首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
稻草腐解过程中形成胡敏酸的组成和结构研究   总被引:2,自引:0,他引:2  
通过稻草腐解实验,采用化学分析方法,研究了稻草腐解过程中土壤胡敏酸的化学特征的动态变化,旨在丰富农作物秸秆还田过程中的胡敏酸化学组成、性质与结构变化的特征。在试验培养条件下,施用稻草后土壤的有机碳含量提高了31.71%,腐殖质含量增加了51.93%,都在90d时达到最大值。施用稻草45d时的PQ值(HA在HS中所占的比例)明显降低,在90d和135d时的PQ值与45d时变化不大。施用稻草后土壤胡敏酸的色调系数(ΔlogK)逐渐减少,相对色度(RF)值迅速增大,胡敏酸的氧化程度和芳构化程度增强。胡敏酸的元素组成以碳为主,含量在52%左右,其次为氧。H/C的比值逐渐降低,O/C的比值不断增大。羧基和酚羟基为主要的酸性基团。羧基含量先降低,后随着腐解的进行,其含量不断升高;酚羟基的含量变化与羧基的含量变化趋势相反;羰基含量逐渐增加。施用稻草会引起紫色水稻土胡敏酸化学组成和结构的变化。  相似文献   

2.
有机物料腐解过程胡敏酸与Fe~(2+)的络合特征   总被引:3,自引:0,他引:3  
采用玉米秸、绿豆秸、猪粪、羊粪4种有机物料进行腐解试验,研究了腐解过程形成的胡敏酸在不同条件下(pH、离子强度)与Fe2+的络合特征,结果表明,在相同条件下,粪肥腐解形成的胡敏酸与Fe2+的络合能力相对比秸秆的强。腐解过程胡敏酸与Fe2+的络合能力呈动态变化,胡敏酸与Fe2+的络合稳定常数与其羧基、总酸度成极显著正相关。在碱性条件下(pH=8.0),各有机物料腐解形成的胡敏酸与Fe2+的络合能力下降。  相似文献   

3.
本工作通过田间试验和模拟试验研究了施用有机物料对棕壤、草甸土和水稻土中胡敏酸光学性质的影响。结果表明,施用有机物料后使土壤胡敏酸的吸光值和相对色度下降,色调系数升高,甚至发生类型改变。还使胡敏酸紫外285nm和红外2920cm^-1吸收增强,1720cm^-1和萤光强度减弱,激发光谱最大强度波长紫移。说明胡敏酸的分子结构变得脂族化,简单化和年轻化。两种有机物料相比,玉米秸杆对胡敏酸的木质素特征作用  相似文献   

4.
有机肥腐解过程的红外光谱研究   总被引:19,自引:4,他引:19  
对玉米秸秆、树叶、鸡粪及牛粪4种有机肥腐解过程中形成的水溶性有机物(WOM)进行了化学分析并做了红外光谱研究。结果表明,不同的有机肥的WOM总量及各组分的含量有很大的差异,树叶和玉米秸秆腐解形成的WOM中,水溶性胡敏酸(WHA)所占的比例较大;而牛粪和鸡粪腐解形成的WOM中,水溶性小分子有机物(WLOM)所占的比例较大。随着有机肥的腐解,所形成的WLOM中,脂肪族化合物、酰胺类化合物逐渐减少,有机酸的比例不断增大。WHA中的甲基、亚甲基和次甲基的含量升高,脂族性增强,酰胺结构成分逐渐减少。树叶腐解形成的碱提胡敏酸(AHA)的脂肪链结构和碳水化合物成分含量较低。牛粪腐解形成的AHA的脂肪链结构成分和碳水化合物成分含量较高。鸡粪腐解形成的AHA缺乏脂肪链结构成分,碳水化合物成分含量较高。而玉米秸秆腐解形成的AHA在不同的腐解时期有一定差异。  相似文献   

