首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
柑橘果实发育中果胶酸钙、草酸钙和果胶动态的研究   总被引:5,自引:0,他引:5  
以单性结实的龟井蜜柑和自花结实的鄂柑1号橘为试材,对整个果实发育期的子房(幼果)、果皮和果肉的果胶酸钙、草酸钙和果胶含量变化进行了测定。结果表明,1)两品种子房(幼果)果胶酸钙含量呈类似的下降趋势;草酸钙则相反,龟井花后趋下降,而鄂柑1号却明显上升;而且鄂柑1号子房(幼果)果胶酸钙、草酸钙和果胶含量均相对较高。2)在果实增大期内,两品种果皮和果肉的果胶酸钙含量均出现显著上升,对应果皮草酸钙含量虽有波动但居相对较高水平,而果肉草酸钙则趋明显下降。3)两品种果皮和果肉水溶性果胶含量均在增大期内呈显著上升,对应原果胶含量均相对较高,进入增大后期均明显下降。  相似文献   

2.
Highly esterified citrus pectin was de-esterified at pH 4.5 and 8.0 by a fungal pectin methyl esterase (PME) that was shown to have an acidic isoelectric pH (pI) and an acidic pH optimum and by a plant PME that was characterized by an alkaline pI and an alkaline pH optimum. Interchain and intrachain de-esterification patterns were studied by digestion of the pectin products with endo-polygalacturonase and subsequent analysis using size exclusion and anion-exchange chromatography. No effect of pH was observed on the de-esterification mode of either of the two enzymes. Acidic, fungal PME converted pectin according to a multiple-chain mechanism, with a limited degree of multiple attack at the intrachain level, both at pH 4.5 and at pH 8.0. A multiple-attack mechanism, with a high degree of multiple attack, was more appropriate to describe the action mode of alkaline, plant PME, both at pH 4.5 and at pH 8.0.  相似文献   

3.
Dry mixtures of lactose and caseinate were heated at 60 degrees C for up to 96 h at different relative humidities (RHs) ranging from 29 to 95%. The resulting nonenzymatic browning was studied by determining lactulosyl lysine formation in the caseinate (as measured by the conversion to furosine), amount of reacted lactose, loss of lysine, color formation, and fluorescent intensity. For each measurement, the maximum reaction occurred at intermediate RHs. While there is general agreement between the results obtained by different methods, discrepancies are understandable given the complex nature of nonenzymatic browning. It was shown that the degradation of the Amadori product, lactulosyl lysine, increased with RH. Moreover, the Maillard reaction, as opposed to caramelization of lactose, was the major pathway at all RHs. Visible browning occurred when the destruction of Amadori product became dominant, and interactions between sugar fragments and caseinate were not the rate-limiting steps in the nonenzymatic browning.  相似文献   

4.
The kinetics of the pectin methylesterase (PME)-catalyzed de-esterification of pectin was studied at 25 degrees C in the presence of sucrose, fructose, maltodextrin (DE = 16.5-19.5), and carboxymethylcellulose at different concentrations and in the presence of maltodextrin and sucrose at different concentrations in a temperature range between +25 and -4 degrees C in subcooled and frozen states. The objective was to determine whether the reaction is diffusion-controlled, to gain insight about the factors determining the diffusion of the reactants, and to determine the effect of the carbohydrates, low temperature, and freezing on the structural conformation of the enzyme. The results indicate that the PME-catalyzed de-esterification of pectin is diffusion-controlled. Nevertheless, the diffusion is not controlled by the macroviscosity of the reaction medium, but rather by the microviscosity experienced by the diffusants. Low temperature in the temperature range studied does not affect the structural conformation of the enzyme, while freezing seems to have some effect.  相似文献   

5.
多菌灵残留超标已成为影响我国农产品出口的一大制约因素,积极开展多菌灵安全用药研究,寻找多菌灵替代用药方案尤为必要.本研究针对柑橘罐头原料加工果分别开展了以多菌灵、嘧霉胺浸果后的农药残留动态和保鲜防效研究.研究结果显示,柑橘浸药处理后30d内的保鲜效果,嘧霉胺1 000倍液处理略好于多菌灵600倍液处理;嘧霉胺处理后快速...  相似文献   

