首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rice is cultivated through transplanting of seedling in submerged field which is a cumbersome, labour intensive and water-guzzling practice. A field experiment was conducted to study the effect of crop establishment methods and irrigation schedules on water productivity, economics and energetics of aerobic direct-seeded rice at Punjab Agricultural University, Ludhiana, India, during Kharif 2012–2013. The experiment was laid out in split plot design, keeping combinations of two tillage system (no-tillage and conventional tillage) and two methods of sowing (uni-directional and bi-directional) in main plots and four irrigation schedule [(30, 45, 60 and 75 mm CPE (cumulative pan evaporation)] in sub plots. Aerobic direct-seeded rice sown after conventional tillage gave significantly higher grain yield than no-till with 15.4 % higher water expense efficiency. The energy gain and net monetary returns were 13.2 and 21.2 % higher in conventional sown crop than no-till, respectively. Bi-directional sowing resulted in 26.5 % higher grain yield than uni-directional with no effect on quality traits of grains. The net energy gain and net monetary returns were 26.5 thousands MJ/ha and 125.3 $/ha higher from bi-directional sown crop than uni-directional sown crop. Crop irrigated at 30 mm CPE schedule resulted in significantly higher grain yield than that irrigated at 45, 60 and 75 mm CPE. The energy gain, energy use efficiency and net returns were also maximum at 30 CPE schedule than at 45, 60 or 75 CPE. However, brown, milled and head rice recoveries were statistically at par between irrigation scheduling at 30 and 45 mm CPE but significantly better than 60 and 75 mm CPE. Bi-directional sowing with conventional tillage and irrigation at 30 CPE is an energy efficient and economical viable technique for direct-seeded rice.  相似文献   

2.
Recent water shortages in reservoirs have caused such problems as insufficient water and fallow rice fields in Southern Taiwan; therefore, comparing irrigation water requirements and crop production of paddy fields using a technique that differs from the conventional flood irrigation method is important. Field experiments for the second paddy field with four irrigation schedules and two repeated treatments were conducted at the HsuehChia Experiment Station, ChiaNan Irrigation Association, Taiwan. Experimental results demonstrate that irrigation water requirements for the comparison method, and 7-, 10- and 15-day irrigation schedules were 1248, 993, 848, and 718 mm, respectively. Compared to the conventional method of flooding fields at a 7-day interval, the 10- and 15-day irrigation schedules reduced water requirements by 14.6 and 27.3 %, respectively; however, crop yields decreased by 7 and 15 %, respectively. Based on the results, it was recommended that the ChaiNan Irrigation Association could adopt 10 days irrigation schedule and plant drought-enduring paddy to save irrigation water requirements for the water resource scarcity in southern Taiwan. The CROPWAT model was utilized to simulate the on-farm water balance with a 10-day irrigation schedule for the second paddy field. A comparison of net irrigation water requirements with the 10-day irrigation schedule from model and field experiment were 818 and 848 mm, respectively, and the error was 3.54 %.  相似文献   

3.
Water management is an important factor in regulating soil respiration and the net ecosystem exchange of CO2 (NEE) between croplands and atmosphere. However, how water management affects soil respiration and the NEE of paddy fields remains unexplored. Thus, a 2-year field experiment was carried out to study the effects of controlled irrigation (CI) during the rice season on the variation of soil respiration and NEE, with flooding irrigation (FI) as the control. A decrease of irrigation water input by 46.39% did not significantly affect rice yield but significantly increased irrigation water use efficiency by 0.99 kg m?3. The soil respiration rate of CI paddy fields was larger than that of FI paddy fields except during the ripening stage. Natural drying management during the ripening stage resulted in a significant increase of the soil respiration rate of the FI paddy fields. Variations of NEE with different water managements were opposite to soil respiration rates during the whole rice growth stages. Total CO2 emission of CI paddy fields through soil respiration (total R soil) increased by 11.66% compared with FI paddy fields. The increase of total R soil resulted in the significant decrease of total net CO2 absorption of CI paddy fields by 11.57% compared with FI paddy fields (p < 0.05). There were inter-annual differences of soil respiration and the NEE of paddy fields. Frequent alternate wetting and drying processes in the CI paddy fields were the main factors influencing soil respiration and NEE. CI management slightly enhanced the rice dry matter amount but accelerated the consumption and decomposition of soil organic carbon and significantly increased soil respiration, which led to the decrease of net CO2 absorption. CI management and organic carbon input technologies should be combined in applications to achieve sustainable use of water and soil resources in paddy fields.  相似文献   

