首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
报道了黄土旱区连续 13年长期不同轮作施肥对土壤剖面硝态氮分布与积累的影响。化学氮肥的施用可有效地提高土壤硝态氮的含量 ,并造成硝态氮的淋溶 ,单施氮肥硝态氮淋溶深度达 150 cm;氮肥、磷肥和有机肥的配合施用不同程度的减小了硝态氮的淋溶 ,提高了氮肥的利用率 ;在贫氮地区土壤上 ,尤以氮肥、磷肥配施效果最佳。在相同的施肥种类和施肥量下 ,连续种植小麦、玉米、苜蓿 ,以玉米连作施肥土壤中硝态氮的累积量最小 ,而小麦连作施肥累积量最大 ;而且 ,无论施肥与否 ,均对深层土壤硝态氮分布造成不同程度的亏缺。在不同轮作系统中 ,粮草 3年轮作土壤剖面硝态氮的累积最小 ,其余轮作系统均造成土壤硝态氮不同程度的下淋积存  相似文献   

2.
黄土旱塬长期轮作施肥土壤剖面硝态氮的分布与积累   总被引:11,自引:0,他引:11  
报道了黄土旱区连续13年长期不同轮作施肥对土壤剖面硝态氮分布与积累的影响。化学氮肥的施用可有效地提高土壤硝态氮的含量,并造成硝态氮的淋溶,单施氮肥硝态氮淋溶深度达150cm;氮肥、磷肥和有机肥的配合施用不同程度的减小了硝态氮的淋溶,提高了氮肥的利用率;在贫氮地区土壤上,尤以氮肥、磷肥配施效果最佳。在相同的施肥种类和施肥量下,连续种植小麦、玉米、苜蓿,以玉米连作施肥土壤中硝态氮的累积量最小,而小麦连作施肥累积量最大;而且,无论施肥与否,均对深层土壤硝态氮分布造成不同程度的亏缺。在不同轮作系统中,粮草3年轮作土壤剖面硝态氮的累积最小,其余轮作系统的造成土壤硝态氮不同程度的下淋积存。  相似文献   

3.
对不同施肥条件下23年小麦连作地和苜蓿连作地土壤矿质氮分布和累积进行研究,探讨种植浅根系和深根系植物对硝态氮淋溶的影响。结果表明,不施肥(CK)和单施磷(P)肥,小麦和苜蓿连作地土壤硝态氮主要集中在0—60 cm土层,0—60 cm土层以下硝态氮含量变化稳定并小于2 mg/kg。氮肥、磷肥和有机肥配施(NPM)时,小麦连作地土壤硝态氮累积在20—100 cm和140—320 cm土层,年累积速率可达42.12 kg/(hm2.a);苜蓿连作土壤硝态氮主要集中在0—60 cm土层,仅在200—300 cm土层出现轻微累积,年累积速率仅为1.01 kg/(hm2.a)。在不施肥和单施磷肥下,种植小麦或苜蓿对土壤硝态氮残留量影响不显著,而氮、磷和有机肥配施时,小麦连作地土壤硝态氮残留量迅速增加,并与不施肥、单施磷肥处理有显著差异;苜蓿连作地土壤硝态氮残留量虽有少量增加,但与不施肥、单施磷肥处理无显著差异。不施肥、单施磷肥和氮、磷和有机肥配施,小麦连作、苜蓿连作地土壤剖面铵态氮含量主要在10—20 mg/kg之间波动,在土壤剖面无明显的累积现象,铵态氮残留量受施肥和作物种类的影响不显著。  相似文献   

4.
休闲与施肥对夏玉米生长季节土壤矿质氮的影响   总被引:2,自引:0,他引:2  
采用田间试验方法研究了休闲、施肥与夏玉米生长季土壤矿质氮动态的关系.结果表明:种植玉米可明显降低0~200cm土层硝态氮残留量,且主要减少100cm土层以下的硝态氮残留量,但对铵态氮残留量及其剖面分布无明显影响.夏玉米吐丝期,种植玉米0~200cm土层的硝态氮残留量是198.1kg·hm-2,休闲小区的残留量是562.2kg·hm2,前者比后者降低364.1kg·hm-2.施肥可明显增加土壤中硝态氮残留,并影响其剖面分布,但对铵态氮的影响较小.夏玉米出苗期施用氮肥处理的0~200cm土层的硝态氮残留量是857.3kg·hm-2,而不施氮肥处理仅为165.7kg·hm-2,前者比后者增加4.2倍;与不施肥相比,出苗期施肥不仅增加表层土壤硝态氮含量,且表层硝态氮随降水和灌水淋失到200cm土层;施肥处理收获期60cm以下土层硝态氮含量明显增加,特别是在180~200cm存在硝态氮的累积峰.  相似文献   