5.
有机物料腐解过程胡敏酸的分级研究   总被引:3,自引:0,他引:3       下载免费PDF全文
王旭东  胡田田  关文玲 《土壤》2001,33(6):321-325
采用培养试验,在研究玉米秸、绿豆秸、猪粪、羊粪4种有机物料腐解过程腐殖物质的组成(H/F比)、胡敏酸性质动态变化的基础上,利用酒精沉淀法对胡敏酸进行分级,研究了不同腐解期胡敏酸的级分组成变异。结果表明,有机物料腐解形成的胡敏酸以级分3、4、5所占比例较多,级分1、2相对较少。级分3在整个腐解过程明显增加;级分1、2前期有所波动,后期呈增加趋势,级分4、5以减小趋势为主。胡敏酸性质变化与其级分组成变化有密切关系。  相似文献   

6.
叶炜  程励励  文启孝 《土壤》1991,23(5):272-272
作者比较研究了水稻土和旱地土壤胡敏酸(和新形成胡敏酸)的氮素形态分布,并对胡敏酸水解液中铵态氮的来源、水解性未知态氮中非α-氨基酸态氮的含量和非水解性氮中N—苯氧基氨基酸的含量进行了研究。供试的土壤胡敏酸有3组,同组胡敏酸提取自发育于同一母质且地块毗邻的水田和旱地(或自然土壤)的表土。新形成胡敏酸也分为3组,同组胡敏酸提取自pH条件相同但水分状况不同的稻草腐解产物。  相似文献   

7.
厌氧和好气条件下油菜秸秆腐解的红外光谱特征研究   总被引:3,自引:0,他引:3  
采用尼龙网袋法,研究了油菜(Brassica campestris L.)秸秆在厌氧和好气条件下的腐解规律及其红外光谱特征。结果表明:油菜秸秆还田后,腐解速率表现为前期快、后期较慢的规律。在360 d培养时间内,厌氧和好气条件下的油菜秸秆腐解率分别为60.50%和68.20%,腐解速率常数(k)分别为0.004-d-1和0.010-d-1,腐解1/2时所需时间分别为229 d和117 d。在厌氧和好气条件下,油菜秸秆的碳释放率分别为70.33%和77.43%,厌氧条件下的释放速率常数(0.025-d-1)低于好气条件(0.026-d-1)。油菜秸秆中氮的释放率分别为82.20%和87.48%,油菜秸秆在厌氧条件下的氮残留量比其在好气条件下高38.25%,且达到显著性差异水平(P0.05)。厌氧条件下的氮残留率始终高于好气条件下,且在60~90 d培养期内差异最大。红外图谱分析显示,油菜秸秆腐解过程最明显的变化在波数为3 430~3 410 cm-1、2 930 cm-1处,吸收峰吸收强度降低,表明油菜秸秆的脂族性下降。在波数为1 740 cm-1、1 419~1 425 cm-1处的吸收峰吸收强度降低,表明油菜秸秆木质素含量下降,且厌氧条件下的吸收强度高于其在好气条件下,表明厌氧条件的木质素残留较多。结果表明,油菜秸秆中羟基、甲基、亚甲基含量随腐解时间延长而降低,碳水化合物减少,脂族性下降,芳构化程度增强。好气条件有利于秸秆中纤维素、半纤维素和脂肪族化合物的分解,提高其芳香性,对土壤碳、氮的补充作用更大。  相似文献   

8.
黑土、栗钙土和潮土胡敏酸分子结构的差异性分析   总被引:2,自引:0,他引:2  
郑殷恬  赵红  赵楠  吕贻忠 《土壤》2011,43(5):804-808
以北方典型的黑土、栗钙土和潮土提取的胡敏酸为研究对象,通过元素分析、傅里叶红外光谱仪及13C核磁共振仪对三者进行结构分析。不同胡敏酸的各种元素含量略有差别,各种官能团含量也不同。元素分析结果来看H/C原子比潮土最高,栗钙土次之,黑土最少;O/C的原子比三者没有明显的差别;C/N比呈现由高到低的次序分别为黑土、栗钙土、潮土。3种胡敏酸的红外光谱吸收峰相似,但吸收强度有差别,如3 352 cm-1和2 931 cm-1处潮土和栗钙土信号强度相当,黑土较低,而在2 580 cm-1处三者信号差异不明显,1 720,1 620,1 420,1 220 cm-1这4个吸收峰信号强弱均为黑土最强,栗钙土次之,潮土最弱。而从核磁共振图谱可以看出潮土结构中含有更多的多糖和蛋白质类结构单元;黑土有机质含量高,芳香化程度也较高。  相似文献   