4.
An experimental study on the System of Rice Intensification (SRI) methods was conducted to investigate the feasibility of using them to conserve irrigation water and reduce non-point source (NPS) pollution in Korea. Eight experimental runoff plots were prepared at an existing paddy field. Runoff and water quality were measured during the 2010 growing season in which a Japonica rice variety was cultivated. The irrigation water requirements of SRI methods and conventional (CT) plots were 243.2 and 547.3 mm, respectively, meaning that SRI methods could save 55.6% of irrigation water. Runoff from SRI methods plots decreased 5–15% compared with that from CT plots. Average NPS pollutant concentrations in runoff from SRI methods plots during rainfall-runoff events were SS 89.4 mg/L, CODCr 26.1 mg/L, CODMn 7.5 mg/L, BOD 2.0 mg/L, TN 4.2 mg/L, and TP 0.4 mg/L. Except for CODCr and TN, these concentrations were significantly lower than those from CT plots. Measured pollution loads from SRI methods plots were SS 874 kg/ha, CODCr 199.5 kg/ha, CODMn 47 kg/ha, BOD 13 kg/ha, TN 36.9 kg/ha, and TP 2.92 kg/ha. These were 15.8–44.1% lower than those from CT plots. Rice plants grew better and healthier in SRI methods plots than in CT plots. However, rice production from SRI methods plots ranged between 76 and 92% of that of CT plots because the planting density in SRI methods plots was too low. It was concluded that SRI methods could be successfully adopted in Korea and could help save a significant amount of irrigation requirement in paddies and reduce NPS pollution discharge.  相似文献   

5.
Rice–wheat (RW) production system, which covers over 13.5 million ha in the Indo-Gangetic Plains of south Asia, is vital for food and nutritional security and livelihood of millions of poor people in this part of the region. Availability of irrigation water under projected climate change scenarios is a great concern, and demonstration of the impact of different irrigation regimes on rice, wheat, and system yields is essential to adopt suitable water saving technologies to minimize risk. This study tested the ability of the agricultural production systems simulator (APSIM) model to simulate the effects of different irrigation regimes on yield, irrigation water requirement, and irrigation water productivity (WPi) of rice, wheat, and RW system in upper-gangetic plains of India. The long-term simulated rice yield showed a steadily declining trend at an average rate of 120 kg ha?1 yr?1 (R 2 = 0.94, p < 0.05), while long-term simulated wheat yields showed a lower declining trend at an average rate of 48 kg ha?1 yr?1 (R 2 = 0.48, p < 0.05). The highest WPi of 8.31 kg ha?1 mm?1 was observed under RW system with the rice irrigation (IR) regime of 8 days alternate wetting and drying (AWD) and five irrigations for wheat with a yield penalty of 25.5 %. The next highest WPi was observed in the treatment with a 5-day AWD regime in rice and five irrigations for wheat, with a yield penalty of 20.1 %. Thus, we can suggest that a 5-day AWD irrigation regime for rice combined with five irrigations during wheat could be the best option under water limiting situations.  相似文献   

6.
Taiwan’s average annual rainfall is high compared to other countries around the world; however, it is considered a country with great demand for water resources. Rainfall along with alternate wetting and drying irrigation is proposed to minimize water demand and maximize water productivity for lowland paddy rice cultivation in southern Taiwan. A field experiment was conducted to determine the most suitable ponded water depth for enhancing water saving in paddy rice irrigation. Different ponded water depths treatments (T2 cm, T3 cm, T4 cm and T5 cm) were applied weekly from transplanting to early heading using a complete randomized block design with four replications. The highest rainwater productivity (2.07 kg/m3) was achieved in T5 cm and the lowest in T2 cm (1.62 kg/m3). The highest total water productivity, (0.75 kg/m3) and irrigation water productivity (1.40 kg/m3) was achieved in T2 cm. The total amount of water saved in T4 cm, T3 cm and T2 cm was 20, 40, and 60%, respectively. Weekly application of T4 cm ponded water depth from transplanting to heading produced the lowest yield reduction (1.57%) and grain production loss (0.06 kg) having no significant impact on yield loss compared to T5 cm. Thus, we assert that the weekly application of T4 cm along with rainfall produced the best results for reducing lowland paddy rice irrigation water use and matching the required crop water.  相似文献   