5.
不同施氮情况下小麦玉米间作土壤硝态氮的动态变化   总被引:8,自引:2,他引:6  
本文主要研究了0、210、420和630kg/hm2(NO、N1、N2和N3)4种不同施氮量对小麦玉米间作土壤硝态氮(NO-3-N)含量动态变化的影响。结果表明,0~200cm土层硝态氮的含量整体表现为N3>N2>N1>N0。各生育时期低氮水平下0~60cm土层,中、高氮水平下的0~80cm土层土壤硝态氮含量变化显著。0~60cm土层土壤硝态氮累积量随作物生育时期的变化呈“双峰”曲线,峰值分别出现在小麦挑旗期和玉米大喇叭口期,而60~200cm土层土壤硝态氮累积量的变化呈“单峰”曲线,峰值出现在玉米大喇叭口期。N0处理硝态氮累积量各生育时期变化差异较小。小麦与玉米共生期内0~200cm土层硝态氮含量表现为玉米带>小麦带,差异最大的时期为小麦灌浆期和玉米大喇叭口期。土壤硝态氮向深层的运移量随施氮量增加而增加,与N0相比,施氮后100~200cm土层硝态氮累积量小麦带增加了1053~6253kg/hm2,玉米带增加了1791~7039kg/hm2。优化氮肥施用比例,适当降低小麦播前施氮量可减小土壤硝态氮深层淋溶的风险。  相似文献   

6.
以在陕西关中土垫旱耕人为土区进行的连续6年定位试验为对象,研究了长期覆盖栽培及施氮量对玉米?小麦轮作体系下土壤有机质、全氮及土壤剖面硝态氮残留量和分布的影响。结果表明,不同栽培模式对土壤有机质和全氮含量的影响为覆草垄沟常规节水,其中覆草模式影响达显著水平。增施氮肥不同程度地提高了土壤有机质和全氮含量。经过12季玉米-小麦的轮作,不同栽培模式0~200cm土壤剖面硝态氮残留量为垄沟节水覆草常规,垄沟和节水栽培模式与常规栽培硝态氮累积量差异达显著水平。随种植年限和施氮量增加,0~200cm土壤中硝态氮累积量明显增加,施240kg·hm-2N(N240)处理0~200cm土壤硝态氮累积量显著高于施120kg·hm-2N(N120)处理。不同施氮量下硝态氮在0~200cm土壤剖面的分布存在差异,与不施氮(N0)和N120处理相比,N240处理下各栽培模式在120cm以下的土壤硝态氮含量随深度增加而显著增加。  相似文献   

7.
RZWQM模拟小麦 玉米轮作系统氮素运移及损失特征   总被引:2,自引:1,他引:2  
本文以位于华北平原的河北省农林科学院大河试验站冬小麦-夏玉米轮作系统为研究对象,应用RZWQM(Root Zone Water Quality Model)模型对华北地区2010年冬小麦-夏玉米的1个轮作周期内土壤剖面水分和剖面硝态氮累积、作物产量、硝态氮淋失以及氨挥发进行模型模拟。本文利用并通过RZWQM模型在不同梯度施肥情况下讨论了施肥量对小麦-玉米轮作体系中硝态氮淋溶和氨挥发特性,并尝试通过拟合出的回归曲线来确定施氮量和硝态氮淋失和氨挥发之间的关系。设置冬小麦-夏玉米轮作周期施纯氮量分别为575 kg-hm-2(N3)、400 kg-hm-2(N2)、215 kg-hm-2(N1)和0 kg-hm-2(N0)4个处理,应用轮作周期中玉米数据进行模型参数率定,应用小麦进行模型参数的验证。结果表明:模型的玉米率定以及小麦验证的过程中结果偏差均在可接受范围内,剖面水分率定均方误差(RMSE)最高为0.019 cm3-cm-3,平均相对误差(MRE)最高为15.98%;剖面硝态氮累积验证结果 RMSE平均值为4.580 mg-kg-1,MRE平均值为52.63%。在模型验证的小麦-玉米季土壤基础上,硝态氮淋溶和氮挥发都与施氮量呈一定线性相关关系。综上结论,本试验结果能较好地模拟华北地区土壤剖面水分、硝态氮积累,以及施氮量对土壤硝态氮淋失和氨挥发的影响,为预测和估算土壤适宜施氮量提供了便捷可靠的方法。但RZWQM模型验证参数过程还需要进一步的校正与完善。  相似文献   

