首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
构建了介质柱间距变化的变周期结构以及介质柱半径线缺陷两种二维光子晶体模型,并将时域有限差分法用于其能带特性研究。数值计算结果表明,在二维正方格光子晶体结构的基础上,一定范围内逐渐增加圆介质柱之间的距离,光子晶体的禁带宽度会增大,同时禁带的中心频率偏向低频方向,而采用相邻列介质柱半径交替变化的缺陷结构,也将使光子晶体的禁带发生相应的变化。  相似文献   

2.
构建了介质柱间距变化的变周期结构以及介质柱半径线缺陷两种二维光子晶体模型,并将时域有限差分法用于其能带特性研究。数值计算结果表明,在二维正方格光子晶体结构的基础上,一定范围内逐渐增加圆介质柱之间的距离,光子晶体的禁带宽度会增大,同时禁带的中心频率偏向低频方向,而采用相邻列介质柱半径交替变化的缺陷结构,也将使光子晶体的禁带发生相应的变化。  相似文献   

3.
Inhibiting spontaneous light emission and redistributing the energy into useful forms are desirable objectives for advances in various fields, including photonics, illuminations, displays, solar cells, and even quantum-information systems. We demonstrate both the "inhibition" and "redistribution" of spontaneous light emission by using two-dimensional (2D) photonic crystals, in which the refractive index is changed two-dimensionally. The overall spontaneous emission rate is found to be reduced by a factor of 5 as a result of the 2D photonic bandgap effect. Simultaneously, the light energy is redistributed from the 2D plane to the direction normal to the photonic crystal.  相似文献   

4.
We report on stimulated Raman scattering in an approximately 1-meter-long hollow-core photonic crystal fiber filled with hydrogen gas under pressure. Light was guided and confined in the 15-micrometer-diameter hollow core by a two-dimensional photonic bandgap. Using a pulsed laser source (pulse duration, 6 nanoseconds; wavelength, 532 nanometers), the threshold for Stokes (longer wavelength) generation was observed at pulse energies as low as 800 +/- 200 nanojoules, followed by a coherent anti-Stokes (shorter wavelength) generation threshold at 3.4 +/- 0.7 microjoules. The pump-to-Stokes conversion efficiency was 30 +/- 3% at a pulse energy of only 4.5 microjoules. These energies are almost two orders of magnitude lower than any other reported energy, moving gas-based nonlinear optics to previously inaccessible parameter regimes of high intensity and long interaction length.  相似文献   

5.
Three-dimensional (3D) photonic crystals containing artificial point defects have been fabricated to emit light at optical communications wavelengths. They were constructed by stacking 0.7-micrometer-period gallium arsenide striped layers, resulting in a 3D "woodpile" photonic crystal. Indium-gallium arsenide-phosphide quantum-well layers emitting at a wavelength of 1.55 micrometers were incorporated in the center of the crystal. Samples having up to nine stacked layers were constructed, and artificial point-defect cavities of different sizes were formed in the light-emitting layer. Light emission was suppressed in the photonic crystal regions, whereas cavity modes were successfully observed at the point defects and were size dependent.  相似文献   

6.
Toader O  John S 《Science (New York, N.Y.)》2001,292(5519):1133-1135
We present a blueprint for a three-dimensional photonic band gap (PBG) material that is amenable to large-scale microfabrication on the optical scale using glancing angle deposition methods. The proposed chiral crystal consists of square spiral posts on a tetragonal lattice. In the case of silicon posts in air (direct structure), the full PBG can be as large as 15% of the gap center frequency, whereas for air posts in a silicon background (inverted structure) the maximum PBG is 24% of the center frequency. This PBG occurs between the fourth and fifth bands of the photon dispersion relation and is very robust to variations (disorder) in the geometrical parameters of the crystal.  相似文献   