7.
The existing irrigation schedule of most rice-growing areas in Jilin Province is not in full compliance with the Water Requirements Law of the rice; these discrepancies affect the yield of rice to some extent. Thus, research on rice water regulations and selection of an appropriate water production function model (WPFM) is very important. In this study, according to the water demand characteristics of rice, we used drought treatments separately during the tillering, jointing booting, flowering, and milky stages. Evapotranspiration and yield data were obtained using a test pit experiment and production measurements in 2011 and 2012, respectively. Five commonly used WPFMs (the Jensen, Blank, Minhas, Stewart, and Singh model) were selected for this study, and the water sensitivity index of each model was calculated based on the evapotranspiration, yield, and the model equations. The Jensen model was found to be the most suitable WPFM for this region; furthermore, a mathematical relationship between the water sensitivity index and days after rice planting was established. These results have important theoretical and practical implications for guidelines regarding rice irrigation in Jilin Province.  相似文献   

8.
徐杰  周培禄  王璞  赵明 《玉米科学》2016,24(1):142-147
采用大田试验,研究自然降雨+氮肥底施、表施氮肥+大水漫灌、滴灌水氮一体化不同水肥管理对东北地区低、中、高不同密度下春玉米产量、干物质及水氮利用的影响。结果表明,滴灌水氮一体化处理在各密度下均较自然降雨+氮肥底施显著提高玉米产量,在高密度时滴灌水氮一体化处理产量最高为14 268.9 kg/hm2,显著高于表施氮肥+大水漫灌处理。在高密度时,与表施氮肥+大水漫处理相比,滴灌水氮一体化处理可获得较高的总干物质积累量,显著提高花后氮素积累量,总氮量增加78.2%,进而提高氮肥偏生产力和水分利用效率。滴灌水氮一体化处理能够在高密度下提高东北玉米产量的同时提高水氮利用效率。  相似文献   

9.
Rice is the main crop produced in the Senegal River Valley under the semiarid Sahelian climate where water resource management is critical for the resource use sustainability. However, very limited data exit on rice water use and irrigation water requirement in this water scarcity environment under climate change conditions. Understanding crop water requirements is essential for better irrigation practices, scheduling and efficient use of water. The objectives of this study were to estimate crop water use and irrigation water requirement of rice in the Senegal River Valley at Fanaye. Field experiments were conducted during the 2013 hot and dry season and wet season, and 2014 hot and dry season and wet seasons. Three nitrogen fertilizer treatments were applied to rice variety Sahel 108: 60, 120, and 180 kg N ha?1. Rice water use was estimated by the two-step approach. Results indicated that crop actual evapotranspiration (ETa) varied from 632 to 929 mm with the highest ETa obtained during the hot and dry seasons. Irrigation water requirement varied from 863 to 1198 mm per season. Rice grain yield was function of the growing season and varied from 4.1 to 10.7 tons ha?1 and increased with nitrogen fertilizer rate. Rice water use efficiency relative to ETa and irrigation requirements increased with nitrogen fertilizer rate while rice nitrogen use efficiency decreased with the nitrogen fertilizer rates. The results of this study can be used as a guideline for rice water use and irrigation water requirement for the irrigation design projects, consultants, universities, producers, and other operators within rice value chain in the Senegal River Valley.  相似文献   

10.
SRI practices can usually increase the yield of paddy without using special varieties of rice or chemicals. High yield of paddy can be simply achieved through the combination of transplanting single seedlings about 8–10 days old with just two leaves on 40 cm × 40 cm spacing, providing organic fertilizer, and intermittent irrigation. No pesticides are applied. Historically, integrated management of water and crop (particularly rice) in the Philippines, had its beginning with the Spaniards, but more formal events were recorded in the 1950s by Margate (1954) in “Rice: 100 Cavans (50 kg/cavan) per Hectare.” This was followed by the Water Management Manual released in the 1970s by the Asian Development Bank (ADB) and National Irrigation Administration (NIA). Recently, the Southern Philippines Irrigation Sector Project (SPISP), a joint ADB–NIA effort, has commenced trials with the system of rice intensification (SRI) practice. One of the most specific features of SRI is the intermittent irrigation system which requires assured water supply at necessary timing. It is easier to attain assured water supply on timely manner through irrigation management transfer (IMT) which encourages the empowerment of fair water distribution. This article analyzes the merit of IMT for SRI.  相似文献   