8.
氮肥用量及施用时间对土体中硝态氮移动的影响   总被引:61,自引:1,他引:61       下载免费PDF全文
土连续两年小麦—玉米轮作条件下 ,播前一次施氮量 130~ 5 2 0kghm-2 a-1时 ,氮肥用量对硝态氮在土体中的移动深度没有影响 ,但土壤剖面中残留的硝态氮量随施氮量增加显著增加。播前一次施用氮肥 ,差减法计算的肥料氮表观回收率 (作物携出量和土壤硝态氮的残留量 )为 6 2 %~ 82 7% ;就作物而言小麦的携出率高于玉米 ,在玉米生长季节有更多的硝态氮可能被淋移至土壤剖面的下层。小麦—玉米轮作一年 ,不同的施氮时间对肥料氮的表观回收率以及硝态氮在土壤剖面中的分布、累计没有明显影响。土区合适的氮肥用量是控制硝态氮向深层移动的主要措施  相似文献   

9.
华北山前平原农田土壤硝态氮淋失与调控研究   总被引:11,自引:5,他引:6  
本文依托中国科学院栾城农业生态系统试验站小麦-玉米一年两熟长期定位试验, 应用土钻取土和土壤溶液取样器取水的方法, 研究了不同农田管理措施下土壤硝态氮的累积变化, 计算了不同氮肥处理通过根系吸收层的硝态氮淋失通量。结果表明, 小麦-玉米生长季土壤硝态氮累积量和淋失量随着施氮量的增加显著增加, 相同氮肥水平下增施磷、钾肥增加了作物的收获氮量, 施磷肥增加的作物收获氮量最高可达123kg·hm-2·a-1, 施钾肥增加的作物收获氮量最高为31 kg·hm-2·a-1。不同灌溉水平下0~400 cm 土体累积硝态氮随着灌溉量的增加而降低, 控制灌溉(小麦季不灌水, 玉米季灌溉1 水)、非充分灌溉(小麦季灌溉2~3 水, 玉米季按需灌溉)、充分灌溉(小麦季灌溉4~5 水, 玉米季按需灌溉)各处理剖面累积硝态氮量分别为1 698 kg·hm-2、1148 kg·hm-2 和961 kg·hm-2。与非充分灌溉和充分灌溉处理相比, 控制灌溉在100~200 cm 土层硝态氮累积量显著高于其他层次, 2003~2005 年间控制灌溉剖面增加的硝态氮量占施肥总量的23%; 非充分灌溉处理剖面增加的硝态氮量占施肥总量的22%; 充分灌溉处理剖面增加的硝态氮量占施肥总量的47%。免耕措施降低了作物产量, 影响土壤水的运移, 增加了硝态氮的淋失风险。根据作物所需降低氮素投入(N 200 kg·hm-2·a-1), 增施磷、钾肥, 控制灌溉量是减少华北山前平原地区硝态氮淋失, 保护地下水的有效措施。  相似文献   

10.
渭北旱塬小麦不同栽培模式对土壤硝态氮残留的影响   总被引:10,自引:0,他引:10  
在陕西渭北旱塬进行了4年田间小麦试验,研究了旱地不同栽培模式、施氮量和种植密度对土壤硝态氮残留累积的影响。结果表明,种植小麦4年后,0-200 cm土壤剖面中残留硝态氮为29.87~462.59 kg/hm2,且主要积累在80-160 cm土层,土壤氮库不仅明显,且残留比前3年土壤剖面显著下移(前3年主要累积在100 cm),差异达显著和极显著水平;不同栽培模式和种植密度0-200 cm土层硝态氮残留累积规律及其小麦籽粒吸氮量基本相似,排序均为:地膜覆盖>常规种植>秸秆覆盖>垄沟种植;随施氮量的增加土壤硝态氮残留量也相应增加,N0处理0-200 cm土壤平均硝态氮残留量为57.69 kg/hm2,N120处理平均为97.04 kg/hm2,虽然高于无氮处理,但两者差异未达到显著水平,N240处理平均为355.43 kg/hm2,比前者增加的幅度更大,其差异达到极显著水平。因施氮肥而增加的土壤硝态氮残留量为14.9~401.18 kg/hm2,平均占4年施氮量的19.59%,其中地膜覆盖占26.07%,常规种植占20.98%,秸秆覆盖占17.46%,垄沟种植种植占13.87%。  相似文献   