9.
施用猪粪对棕壤富里酸结构特征的影响   总被引:3,自引:0,他引:3  
在棕壤上进行的田间试验田取样,从化学性质(元素组成)、光学性质(色调系数、相对色度、紫外光谱、红外光谱)和波谱学性质(13C核磁共振波谱)三个方面研究了施用猪粪对棕壤富里酸结构特征的影响。结果表明,施用猪粪后,棕壤富里酸的C/H比值增加,O/C比值下降;色调系数下降,相对色度增加;红外光谱中,2932cm-1和1639cm-1吸收峰强度增加;13C核磁共振波谱中,羰基C含量下降,芳香C和烷基C含量增加。这些结果说明,施用猪粪使棕壤富里酸的氧化程度下降,缩合程度和脂族链烃含量增加,其结构变得复杂化和脂族化。  相似文献   

10.
玉米秸秆腐解过程中形成胡敏酸的组成和结构研究   总被引:10,自引:0,他引:10       下载免费PDF全文
采用化学方法和谱学方法对玉米秸秆腐解生成胡敏酸(CCSR HA)的组成和结构进行了研究.结果表明,CCSR HA的碳组成可分成三个部分:脂肪族碳、芳香族碳和羧基碳,它们的含量分别为59.62%、26.94%和13.44%.CCSR HA主要的官能团包括羟基、烷基、羧基、酰胺基、苯环、烷氧基及碳水化合物结构,木质素残体是其骨架,碳水化合物结构或类糖结构及烷基片段是其主要组成单元.其类型属于Rp型胡敏酸.未腐解的玉米秸秆本身就含有类胡敏酸物质(OCSR HA),OCSR HA和CCSR HA的官能团组成上有一定差异,后者结构中,甲基、亚甲基、次甲基、醚键官能团和酚羟基的含量降低,而酰胺成分、游离的羧基、甲氧基、碳水化合物组分相对含量升高,脂族性升高,芳香性降低,芳香度由初始的42.19降至腐解后的29.97,并且与无机物质的结合能力增强.就元素组成的变化看,CCSR HA中C和H元素的含量趋于降低,而N和O元素的含量趋于升高.CCSR HA同土壤胡敏酸相比,糖类结构含量较高,并且以片段的形式与水解木质素残体相连.羧基含量较低,但以不同的连接方式存在着.  相似文献   

11.
Abstract

Although the application of manure to upland fields is believed to induce changes in the quality of humic substances in soil as well as the quantity, the direction and extent of these changes have not been elucidated. To understand temporal variations in humic acids, periodically collected soil samples from two fields, a Typic Hapludult (Togo) and a Pachic Melanudand (Kuriyagawa), with cattle manure and chemical fertilizer (CF) were examined. The content and degree of humification (darkening) of the humic acids were distinctly greater in Kuriyagawa than in Togo soil. Corresponding to the difference in the degree of humification, molecular size distribution, elemental composition, infrared (IR) spectra, and 13C cross polarization/magic angle spinning nuclear magnetic resonance (CPMAS NMR) spectra of humic acids differed between the two soils. Manure application at 40 Mg ha?1 year?1 for 16 years (Togo) and at 80 or 160 Mg ha?1 year?1 for 19 years (Kuriyagawa) resulted in greater humic acid content compared with plots with CF only because of its increase in the manured plots and/or decrease in the CF plots. Manure application at an extremely high rate (160 Mg ha?1 year?1) resulted in higher H content and greater signal intensities of alkyl C, O-alkyl C and amide C=O in the 13C CPMAS NMR and/or IR spectra. Although humic acids with larger molecule sizes increased in all the manured plots, differences between the humic acids from the plots with and without manure applied at practical levels in the elemental and spectroscopic analyses were small or scarce. These results were considered to be because of the similarity between the indigenous soil humic acids and the manure-derived ones in Togo soil (a low degree of humification) and because of the abundance of highly-humified humic acids in Kuriyagawa soil.  相似文献   