11.
水氮互作对膜下滴灌玉米产量及水氮利用的影响   总被引:2,自引:0,他引:2  
李玉斌  马忠明 《玉米科学》2018,26(2):102-109
通过田间裂区试验,研究不同灌水量和施氮量对膜下滴灌玉米生理生长、产量及其构成因素和水、氮利用的影响。结果表明,水氮互作对玉米产量影响差异显著(P0.05)。玉米单株叶面积随着施氮量与灌水量的增加而增大。随着灌水量的增加,玉米耗水量呈上升趋势,玉米水分利用效率呈下降趋势。氮肥农学效率及氮肥偏生产力随着施氮量的增加而减小。当灌水量大于2 700 m~3/hm~2、施氮量大于200 kg/hm~2时,玉米干物质积累和产量不在增加,产量呈下降趋势。在本试验条件下,推荐最佳灌水量为2700 m~3/hm~2,施氮量为200 kg/hm~2。  相似文献   

12.
在内蒙古通辽市辽河镇浅埋滴灌水肥一体化条件下,以DK159为研究对象,设置6.0万株/hm2(D1,CK,农民常规种植密度)和9.0万株/hm2(D2)两种种植密度处理和45 mm(I45)、90 mm(I90)、180 mm(I180)、270 mm(I270)、360 mm(I360)、450 mm(I450,CK,农民常规灌溉量)6个灌溉量水平,研究种植密度和灌溉量对玉米产量和水分利用效率(WUE)的影响。结果表明,9.0万株/hm2密度下在360 mm的灌溉量下获得最高产量和较高的WUE;6.0万株/hm2密度下在270 mm的灌溉量下获得最高产量和较高WUE。与传统生产方式(D1-I450处理)相比,D1-I270处理的产量无显著降低,灌溉量降低40.0%,蒸散量减少19.7%,WUE提高25.1%;D2-I  相似文献   

13.
膜下滴灌水肥耦合对半干旱区玉米生长发育及产量的影响   总被引:8,自引:2,他引:6  
在田间条件下,采用水肥一体化的施肥模式对覆膜玉米水氮耦合效应进行研究,明确水氮耦合对吉林省西部玉米生长的影响,提出最佳灌水量和施氮量。研究结果表明,水、氮在一定范围内配合表现出明显的正交互作用,促进玉米的生长发育;施氮量超过一定范围将产生负效应,对玉米的生长发育及产量起到一定的抑制作用。在吉林省西部施氮量280 kg/hm~2、灌水量500 mm为最佳水氮组合,玉米株高、叶面积指数、生物量与其他处理间存在显著性差异;产量最高,比不施氮处理增产36.1%。  相似文献   

14.
Field experiments were carried out at the research farm of ICAR-Indian Agricultural Research Institute (ICAR-IARI), New Delhi, India, during Kharif (June–October) seasons of 2011 and 2012 to study the effect of rice varieties and iron fertilization on water productivity, nutrient uptake and quality of aerobic rice. Treatments comprised of two rice varieties (PRH-10 and PS-5) and eight sources and modes of iron fertilization—control (no iron), iron sulphate @ 50 kg/ha + one foliar spray of 2.0% iron sulphate, iron sulphate @ 50 kg/ha + one foliar spray of 0.5% iron chelate, iron sulphate @ 100 kg/ha, two foliar sprays of 2.0% iron sulphate, three foliar sprays of 2.0% iron sulphate, two foliar sprays of 0.5% iron chelate and three foliar sprays of 0.5% iron chelate. Study results indicated that variety PRH-10 had higher concentration and uptake of nitrogen, phosphorus, potassium and iron than PS-5 variety in grain, straw and grain + straw. Three foliar sprays of 2.0% iron sulphate or 0.5% iron chelate favoured higher NPK and iron concentration and uptake in grain and straw of aerobic rice. Grain quality in respect of hulling, milling and head rice recovery was, however, superior in PS-5 than PRH-10. But the protein content was significantly higher in PRH-10 than in PS-5. Application of three foliar sprays of 2% iron sulphate and three foliar sprays of 0.5% iron chelate recorded significantly higher hulling, milling and head rice recovery as compared to control and remained statistically similar with each other. Irrigation and total water productivity was substantially higher in PRH-10 over PS-5. Growing of rice with PRH-10 recorded ~7.7% higher total water productivity as compared to PS-5, across iron fertilizations. Three or two foliar sprays of 2.0% iron sulphate or 0.5% iron chelate favoured higher irrigation and total water productivity of aerobic rice over control (no iron).  相似文献   