11.
  【目的】  当前华北平原冬小麦–夏玉米生产中,存在氮肥投入量大、氮肥利用效率低等问题,在滴灌水肥一体化条件下研究施氮量对冬小麦–夏玉米周年产量、氮素利用效率和土壤全氮含量、硝态氮残留的影响,以期为该地区小麦–玉米节肥、高产高效的栽培模式提供理论依据。  【方法】  于2018—2020年在青岛农业大学胶州现代农业示范园开展小麦、玉米滴灌施肥田间试验。设冬小麦/夏玉米生长季不施氮(N0)和施氮 150/150 kg/hm2 (N1)、210/225 kg/hm2 (N2) 和270/300 kg/hm2 (N3) 4个水平,以传统施肥方式和常规施氮量240/240 kg/hm2为对照(CK)。分析冬小麦和夏玉米产量、氮素吸收量和土壤氮素残留量。  【结果】  N2处理冬小麦、夏玉米产量最高,与N3处理无显著差异,但显著高于N0、N1和CK处理;N3处理冬小麦、夏玉米的干物质积累量、氮素吸收量最高,与N2处理差异较小,而显著高于N0、N1和CK处理。冬小麦、夏玉米氮肥偏生产力随着施氮量的提高而降低;冬小麦季氮素利用效率随着施氮量的提高而降低;夏玉米季,N2、N1和N0处理的氮素利用效率显著高于N3和CK处理,且N0、N1和N2处理间无显著差异;冬小麦、夏玉米氮肥农学利用率均随着施氮量的提高而降低,N2施氮水平下,氮素利用效率和氮肥农学利用率均表现较优。随着施氮量的增加,0—100 cm土层土壤全氮含量和硝态氮含量呈增加的趋势,全氮积累主要集中在0—40 cm土层,N3、N2和CK处理0—100 cm土层土壤全氮含量与N0和N1处理之间的差异随着轮作年数的增加而逐渐增大,N2处理较N3和CK处理有效抑制了硝态氮在表层土壤的积累和向深层土壤的迁移,降低了硝态氮淋失风险。  【结论】  冬小麦季施氮210 kg/hm2和夏玉米季施氮225 kg/hm2 (N2)可实现周年作物增产高效,提高氮素利用效率,显著降低硝态氮向深层土壤迁移,降低硝态氮淋失风险,是滴灌水肥一体化下华北平原麦玉周年轮作适宜的施氮量。  相似文献   

12.
华北潮土冬小麦-夏玉米轮作包气带氮素淋溶机制   总被引:1,自引:0,他引:1  
合理水氮管理可以实现作物目标产量和品质、维持土壤肥力和降低环境污染。然而,自20世纪90年代以来,我国农田过量施氮和大水漫灌等问题突出,引起农业面源污染日趋加重,地下水硝酸盐污染成为一个普遍现象。本文以华北潮土区冬小麦-夏玉米体系为研究对象,采用数据整合和文献分析的方法,阐明了典型农田硝态氮淋溶的时空特征及影响因素,研究了地表裂隙和土壤大孔隙对硝态氮淋溶的影响,定量了氮素在地表-根层-深层包气带-地下水的垂直迁移通量及过程。结果表明,农户常规管理的冬小麦-夏玉米轮作体系氮素盈余较高(299~358kg·hm~(-2)·a~(-1)),导致土壤根区和深层包气带累积了大量的硝态氮。冬小麦季硝态氮的迁移主要受灌溉影响,以非饱和流为主,且迁移距离较短;春季单次灌溉量低于60 mm,可以有效控制水和硝态氮淋溶出根区。冬小麦耕作和灌溉引起的地表裂隙对水氮运移的贡献不大。雨热同期的夏玉米季,土壤水分经常处于饱和状态,再降雨就可以导致硝态氮淋溶出根层进入深层包气带。夏玉米季极易发生硝态氮淋溶事件(占全年总淋溶事件的81%左右),硝态氮淋溶量占全年总淋溶量的80%左右,且单次淋溶事件的淋溶量较高。大孔隙优先流对夏玉米季根区硝态氮淋溶的贡献率在71%左右,这些硝态氮脱离了作物根系吸收范围,反硝化作用对硝态氮去除具有一定作用。在华北气候-土壤条件下,特别应注意冬小麦收获后土壤不应残留过多硝态氮,以避免夏玉米季降雨发生大量淋溶;夏玉米季需要注意施氮与作物需氮的匹配。由于夏玉米追肥困难,生产上提倡一次性施肥措施,控释肥应该能够发挥更大作用。未来气候变化,导致夏季极端高强度降雨事件的频率增加,将会加剧包气带累积硝态氮通过饱和流或优先流向地下水的迁移。合理的水氮管理是从源头上减少硝态氮向深层包气带和地下水迁移的主要措施。  相似文献   