6.
Fruits of Gardenia jasminoides contain geniposide which can be transformed to blue pigments by a simple modification. Colorless geniposide obtained from gardenia fruits by charcoal and silica gel column chromatographies was hydrolyzed with beta-glucosidase to yield genipin. The resulting genipin was transformed to blue pigments by reaction with amino acids (glycine, lysine, or phenylalanine). The stability of the blue pigments against heat, light, and pH was studied to examine the blue dye for possible use as a value-added food colorant. Thermal degradation reactions at temperatures of 60-90 degrees C were carried out at different pH levels within the range 5.0-9.0 (pH 5.0, acetate buffer; pH 7.0, phosphate buffer; and pH 9.0, CHES buffer). The blue pigments remained stable after 10 h at temperatures of 60-90 degrees C, and in some cases, more new pigments formed. The pigments were more stable at alkaline pH than neutral and acidic pH. Similarly, the pigments were stable under light irradiance of 5000-20 000 lux. In this case, pH effect was not significant.  相似文献   

7.
Raman spectroscopy was used to elucidate structural changes of beta-lactoglobulin (BLG), whey protein isolate (WPI), and bovine serum albumin (BSA), at 15% concentration, as a function of pH (5.0, 7.0, and 9.0), heating (80 degrees C, 30 min), and presence of 0.24% kappa-carrageenan. Three data-processing techniques were used to assist in identifying significant changes in Raman spectral data. Analysis of variance showed that of 12 characteristics examined in the Raman spectra, only a few were significantly affected by pH, heating, kappa-carrageenan, and their interactions. These included amide I (1658 cm(-1)) for WPI and BLG, alpha-helix for BLG and BSA, beta-sheet for BSA, CH stretching (2880 cm(-1)) for BLG and BSA, and CH stretching (2930 cm(-1)) for BSA. Principal component analysis reduced dimensionality of the characteristics. Heating and its interaction with kappa-carrageenan were identified as the most influential in overall structure of the whey proteins, using principal component similarity analysis.  相似文献   

8.
The interaction between glucose and essential amino acids at 100 degrees C at pH values ranging from 4.0 to 12.0 was investigated by monitoring the disappearance of glucose and amino acids as well as the appearance of brown color. Lysine was the most strongly destroyed amino acid, followed by threonine which induced very little additional browning as compared with that undergone by glucose. Around neutrality, the nonenzymatic browning followed pseudo-zero-order kinetics after a lag time, while the glucose and amino acid losses did not follow first-order kinetics at any of the pH values tested. Glucose was more strongly destroyed than all of the essential amino acids, the losses of which are really small at pH values lower than 9.0. However, glucose was less susceptible to thermal degradation in the presence of amino acids, especially at pH 8.0 with threonine and at pH 10.0 with lysine. The contribution of the caramelization reaction to the overall nonenzymatic browning above neutrality should lead to an overestimation of the Maillard reaction in foods.  相似文献   

9.
The optimal conditions for degradation of phytate (IP6, myo-inositol hexaphosphate) in a mixture of ground wheat and ground defatted soybeans (1:2, w/w) with added exogenous E. coli phytase were investigated at different temperatures (45, 60, 75, and 95 degrees C), moisture levels (25%, 35%, and 45%), and retention times (2-45 min). All treatment combinations were investigated in a small-scale mixer conditioner (experiment 1). The combined 45 degrees C and 45% moisture treatment was most efficient and reduced the content of IP6 by 86% during 45 min of incubation. This treatment combination was applied in a medium-scale mixer conditioner (experiment 2), and 76% reduction of IP6 at 45 min was obtained. During incubation, the content of lower groups of inositol phosphates, such as IP4 (myo-inositol tetraphosphate) and IP3 (myo-inositol triphosphate), increased significantly as the content of IP6 decreased. The major isomer formed was Ins(1,2,5,6)P(4).  相似文献   