12.
The qualitative and quantitative characteristics of soil organic carbon (SOC) and related humic acids (HAs) extracted from the soils of field plots were investigated after 8 years of annual paddy (Oryza sativa L.) and upland maize (Zea mays L.) rotation with various fertilizations. Seven fertilization treatments were selected: Ck (no inputs); Chem (chemical fertilizer of NPK); Comp (swine compost); Comp + 33% of Chem N rate; Comp + 67% of Chem N rate; GM (legume green manure) + 33% of Chem N rate; and peat + 33% of Chem N rate. Organic and inorganic nitrogen inputs of six treatments were equivalent with respect of nitrogen content, but Comp, GM, and peat treatments were complemented with various amounts of inorganic N. After harvest of the eighth paddy crop, surface soil samples collected from the plots were subjected to soil characterizations and extraction of humic substances, which were used for chemical, spectroscopic (FTIR, 13C NMR, ESR, X-ray diffractometry), delta13C, and 14C dating analyses. The yields of HAs extracted from the seven treatments were significantly different. Treatment containing persistent organic compound such as the peat + 33% N treatment increased the humification process in topsoils and produced higher yield of HA. Spectroscopic analyses revealed that fertilization treatments changed the functional groups, alkyl C, crystalline characteristics, and delta13C ratios of HAs and turnover rate of SOC considerably. The SOC of the peat + 33% N treatment had the highest mean residence time of 3100 years. Various fertilizer treatments are correlated with turnover rate of SOC and related HAs, which are associated with concerned carbon sequestration as well as mitigation of CO2 emission in the soil environment.  相似文献   

13.
Solid state13C nuclear magnetic resonance(NMR)spectroscopy is a common tool to study the structure of soil humic fractions;however,knowledge regarding carbon structural relationships in humic fractions is limited.In this study,mobile humic acid(MHA)and recalcitrant calcium humate(CaHA)fractions were extracted from eight soils collected from six US states and representing a variety of soils and ecoregions,characterized by this spectroscopic technique and analyzed for statistical significance at P≤0.05.We found that the abundances of COO and N–C=O functional groups in the MHA fractions were negatively correlated to soil sand content,but were positively correlated to silt,total N and soil organic carbon contents.In contrast,the abundances of the COO and N–C=O functional groups were only positively correlated to the content of clay in the CaHA fractions,indicating that the two humic fractions were associated with diferent soil components.The two13C NMR peaks representing alkyls and OCH3/NCH were negatively correlated to the peaks representing aromatics,aromatic C–O and N–C=O/COO.Comparison of the sets of data from13C NMR spectroscopy and ultrahigh resolution mass spectrometry revealed that the aromatic components identified by the two methods were highly consistent.The comparison further revealed that protein in MHA was associated with,or bound to,the nonpolar alkyl groups,but a component competitively against(or complementary to)aromatic groups in the MHA composition.These observations provided insight on the internal correlations of the functional groups of soil humic fractions.  相似文献   

14.
We studied quantitative and qualitative changes in soil organic matter (SOM) due to different land uses (reference woodland versus cultivated) on six soils from Tanzania (Mkindo and Mafiga), Zimbabwe (Domboshawa and Chickwaka), and South Africa (Hertzog and Guquka). Structural characteristics of the humic acids (HAs) were measured by Curie-point pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) and solid-state 13C nuclear magnetic resonance (CPMAS 13C NMR) spectroscopy. Significant changes in concentration and composition of SOM were observed between land uses. Losses of organic carbon after cultivation ranged from 35% to 50%. Virgin soils showed large proportions of colloidal humus fractions: humic acids (HAs) and fulvic acids (FAs) but negligible amounts of not-yet decomposed organic residues. The change in land use produced a contrasting effect on the composition of the HAs: a noteworthy “alkyl enhancement” in Mkindo soil and “alkyl depletion” in Chikwaka and to a lesser extent in Domwoshawa. The remaining soils displayed only minor alterations.  相似文献   