7.
Spiral twisting offers additional opportunities for controlling the loss, dispersion, and polarization state of light in optical fibers with noncircular guiding cores. Here, we report an effect that appears in continuously twisted photonic crystal fiber. Guided by the helical lattice of hollow channels, cladding light is forced to follow a spiral path. This diverts a fraction of the axial momentum flow into the azimuthal direction, leading to the formation of discrete orbital angular momentum states at wavelengths that scale linearly with the twist rate. Core-guided light phase-matches topologically to these leaky states, causing a series of dips in the transmitted spectrum. Twisted photonic crystal fiber has potential applications in, for example, band-rejection filters and dispersion control.  相似文献   

8.
We combine photonic and electronic band structure engineering to create a surface-emitting quantum cascade microcavity laser. A high-index contrast two-dimensional photonic crystal is used to form a micro-resonator that simultaneously provides feedback for laser action and diffracts light vertically from the surface of the semiconductor surface. A top metallic contact allows electrical current injection and provides vertical optical confinement through a bound surface plasmon wave. The miniaturization and tailorable emission properties of this design are potentially important for sensing applications, while electrical pumping can allow new studies of photonic crystal and surface plasmon structures in nonlinear and near-field optics.  相似文献   

9.
基于耦合非线性薛定谔方程,研究了双折射光子晶体光纤中单个光脉冲的非线性传输.当输入脉冲位于反常色散区且偏振角偏离光纤快轴0°和90°时可观察到脉冲俘获现象,脉冲俘获效率在偏振角为45°时最小,当脉冲的入射角度互余时,小角度的脉冲俘获效率更高.此外,增加输入脉冲功率俘获脉冲能够获得更大的频谱偏移.  相似文献   

10.
The routing and interconnection of optical signals through narrow channels and around sharp corners are important for large-scale all-optical circuit applications. A recent computational result suggests that photonic crystals may offer a novel way of achieving this goal by providing a mechanism for guiding light that is fundamentally different from traditional index guiding. Waveguiding in a photonic crystal and near 100 percent transmission of electromagnetic waves around sharp 90 degree corners were observed experimentally. Bending radii were made smaller than one wavelength.  相似文献   

11.
Photonic band gap guidance in optical fibers   总被引:3,自引:0,他引:3  
A fundamentally different type of optical waveguide structure is demonstrated, in which light is confined to the vicinity of a low-index region by a two-dimensional photonic band gap crystal. The waveguide consists of an extra air hole in an otherwise regular honeycomb pattern of holes running down the length of a fine silica glass fiber. Optical fibers based on this waveguide mechanism support guided modes with extraordinary properties.  相似文献   

12.
用传输矩阵法研究对称结构一维三元光子晶体(ABC)n(CBA)n的透射谱及内部电场分布,结果发现:随着n的增加,出现的单条透射峰越加锋锐,光子晶体内部局域场越强;当增加介质层A或C的折射率时,透射峰向长波方向移动,且随着nA的增加,光子晶体内部局域场逐渐减弱,而随着nC的增加,光子晶体内部局域场则逐渐增强.这些传输特性可为光子晶体设计和制造新型光学器件提供参考.  相似文献   

13.
We report the cancellation of the soliton self-frequency shift in a silica-core photonic crystal fiber with a negative dispersion slope. Numerical and experimental results show that stabilization of the soliton wavelength is accompanied by exponential amplification of the red-shifted Cherenkov radiation emitted by the soliton. The spectral recoil from the radiation acts on the soliton to compensate for the Raman frequency shift. This phenomenon may find applications in the development of a family of optical parametric amplifiers.  相似文献   

14.
Ultrabroad coherent comb-like optical spectra spanning several octaves are a chief ingredient in the emerging field of attoscience. We demonstrate generation and guidance of a three-octave spectral comb, spanning wavelengths from 325 to 2300 nanometers, in a hydrogen-filled hollow-core photonic crystal fiber. The waveguidance results not from a photonic band gap but from the inhibited coupling between the core and cladding modes. The spectrum consists of up to 45 high-order Stokes and anti-Stokes lines and is generated by driving the confined gas with a single, moderately powerful (10-kilowatt) infrared laser, producing 12-nanosecond-duration pulses. This represents a reduction by six orders of magnitude in the required laser powers over previous equivalent techniques and opens up a robust and much simplified route to synthesizing attosecond pulses.  相似文献   