10.
The thermal degradation kinetics of vitamin C, two carotenoids (beta-carotene and beta-cryptoxanthin), and hesperidin, as a function of temperature, were determined for Citrus juice [Citrus sinensis (L.) Osbeck and Citrus clementina Hort. ex Tan]. The influence of dissolved oxygen on the rate of ascorbic acid degradation was also assessed. Analysis of kinetic data suggested a first-order reaction for the degradation of vitamin C and carotenoids. The kinetics parameters Dtheta, z, and Ea have been calculated. Following the Arrhenius relationship, the activation energy of ascorbic acid was 35.9 kJ mol-1 and agreed with the range of literature reported value. The results on vitamin C and carotenoids from citrus juice made it possible to validate the predicting model. Thermal degradation of carotenoids revealed differences in stability among the main provitamin A carotenoids and between these and other carotenoids belonging to the xanthophyll family. The activation energies for the two provitamin A carotenoids were 110 and 156 kJ mol-1 for beta-carotene and beta-cryptoxanthin, respectively. On the other hand, no degradation of hesperidin was observed during thermal treatment. Finally, the vitamin C in citrus juice was not as heat sensitive as expected and the main provitamin A carotenoids present in citrus juice displayed a relative heat stability. The high-performance liquid chromatography-diode array detection-mass spectrometry analysis of degradation products showed that the isomerization of the epoxide function in position 5,6 into a furanoxide function in position 5,8 was a common reaction for several xanthophylls. These findings will help determine optimal processing conditions for minimizing the degradation of important quality factors such as vitamin C and carotenoid in citrus juice.  相似文献   

11.
We investigated the effects of soil temperature (15 °C, 25 °C, 35 °C), water content (20%, 33%, 50%) and pH (4.5, 7.0, 9.0) on the degradation of Cry1Ab protein released from the straw of Bt corn varieties 34B24 and 1246 × 1482 both expressing Cry1Ab protein. Our results showed that Cry1Ab protein released from both 34B24 and 1246 × 1482 straw was degraded in a similar way in all treatments, which demonstrated a rapid decline in the early stage but a slow decline in the middle and late stages. In the late stage (180 days after the experiment commenced) 0.03%-1.51% and 0.02%-0.91% of initial Cry1Ab protein released from 34B24 and 1246 × 1482 straw was detected in soil. In addition, degradation dynamics of Cry1Ab protein under different environmental conditions was well described by the shift-log model. DT50 of Cry1Ab protein released from 34B24 and 1246 × 1482 straw was 0.97-9.97 d and 0.75-10.89 d, respectively, and DT90 was 4.66-162.45 d and 6.44-57.46 d, respectively. The results suggested that soil temperature had significant effects on the degradation of Cry1Ab protein, with a higher degradation rate at higher temperature, but soil water content and pH had no obvious effects on the degradation of Cry1Ab protein.  相似文献   

12.
Many studies have investigated the effects of pH, temperature, and salinity on the surface-active properties of various surfactants, although in most cases the variables have been studied separately, without considering the effects of any interactions between them. In the present study, a Box-Behnken factorial design was applied to study the effects of pH, temperature, and salinity on the surface-active properties of a biosurfactant produced by Lactobacillus pentosus. The data obtained enabled development of a second-order model describing the interrelationships between operational and experimental variables, by equations including linear, interaction, and quadratic terms. The variable that had the greatest effect on the surface-active properties of the biosurfactant was pH. Moreover, at pH 3-5.5, decreases in salinity and temperature acted synergistically, reducing the surface tension of the biosurfactant; at pH 8, the same effect was observed with increasing salinity and temperature.  相似文献   

13.
Effects of a reducing sugar, fructose, glucose, or xylose, and glass transition on the nonenzymatic browning (NEB) rate in maltodextrin (MD), poly(vinylpyrrolidone) (PVP), and water systems were studied. Glass transition temperatures (T(g)) were determined using DSC. Water contents were determined gravimetrically, and NEB rates were followed at several temperatures spectrophotometrically at 280 and 420 nm. Reducing sugar did not affect water contents, but xylose reduced the T(g) of the solid models. Sugars showed decreasing NEB reactivity in the order xylose > fructose > glucose in every matrix material. The NEB reactivity and temperature dependence of the single sugars varied in different matrices. The NEB rates of the solid models increased at temperatures 10-20 degrees C above the T(g), and nonlinearity was observed in Arrhenius plots in the vicinity of T(g). The temperature dependence of nonenzymatic browning could also be modeled using the WLF equation.  相似文献   