15.
风沙半干旱区春玉米水肥耦合产量效应研究初报   总被引:3,自引:0,他引:3  
采用312-D最优饱和设计,开展了春玉米水肥耦合作用田间试验研究。结果表明,在试验年施氮量对产量影响最大,灌溉量次之,施磷量最小。两因子耦合的产量效应类型不同,氮与磷耦合以及磷与水耦合为相互替代作用,而氮与水耦合为相互促进作用,且耦合作用效应大小顺序为氮与磷耦合>磷与水耦合>氮与水耦合。获得最高产量9374.0kg/hm2的施氮量为281.7kg/hm2、施磷量为127.1kg/hm2、灌溉量为75.2mm。获得最高利润6023.5元/hm2的施氮量为211.2kg/hm2、施磷量为110.5kg/hm2、灌溉量为24.1mm。  相似文献   

16.
Pot and field experiments were conducted to investigate the phenological and physiological adjustments, yield performance and water productivity of rice under variable periods of suspension of irrigation. Four different water management schedules [viz. conventional water management (CWM), 2-week inundation followed by 2-week suspension of irrigation (I2 S2), 1-week inundation followed by 3-week suspension of irrigation (I1 S3), and 1-week inundation followed by 4-week suspension of irrigation (I1 S4)] were evaluated in greenhouse pots with transplanted rice. Only CWM, I2 S2, and I1 S3 were tested under field conditions. In the greenhouse pot experiment, the commencement of flowering and physiological maturity of rice occurred in the shortest period with CWM, and delayed with increasing the period of suspension of irrigation during vegetative phase. Some of shoot and root growth parameters of rice had significant differences among different water management practices. Free proline accumulated in leaves was lowest in CWM, increased with increasing the period of suspension of irrigation. The I1 S3 water management reported highest water productivity. Field experiment conducted, confirmed the results observed in the greenhouse experiment showing similar pattern of shoot and root growth characteristics and free proline accumulation in rice plants. The water productivity and grain yield was significantly higher in I2 S2 over CWM and I1 S3. Overall results suggest that the 2-week inundation followed by 2-week suspension of irrigation water management is a better option for water saving with higher yield in transplanted rice for 120 days old Suphan Buri 1 hybrid in Central Thailand.  相似文献   

17.
Nitrous oxide (N2O) emission from croplands in China is a serious environmental concern. Water management is an important factor in regulating N2O emissions from croplands. In China, controlled irrigation (CI) is one mode of the water-saving irrigation for rice and is widely used. This study aims to assess the lasting effects of CI on N2O emissions from winter wheat croplands in Southeast China, with traditional irrigation (TI) as the control. CI performed during the rice-growing season had obvious lasting effects on N2O emissions of the subsequent winter wheat-growing season. Compared with TI, CI significantly increased the cumulative N2O emission by 129.1 % during the rice-growing season (p < 0.05), but significantly decreased it by 47.7 % during the wheat season (p < 0.05). Continuous flooding of the TI during most of the rice-growing season resulted in an increase in N2O emissions during the winter wheat-growing season. Over the whole annual cycle, the cumulative N2O emission from the plots under CI during the rice-growing season was 5.3 kg N2O–N ha?1, which was 103.2 % of that under TI (p > 0.05). The results suggest that CI does not significantly increase the cumulative N2O emission from the rice–winter wheat rotation systems while insuring rice and wheat yields. This study focuses on the lasting effects of water-saving irrigation mode during rice-growing season on N2O emissions during the following wheat-growing season. Thus, it is a development and complement of the previous researches on the effects of water-saving irrigation on N2O emissions from rice–winter wheat rotation croplands.  相似文献   