15.
We demonstrate polarization mode selection in a two-dimensional (2D) photonic crystal laser by controlling the geometry of the unit cell structure. As the band diagram of the square-lattice photonic crystal is influenced by the unit cell structure, calculations reveal that changing the structure from a circular to an elliptical geometry should result in a strong modification of the electromagnetic field distributions at the band edges. Such a structural modification is expected to provide a mechanism for controlling the polarization modes of the emitted light. A square-lattice photonic crystal with the elliptical unit cell structure has been fabricated and integrated with a gain media. The observed coherent 2D lasing action with a single wavelength and controlled polarization is in good agreement with the predicted behavior.  相似文献   

16.
一维类梳状波导是由在一维主链上周期性接枝而形成的光子晶体,利用界面响应理论可导出波导的色散关系,据此分别讨论了这种光子晶体的带隙宽度与波导接枝参数之间的关系,接枝的介电常数和长度的变化将会使对带隙的宽度发生改变,通过数值计算发现,对于不同类型的接枝,参数变化引起的带隙宽度的变化趋势基本相同,而不同的参数产生的影响则有很大差别。特别的,当参数变化至某些特定点时带隙将会消失,这和其他类型的光子晶体完全不同,带隙的消失不是因为缺陷而仅仅是因为参数改变的影响。  相似文献   

17.
The colored appearances of animals are controlled by pigmentation, highly periodic ultrastructure, or a combination of both. Whiteness, however, is less common and is generated by neither of these, because it requires scattering processes appropriate for all visible wavelengths. We report whiteness resulting from a three-dimensional photonic solid in the scales of Cyphochilus spp. beetles. Their scales are characterized by their exceptional whiteness, their perceived brightness, and their optical brilliance, but they are only 5 micrometers thick. This thickness is at least two orders of magnitude thinner than common synthetic systems designed for equivalent-quality whiteness.  相似文献   

18.
具有缺陷的光子晶体,光子频率带隙内将出现局域模,而线缺陷相应地形成一个传输效率很高的光波导.计算了空气中Al材料的旋转四边形直柱光子晶体存在线缺陷时的带结构和态密度,给出了二维方形光子晶体的波导的TM模的电场分布,并讨论了波导耦合的传输效率.  相似文献   

19.
Carbon structures with three-dimensional periodicity at optical wavelengths   总被引:1,自引:0,他引:1  
Porous carbons that are three-dimensionally periodic on the scale of optical wavelengths were made by a synthesis route resembling the geological formation of natural opal. Porous silica opal crystals were sintered to form an intersphere interface through which the silica was removed after infiltration with carbon or a carbon precursor. The resulting porous carbons had different structures depending on synthesis conditions. Both diamond and glassy carbon inverse opals resulted from volume filling. Graphite inverse opals, comprising 40-angstrom-thick layers of graphite sheets tiled on spherical surfaces, were produced by surface templating. The carbon inverse opals provide examples of both dielectric and metallic optical photonic crystals. They strongly diffract light and may provide a route toward photonic band-gap materials.  相似文献   

20.
Preparation of photonic crystals made of air spheres in titania   总被引:3,自引:0,他引:3  
Three-dimensional crystals of air spheres in titania (TiO2) with radii between 120 and 1000 nanometers were made by filling the voids in artificial opals by precipitation from a liquid-phase chemical reaction and subsequently removing the original opal material by calcination. These macroporous materials are a new class of photonic band gap crystals for the optical spectrum. Scanning electron microscopy, Raman spectroscopy, and optical microscopy confirm the quality of the samples, and optical reflectivity demonstrates that the crystals are strongly photonic and near that needed to exhibit band gap behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号