15.
To assess the effect of continuous organic material (OM) application on soil humic acids, the amount and chemical characteristics of humic acids in various types of soils (n = 10) were compared between plots treated with farmyard manure (FYM) or rice straw compost (RSC) plus chemical fertilizer (CF) and plots treated with CF alone. The degree of humification (degree of darkening), molecular size distribution and 13C cross polarization/magic angle spinning nuclear magnetic resonance spectra of humic acids from CF‐treated soils showed wide variation among the soils. Humic acid content was generally larger in OM + CF soils than in corresponding CF soils, and the stable C isotopic ratio suggested partial replacement of indigenous humic acids with OM‐derived ones even where no apparent increase in humic acid content was observed. The rate of OM application and the indigenous humic acid content were related positively and negatively, respectively, to the apparent accumulation rate of humic acids among soils. The degree of humification of humic acids was generally smaller in OM + CF soils than in CF soils. Humic acids extracted from FYM and RSC exhibited chemical characteristics typical of humic acids having a smaller degree of humification, which suggested the contribution of OM‐derived humic acids to the differences between OM + CF and CF soil humic acids, such as larger average molecular sizes and smaller and larger proportions of aromatic C and O‐alkyl C, respectively, relative to total C in the OM + CF soil humic acids. Little change was observed in the chemical characteristics of humic acids when the degree of humification of indigenous humic acids was small. The effect of OM application on the chemical characteristics of humic acids was most conspicuous in soils containing humic acids having an intermediate degree of humification, possibly resulting from the combination of accelerated degradation of indigenous humic acids and the accumulation of OM‐derived humic acids.  相似文献   

16.
Because of its insolubility, heterogeneity and structural complexity, humin is the least understood among the three fractions of soil humic substances. This research aimed to evaluate the long‐term effect of combined nitrogen and phosphorus (NP) fertilizer addition on the chemical structure of humin under maize (Zea mays L.) monoculture in a Typic Hapludoll of northeast China. Soil samples were collected 12 and 25 years after the initiation of the fertilizer treatment. Soil humin was isolated using NaOH‐Na4P2O7 extraction to remove humic and fulvic acids, which was followed by HF‐HCl treatment to remove most of the inorganic minerals. Solid‐state 13C cross‐polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy was used to characterize the chemical structure of the humin isolates. Results showed that the organic carbon (C) content of humin increased after NP fertilizer addition, compared with a no‐fertilizer (CK) treatment. 13C CPMAS NMR indicated that O‐alkyl C and aromatic C of humin decreased, while alkyl C and the ratios of alkyl C/O‐alkyl C, aliphatic C/aromatic C and hydrophobic C/hydrophilic C all increased in the NP fertilizer treatment. The long‐term application of NP fertilizer changed the molecular structure of soil humin to be more alkyl and hydrophobic, and was thus beneficial to the sequestration and stability of organic C in soil.  相似文献   

17.
We used NMR spectroscopy to characterize humid acids extracted from soils that had received long-term application of 2 levels of biosolids to evaluate the soil organic matter (SOM) stability in biosolids-amended soils. The study also quantified fulvic acids (FAs), humic acids (HAs) and Fe/Al oxides. The soils were collected in 2004 from 7 fields, in Fulton County, southwestern Illinois, which received biosolids at a cumulative rate of 0 (control), 554 (low biosolids) and 1,066 (high biosolids) Mg ha−1. The application of biosolids increased both FA and HA contents, but biosolids-amended soil and control soil did not differ in FA/HA ratio. Biosolids application had no effect on water-soluble organic carbon content. Biosolids application increased the presence of Fe/Al in the SOM complex and lowered its C/Fe and C/Al ratios. 13C NMR spectra showed increased alkyl C and decreased aromatic C content in soil HAs with the application of biosolids, and the extent of such changes was higher with high than low biosolids treatment. Under biosolids application, the soil HAs’ C structure shifts from O-alkyl-dominant to alkyl-dominant. Biosolids application does not decrease SOM stability but rather increases the stability of soil humic substances.  相似文献   