13.
在黄土高原南部半湿润易干旱地区,通过长期田间定位试验,研究了不同地表覆盖对第3季冬小麦生长、氮素吸收及土壤水分和硝态氮累积分布的影响。结果表明,无论地表覆盖能否促进小麦生长及其对氮素的吸收,在收获期均能提高表层土壤水分;覆膜栽培增加表层硝态氮含量,覆草也在高量施用氮肥时,提高表层硝态氮的累积。而地表覆盖对耕层以下土壤水分和硝态氮累积的影响与施氮量、作物生长及其对氮素吸收利用有关。覆膜在促进作物生长、提高氮素吸收的同时,降低了深层土壤水分及其硝态氮的累积,且随施氮量的增加降低幅度增大;覆草在不施氮肥和施氮120kg·hm^-2时未能促进小麦生长,但有增加深层土壤水分的趋势,而高量施用氮肥,明显提高了小麦地上部生物产量及其对氮素的吸收,降低了深层土壤水分;同时发现,无论施氮与否覆草均降低了下层土壤硝态氮的累积。在高量施用氮肥的情况下,采用地表覆盖,不仅能够促进作物生长、提高氮素吸收,还能有效降低氮素在土壤中的累积及其向下层淋溶。  相似文献   

14.
长期施肥条件下华北平原农田硝态氮淋失风险的研究   总被引:41,自引:9,他引:41  
利用河北辛集潮土(21年)和北京昌平褐潮土(9年)两个长期定位施肥试验研究了华北平原冬小麦夏玉米轮作体系下农田氮素平衡和硝态氮淋失风险。结果表明,单施氮肥的增产效果有限,昌平试验点甚至出现减产现象;而适量有机肥与氮磷或氮磷钾配施可显著提高作物产量,降低氮素盈余。单施氮肥时,辛集和昌平土壤硝态氮峰值分别达20.7和30.0.mg/kg,出现在160200.cm和90120.cm土层;硝态氮累积量高且大部分集中在根区外土壤,硝态氮淋失风险大。氮磷或氮磷钾肥配施时,硝态氮峰值出现深度上移3040cm,根区和根区外土壤硝态氮累积量均大幅降低,淋失风险明显减弱;在氮磷或氮磷钾肥基础上适量施用有机肥时,硝态氮峰值出现深度进一步上移至根区土壤,深层土壤硝态氮累积量显著下降,淋失风险低。过量施用有机肥或过量施用氮肥时,深层土壤硝态氮累积量大幅增加,甚至超过单施氮肥处理,淋失风险大大增强。研究结果表明,氮磷钾肥与有机肥配合施用是提高作物产量、控制农田硝态氮淋失的重要途径。  相似文献   