14.
加热温度和时间对牛肉嫩度影响的主成分分析评价   总被引:1,自引:0,他引:1  
为研究加热温度及时间对不同部位牛肉嫩度的影响,该研究以夏南牛肩肉、外脊和米龙3个部位肉为例,分别代表牛胴体前、中、后躯部位肉,提出了一种基于主成分分析的高熟度牛肉嫩度综合评价方法。利用剪切力测定法和质构剖面分析测定了6头夏南牛3个部位(肩肉、外脊、米龙)4个加热温度(70、80、90、100℃)6个保温时间(0、30、60、90、120、180 min)的剪切力值和质构指标,对不同加热处理牛肉的蒸煮损失、剪切力值、硬度、黏附性、弹性、内聚性、胶着性、咀嚼性和回复性等9个指标进行主成分分析,从中提取了3个主成分,方差贡献率分别为56.53%、24.43%、8.62%,分别代表牛肉的咀嚼特性、抗压特性和剪切特性,累积方差贡献率达89.58%,并建立了综合评价模型。试验结果表明,在高熟度牛肉的评价过程中,以剪切力值作为主要载荷的第3主成分在肉品嫩度综合评价中仅占很小的比例,并不能代表肉品嫩度的全部信息,因此不能把剪切力值作为高熟度牛肉嫩度评价的主要指标,在评价过程中应综合考虑与内聚性、胶着性、咀嚼性和回复性等与肉品质地相关的指标进行分析评价;加热温度和时间对牛肉嫩度综合得分影响较大,当肉块中心温度小于80℃时,随着加热时间的延长,牛肉嫩度综合得分整体变化比较平稳;而当肉块中心温度高于80℃时,随着加热时间的延长,牛肉嫩度品质综合得分整体呈下降趋势,且中心温度越高,加热时间越长,得分值越低。运用主成分分析减少了牛肉嫩度品质的评价指标,简化评价流程,为高熟度牛肉嫩度评价提供理论依据。  相似文献   

15.
Denitrification was studied using samples of salt marsh soils collected from the New Jersey coast. The pH, organic matter content, NO3? and NO2? concentrations were determined on samples from marshes with and without grasses. Denitrification was measured in laboratory studies over a temperature range from 4° to 60°C and a pH range from 5.0 to 9.0 by monitoring NO3? reduction, NO2? reduction and N2 evolution. Optimum conditions were controlled by a temperature-pH interaction which caused shifts in the pH optima relative to the change in temperature. No3? and NO2? were reduced over a broad range of No3? concentration; whereas, 0.2 mg NO2?-N ml?1 completely inhibited denitrification. The presence of NO3? reverses this inhibition. N2O was produced only at low pH values and low NO3? concentrations. It was concluded that the NO2? reducing system was the most easily disrupted of the three main processes of denitrification.  相似文献   

16.
The soy isoflavones daidzin, glycitin, and genistin were purified from defatted soy flour using preparative-scale reverse-phase HPLC. The stabilities of the three isoflavones at different heating temperatures were investigated. Daidzin, glycitin, and genistin were lost at a rate of 26, 27, and 27% of their original concentration, respectively, after 3 min at 185 degrees C. At 215 degrees C, decreases of daidzin, glycitin, and genistin were 65, 98, and 74% after 3 min and 91, 99, and 94% after 15 min, respectively. The order of the thermal stabilities, from lowest to highest, was glycitin, genistin, and daidzin. Acetyl daidzin and acetyl genistin, daidzein, glycitein, and genistein were produced during heating at temperatures above 135 degrees C. The rate of binding of an acetyl group to form acetyl daidzin and acetyl genistin from daidzin and genistin was higher than the rate of loss of a glucoside group to form daidzein and genistein. However, acetyl daidzin and acetyl genistin decreased sharply at temperatures above 200 degrees C, while daidzein, glycitein, and genistein were relatively stable over 30 min. The stability of daidzein was higher than that of glycitein or genistein.  相似文献   