18.
Decomposition and humification were studied within three types of forest humus (mull, moder, and mor) by means of CPMAS 13C NMR spectroscopy combined with degradative methods. The NMR data show that O-alkyl carbon decreases in all soils, and alkyl as well as carboxyl carbon increase as depth and decomposition increase; the percentage of aromatic carbon remains constant at about 25%. With increasing depth the amount of carbon that can be identified as belonging to specific compound classes by wet chemical methods decreases from 60% to 40%. Microbial polysaccharides and the proportion of non polysaccharide O-alkyl carbon increase with depth. A selective preservation of recalcitrant, condensed lignin structural units is also observed. In order to relate the spectroscopic and chemical data from investigations of whole soils with studies of humification, samples were fractionated into fulvic acid, humic acid, and humin fractions. The fulvic acid fraction contains large concentrations of carbohydrates irrespective of the soil horizon. The humic acid fraction contains less polysaccharides, but high amounts of alkyl carbon and aromatic structures. The percentage of aromatic carbon existing in the humic acid fraction increases with depth, probably reflecting the amount and degree of oxidative decomposition of lignin. A loss of methoxyl and phenolic groups is evident in the 13C NMR spectra of the humic acid fraction. The humin fraction resembles relatively unchanged plant-derived materials as evident from the lignin parameters and carbohydrate contents. All the observed data seem to indicate that humic acids originate form oxidative degradation of humin or plant litter.  相似文献   

19.
Various composts contain a significant amount of humic substances including humic acid (HA) and fulvic acids (FAs). The FA fraction in soils is considered to be sensitive to agronomic and environmental factors. In this study, three fractions of humic substances, HA (MW > 1000 Da), FA (MW > 1000 Da), and FA (MW < 1000 Da) were extracted from swine manure-based compost and characterized, and then, their reactivities were correlated with heavy metals. Compositions of the three fractions of humic substances were characterized by elemental and total acidity analyses and electron spin resonance (ESR), Fourier transform infrared (FTIR), and 13C nuclear magnetic resonance with cross-polarization and magic-angle spinning spectroscopic techniques. Elemental analyses indicated that HA has higher contents of C, H, N, and S than those of FAs. However, FA (MW > 1000) and especially FA (MW < 1000) have higher contents of O than that of HA (MW > 1000). The g values of the ESR spectra of the three fractions showed that the organic free radical characteristics and the widths of the spectra and free radical concentrations of the three fractions are significantly different. The FTIR spectra indicated that HA (MW > 1000) is abundant in C=C bonds while FA (MW > 1000), especially FA (MW < 1000), are abundant in C=O bonds. In addition, 13C NMR spectra indicate that carboxyl contents of FA (MW > 1000), especially FA (MW < 1000), are higher than that of HA (MW > 1000). The sequence of the reactivity in terms of acidic functional groups was FA (MW < 1000) > FA (MW > 1000) > HA (MW > 1000). Elemental and functional group compositions of the three fractions significantly correlated with reported reactivities with heavy metals. The application of swine manure-based compost containing HA and FAs fractions to soil and associated environments may thus significantly affect the concerned reactions with organic and inorganic compounds including pollutants.  相似文献   

20.
The C-13 spectra at 75.4 MHz of various leaf and needle composts are studied as a function of the composting time, and the chemical changes observed are discussed. In addition, the C-13 spectra of humic acids produced from typical composted Mediterranean horticultural and agricultural waste like grapevine prunings, grape husks and wheat straw are examined. The spectra from all materials show increasingly poorer resolution with increasing composting time. No new C-13 signals to indicate the formation of new chemical entities are seen to occur during the process of composting. It is shown by quantitative ESR that the deterioration of the quality of the NMR spectra is not due to formation of additional free radicals during the composting process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号