15.
黄土高原旱地冬小麦/夏玉米轮作体系土壤的氮素平衡   总被引:12,自引:7,他引:12  
在黄土高原南部旱地,通过田间小区试验研究了传统施肥方式下冬小麦/夏玉米轮作体系中土壤的氮素平衡。结果表明:土壤残留矿质态氮(Nmin)对作物产量和施用氮肥效果有重要影响,前季作物残留土壤Nmin可以促进后季作物生长,使氮肥增产效应不明显;冬小麦生长季节施氮240.kg/hm2可以增加产量和作物吸氮量,但其氮肥利用率只有39.7%,大部分以Nmin残留于0200cm土壤中或以其他途径损失;由于冬小麦季节残留肥料氮的后效,使夏玉米生长季节的氮肥利用率很低,施氮120和240.kg/hm2的氮肥利用率分别只有22.4%和3.9%,而在0200cm土层残留率则达到51.1%和87.2%;经过冬小麦、夏玉米一个轮作周期后,施氮量为240、360和480.kg/hm2时作物的氮肥利用率平均为52.2%4、2.2%和28.0%,而相应的土壤残留率平均为12.4%、25.3%和49.8%,表观损失率平均为35.4%、32.5%和22.2%。表明在土壤残留Nmin较高的条件下,夏玉米生长季节施氮量较低时盈余氮素以表观损失为主,施氮量高时大部分氮素残留于土壤剖面。  相似文献   

16.
旱地土壤中残留肥料氮的动向及作物有效性   总被引:12,自引:0,他引:12  
氮素是作物生长最重要的必需元素之一。合理施用氮肥能促进作物生长并提高产量,但是,过多施用氮肥则抑制作物生长并导致大量的肥料氮残留在土壤中,这部分氮素不但会引起土壤养分不平衡,而且为生态环境带来潜在威胁,因此,研究残留氮的动向及作物有效性可为合理施用化肥氮、高效利用土壤残留氮素和减少残留氮素的损失提供依据。应用~(15)N示踪技术,通过4年定位试验,研究了黄土高原南部旱地冬小麦/夏玉米轮作过程中土壤残留肥料氮的变化及作物吸收利用。在冬小麦和夏玉米轮作的第一个周期,为了制造高肥料氮残留背景,于冬小麦播种前向微区施入240 kg hm~(-2)的~(15)N标记氮素;在夏玉米拔节期,为了研究氮肥施入对残留肥料氮的影响,设置0和120 kg hm~(-2)两个氮水平,以普通尿素施入微区。在第2至第4个轮作周期内,为了分析残留肥料氮的动向及其对作物的有效性,微区内不施任何肥料。结果发现,冬小麦播种前施用的~(15)N标记氮肥于收获期在0~200 cm土壤剖面中均有残留,但大部分累积在0~40 cm土层中,累积总量达到200.9 kg hm~(-2),占当季施入量的83.7%。在随后的夏玉米生长季残留的肥料氮迅速减少,之后随生长季的后移缓慢减少,然后保持相对稳定。经过4年的冬小麦/夏玉米轮作,0~300 cm土壤剖面仍残留大量的~(15)N肥料,后季不追施氮肥和追施氮肥处理的残留量分别为47.1 kg hm~(-2)和54.0 kg hm~(-2)。可见,有一部分肥料氮被固定在土壤有机质中。作物对残留氮的回收量逐年减少,且因后季追施氮肥与否而异,4年中作物对肥料氮的总利用率不追施氮肥和追施氮肥处理的分别为46.9%和50.4%,其中在第1个轮作周期中,小麦和玉米的总利用率分别41.6%和42.0%,后3年利用率分别仅有5.3%和8.4%;4年中残留~(15)N的损失率分别达38.1%和29.7%,其损失主要发生在第1个轮作周期的夏玉米生长季节。说明,在旱地土壤上,氮肥的残留是不可避免的,残留肥料氮的有效性较低,只有少量被作物逐年吸收,一部分以有机形态残留在土壤剖面中,另一部分发生了无效损失。后季追施氮肥可促进作物对土壤残留肥料氮的吸收且增加肥料氮在土壤中的保留,减少残留肥料氮的无效损失,但是以自身的大量损失为代价的。  相似文献   