18.
Arsenic (As)-contaminated groundwater has been widely used in agricultural purposes especially for summer rice cultivation in South East Asia. Therefore, the present experiments were carried out at low (diara) and medium land topo sequences with the eight water regimes to reduce the As accumulation in summer rice (Oryza sativa L.). Experimental results revealed that the intermittent ponding of 2–4 days after disappearance (DAD) were significantly reduced the As accumulation in root, stem, leaves, flag leaf, husk, and grain (21.86–31.78, 23.55–37.20, 14.83–30.93, 23.53–31.19, 21.33–28.19, and 22.98–25.37 %, respectively), which was followed by aerobic rice (21.34–22.08, 22.49–30.72, 12.21–23.02, 22.06–27.52, 20.14–23.94, and 22.12–22.30 %, respectively), and saturation of top soil (17.43–17.85, 21.91–28.01, 10.76–20.27, 20.59–24.77, 18.96–23.14, and 20.75–21.15 %, respectively) as compared to continuous ponding or farmer practice, where the As accumulation in root: 13.43–17.20 mg/kg; stem: 8.64–10.36 mg/kg; leaves: 2.91–3.44 mg/kg; flag leaf: 0.68–1.09 mg/kg; husk: 1.88–2.11 mg/kg; and grain: 0.52–0.67 mg/kg. However, aerobic rice and saturation of top soil recorded significantly higher grain yield at diara land (7,104–7,141 kg/ha) and only in saturation of top soil at medium land topo sequence (6,654–6,717 kg/ha). The correlation study showed the positive correlation in between grain As and root, straw, husk As, grain Zn, and grain Fe (R 2 = 0.893–0.976, p > 0.01), but the negative correlation with the grain P, soil P, soil Fe, and soil Zn (R 2 = 0.633–0.841, p > 0.01). About 3.904–6.063 kg/ha of As was added on the surface soil by the contaminated groundwater and most of the added As was accumulated and remained on the top soil (0–30 cm).  相似文献   

19.
Sodic soils are characterized by high exchangeable sodium on exchange sites, soil pH greater than 8.5, relatively low electrical conductivity, low infiltration rate and dispersed clay. These characteristics restrict the capacity of soil to absorb water, resulting in poor infiltration. Evidently, these soils require application of irrigation water at shorter intervals for crop production. Thus, irrigation strategy for sodic soils differs from that of normal soils. An experiment to determine the suitable irrigation strategy along with methods of application namely: surface (farmer’s practice), sprinkler (double nozzle impact sprinkler), and low-energy water application device (LEWA) were initiated in the year 2012 for rice crop. Irrigation depths of 6 cm in case of surface method and 4 cm in case of sprinkler and LEWA methods were applied at each irrigation event. The irrigation events for rice were scheduled at 2-DAD (days after the disappearance of the ponded water), 3-DAD, and 4-DAD through surface method, and at daily, 1- and 2-day intervals (after initial ponding disappeared) by sprinkler and LEWA methods. Sprinkler and LEWA methods resulted in highest rice yield of 4.4 t ha?1 in irrigated plots at the 2-day interval which was at par with the highest yielding surface-irrigated plot scheduled at 2-DAD. At the same time, irrigation strategy of 2-day interval through sprinkler and LEWA methods registered water saving to the extent of 30–40% over 2-DAD under surface irrigation method. Results revealed that there could be substantial saving of water and energy (electricity and diesel) through the use of sprinkling devices for irrigating rice under sodic soil environments.  相似文献   

20.
The objective of this study was to compare the responses of maize (Zea mays L.) to deficit irrigation. A field experiment was conducted during the 1999 and 2000 growing seasons in western Turkey. Irrigation treatments were tested with 100, 70, 50, 30 and 0% replenishment of water depleted at 120 cm soil profile from 100% replenishment treatment at ten days intervals. The irrigation amount ranged between 0 and 323.20 mm in the first year and 0-466.61 mm in the second year of the experiment. Seasonal crop water use values were between 142.19 and 481.91 mm in 1999 and 136.25-599.45 mm in 2000. Average maximum and minimum yields were 10639-10383 kg ha(-1) for full irrigated treatment (I100) and 3750-2136 kg ha(-1) for non-irrigated treatment (I0) in 1999 and 2000, respectively. Water deficit significantly affected maize yield. In both years, yield increased linearly with irrigation applied but the relationship varied from one year to the other. Water Use Efficiency (WUE) ranged from 1.49 to 2.71 kg m(-3), while Irrigation Water Use Efficiency (IWUE) varied from 1.44 to 2.55 kg m(-3) in both years. The yield response factor (ky) relating relative yield decrease to relative evapotranspiration deficit was found to be 0.99 for the data of the two experiments combined. Also, dry matter yields (DM) and leaf area index (LAI) were markedly affected by the irrigation treatments. The finding of this work showed that well-irrigated treatment should be used for maize grown in semi arid regions under no water scarcity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号