp:Lys ratio for pigs from 90 to 125 kg of BW is at least 0.145, but not greater than 0.17.  相似文献   

20.
Two experiments were conducted to determine the effects of dietary Cr tripicolinate (CrPic) or Cr propionate (CrProp) on growth, carcass traits, plasma metabolites, glucose tolerance, and insulin sensitivity in pigs. In Exp. 1, 36 barrows (12 per treatment; initial and final BW were 20 and 38 kg) were allotted to the following treatments: 1) corn-soybean meal basal diet (control), 2) as 1 + 200 ppb Cr as CrPic, or 3) as 1 + 200 ppb Cr as CrProp. Growth performance data were collected for 28 d, and then 23 pigs (seven, eight, and eight pigs for treatments 1, 2, and 3, respectively) were fitted with jugular catheters and a glucose tolerance test (500 mg glucose/kg BW) and an insulin challenge test (0.1 IU of porcine insulin/kg BW) were conducted. Both CrPic and CrProp decreased (P < 0.05) ADG and ADFI but did not affect gain:feed (P > 0.10). Fasting plasma glucose, total cholesterol, urea N, insulin, and high-density lipoprotein cholesterol:total cholesterol concentrations were not affected (P > 0.10) by either Cr source. Pigs fed CrPic had lower (P < 0.02) fasting plasma NEFA concentrations than control pigs, but plasma NEFA concentrations of pigs fed CrProp were not affected (P > 0.10). During the glucose tolerance test, glucose and insulin kinetics were not affected by treatment (P > 0.10). During the insulin challenge test, glucose clearance was increased (P < 0.01) in pigs fed CrProp but not affected (P > 0.10) in pigs fed CrPic. Glucose half-life was decreased (P < 0.03) in pigs fed CrPic or CrProp, but insulin kinetics were not affected (P > 0.10). In Exp. 2, 48 barrows (four replicates of four pigs per replicate; initial and final BW were 23 and 115 kg) were allotted to the same dietary treatments in a growing-finishing study. Average daily gain, ADFI, and gain:feed were not affected (P > 0.10) by treatments. Carcass length tended (P = 0.10) to be greater in pigs fed CrPic than in pigs fed CrProp, but other carcass measurements were not affected (P > 0.10). Glucose kinetics from the insulin challenge test indicate that both CrPic and CrProp increase insulin sensitivity and that both Cr sources are bioavailable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号