17.
  【目的】  合理施氮是粮食高产、稳产的重要保证。研究不同施氮水平下作物产量的可持续指数以及土壤硝态氮年际迁移特征,对指导黄淮海地区冬小麦–玉米轮作体系下农田氮肥的合理施用具有重要意义。  【方法】  长期定位试验始建于2006年,设置10个施氮水平:0、60、120、180、240、300、360、420、500和600 kg/hm2。测定冬小麦和夏玉米产量及土壤剖面 (0—200 cm) 硝态氮含量的年际变化特征。  【结果】  施氮水平显著影响冬小麦–夏玉米轮作体系下作物产量,施肥年限以及施肥年限与施肥量间的交互作用对小麦、玉米产量也存在极显著影响。施N 0~240 kg/hm2的处理,小麦、玉米产量随施氮量的增加逐渐增加;施N 300~600 kg/hm2的处理作物产量基本稳定,处理间差异不显著 (P > 0.05)。施氮能显著提高冬小麦产量的可持续性指数 (P < 0.05),但对夏玉米产量的可持续指数影响较小。随着施氮量增加,土壤硝态氮含量呈现逐渐增加的趋势,且施N量低于300 kg/hm2时,0—200 cm土层硝态氮含量均处于较低水平,施氮量超过300 kg/hm2后,土壤硝态氮含量显著增加。另外,随着试验年限的延长,土壤硝态氮累积峰逐渐下移,2008、2011和2017年土壤硝态氮含量峰值分别在40—60 cm、80—120 cm和80—160 cm。  【结论】  黄淮海盐化潮土区,冬小麦–夏玉米轮作制度下氮合理用量在冬小麦上的阈值为240 kg/hm2、在夏玉米上的阈值为180 kg/hm2,在此氮肥用量下,长期施肥既可保证作物 (小麦、玉米) 稳产,又不会显著增加土壤硝态氮残留及向下迁移。  相似文献   

18.
华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析   总被引:35,自引:13,他引:35  
通过田间试验研究了华北地区冬小麦/夏玉米轮作体系对氮素的环境承受力。结果表明,冬小麦和夏玉米达到最高产量时的施氮量分别是112和180.kg/hm2。氮肥利用率和农学利用率随施氮量的增加而降低,生理利用率表现出抛物线的趋势。在农户习惯施氮条件下,冬小麦和夏玉米的氮肥利用率分别是10%和6%,每千克氮肥分别增产2和3千克。灌水和集中降雨是引起土壤硝态氮明显下移的主要因素。氮素平衡计算的结果表明,低施氮量时,氮素盈余以残留Nmin为主,高量施氮则以表观损失为主。将收获后090.cm土壤中的硝态氮的量控制到150kg/hm2,可以在兼顾环境的前提下获得较高的产量;此时冬小麦季的施氮量是122.kg/hm2,产量(干物重)达到最高产量4331.kg/hm2;夏玉米季的施氮量是145.kg/hm2,产量(干物重)是7965.kg/hm2,达到最高产量的97%。  相似文献   

19.
【目的】明确玉米条带不同追施氮量对间作作物产量、 吸氮量和土壤硝态氮动态变化的影响,并阐明间作系统不同施氮量的后茬农学效应和环境效应。【方法】玉米和大豆播种时均施用相同的基肥(其中氮肥用量为N 45 kg/hm2),根据大喇叭口期玉米条带追施氮量的不同(N 0、 75、 180 kg/hm2)设置三个处理(N0、 N75、 N180),并且大豆生育期间均不追施氮肥,然后实时监测玉米和大豆各个关键生育期的生物量和土壤硝态氮动态变化,并对比分析各处理的后茬冬小麦产量和土壤硝态氮残留量。【结果】随着玉米条带追施氮量的增加,玉米条带生物量、 产量和吸氮量均无显著变化,而且玉米追施氮量的多少对大豆生物量、 产量和吸氮量没有明显影响。间作种植系统土壤硝态氮含量受到追施氮量的影响,氮肥追施后,020 cm土壤硝态氮含量显著上升,但2040 cm土壤硝态氮含量变化不大。追施氮量越多,玉米条带和大豆条带的土壤硝态氮含量也越高,作物收获后土壤硝态氮残留量也越高,玉米条带追施N 180 kg/hm2的间作系统作物收获后土壤硝态氮含量高出其他两个处理12%~25%。此外,后茬作物冬小麦产量、 吸氮量并未随着前茬间作系统施氮量的增加而增加,但小麦收获后的0100 cm土壤硝态氮残留却随着前茬间作系统施氮量的增加而增大,相对仅施用基肥而不追施氮肥的间作系统,前茬间作系统追施氮肥导致后茬小麦收获后土壤(0100 cm)硝态氮残留量增加了22.38%~70.18%。【结论】针对玉米与大豆间作种植模式,只施用玉米基肥(其中氮肥用量为N 45 kg/hm2)而不追肥,或者在施用基肥的基础上,仅在玉米条带上追施少量氮肥(N 75 kg/hm2),不会影响间作体系产量,还可降低后茬小麦0100 cm土壤中的硝态氮残留。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号