17.
Zinc attracts a lot of interest in diverse disciplines of the scientific community. On the one hand, it is an essential micronutrient for plants, animals and humans; on the other hand, it is a soil pollutant. We investigated the roles of time, pH, ionic strength, and temperature in determining Zn partitioning between the solution and solid phases of suspensions of a representative plant-growth substrate (perlite). Zinc adsorption by perlite was dependent on pH, ionic strength, and temperature; it involved a combination of specific chemical affinity to adsorption sites and an electrostatic component that is related to the surface charge and is controlled by pH. Elevating temperature significantly and systematically raised the pH and enhanced Zn adsorption. A single quadratic regression was obtained between solution Zn concentration and pH in fresh perlite suspensions, which may indicate that temperature indirectly affected Zn adsorption by elevating the pH. In contrast, no single regression could be obtained for the suspensions of used perlite, which had previously served as a growth medium, and this may indicate that temperature affected both pH and Zn adsorption. The effect of pH on the apparent activation energy (Ea) for Zn adsorption was significant and each unit increment of pH induced a 4.9 kJ mol? 1 increase in Ea. Specific Zn adsorption modified the perlite charge characteristics, therefore, Zn adsorption indirectly affected the partitioning of other ions, such as P, between the solid and the aquatic phases. A significant effect of ‘enhanced P adsorption induced by Zn adsorption’ was observed.  相似文献   

18.
Denitrification plays an important role in N-cycling. However, information on the rates of denitrification from horticultural growing media is rare in literature. In this study, the effects of pH, N, C, and moisture contents on denitrification were investigated using four moderately decomposed peat types (oligotrophic, mesotrophic, eutrophic, and transitional). Basal and potential denitrification rates (20°C, 18 h) from the unlimed peat samples varied widely from 2.0 to 21.8 and from 118.9 to 306.6 μg (N2O + N2)–N L−1 dry peat h−1, respectively, with the highest rates from the eutrophic peat and the lowest from the transitional one. Both basal and potential denitrification rates were substantially increased by 3.6–14- and 1.4–2.3-fold, respectively, when the initial pH (4.3–4.8) was raised to 5.9–6.5 units. Emissions of (N2O + N2)–N from oligotrophic, mesotrophic, and transitional peats were markedly increased by the addition of 0.15 g NO3–N L−1 dry peat but further additions had no effect. Denitrification rates were increased by increasing glucose concentration suggesting that the activity of denitrifiers in all peat types was limited by the low availability of easily decomposable C source. Increasing moisture contents of all peats from 40 to 50% water-filled pore space (WFPS) did not significantly (p > 0.05) increase (N2O + N2)–N emissions. However, a positive effect was observed when the moisture contents were increased from 60% to 70% WFPS in the eutrophic peat, from 70% to 80% in the transitional, from 80% to 90% in the oligotrophic and from 70% to 90% in the mesotrophic peat. It can be concluded that liming, N-fertilization, availability of easily decomposable C, and moist condition above 60% WFPS could encourage denitrification from peats although the rates are greatly influenced by the peat-forming environments (eutrophic > mesotrophic > oligotrophic > transitional types).  相似文献   

19.
Biobeds retain and degrade pesticides through the presence of a biobed mixture consisting of straw, peat, and soil. The effects of biobed composition, moisture content, and temperature on pesticide degradation were investigated in laboratory studies. Straw produced the main microbial activity in the biobed mixtures as strong positive correlations were observed between straw, respiration, and phenoloxidase content. Most pesticides investigated were dissipated by cometabolic processes, and their dissipation was correlated with respiration and/ or phenoloxidase content. More pesticides were more dissipated at biobed moisture levels of 60% water holding capacity (WHC) than at 30% and 90% WHC, while 20 degrees C gave higher dissipation rates than 2 and 10 degrees C. A straw:peat:soil ratio of 50:25:25% v/v is recommended in field biobeds since this produces high microbial activity and low pH, favorable for lignin-degrading fungi and phenoloxidase activity.  相似文献   

20.
The gelatinization properties of starch extracted from corn and waxy corn dried at different temperatures were determined at various water contents and heating rates by differential scanning calorimetry. All gelatinization transition temperatures increased with drying temperature and heating rate. Onset and peak temperatures remained relatively constant, whereas end temperature decreased in the presence of excess water. The gelatinization enthalpy (deltaH(g)) of corn starch decreased with drying temperature at 50% water; however, it remained constant for waxy corn starch. The effects of water content and heating rate on deltaH(g) were dependent on each other. The minimum water levels required for gelatinization of starch extracted from corn dried at 20 and 100 degrees C are 21 and 29%, respectively. The activation energy (E(a)) was calculated using an Arrhenius-type equation and two first-order models; the degree of conversion (alpha) was predicted using a newly proposed model that produced good results for both E(a) and alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号