首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
长期施肥条件下小麦农田氨挥发损失的原位研究   总被引:14,自引:3,他引:14  
采用密闭通气法在长期定位试验基础上研究了连作小麦的原位氨挥发损失。结果表明,小麦昼夜都有氨挥发损失,全天的氨挥发速率在小麦孕穗期为14.69±4.86.g/(hm2·d),灌浆期为18.84±4.09.g/(hm2·d),成熟期为20.91±3.28.g/(hm2·d);昼间的氨挥发损失随小麦生育期的推移迅速增大。单施N、P的氨挥发速率进入灌浆期后开始大幅度增加,单施M的氨挥发速率进入成熟期才大幅度增加。肥料配施可以明显增加小麦孕穗期昼间氨挥发损失速率,不同程度地降低了小麦灌浆期和成熟期昼间氨挥发速率。作物夜间的氨挥发损失小于白天相同处理的氨挥发损失,占白天氨挥发损失平均速率的比例也因生育期而异,孕穗期57.34%±15.93%、灌浆期37.78%±17.84%、成熟期13.73%±11.19%。小麦生育期氨挥发损失与土壤养分含量有一定的相关关系,灌浆期降水对氨挥发的影响也因施用肥料的不同而异。  相似文献   

2.
旱地土壤氨挥发损失及其影响因素研究   总被引:5,自引:0,他引:5  
本文采用室内培养和田间试验方法研究了土壤氨挥发损失及其影响因素。结果表明,用密闭容器法在25℃和35℃两种温度下培养22天后土壤中氨挥发损失分别施入氮量的0.20%~0.60%和0.40%~1.20%,温度越高,土壤氨挥发损失越大。土壤中氨挥发损失量还要受土壤pH值、土壤结构、水分、CEC、肥料种类以及施用肥量等因子影响。其中,土壤pH越大,CEC越小,氨挥发损失的越多。施用碳铵后,氨挥发立即发生  相似文献   

3.
保护地菜田土壤氨挥发损失及影响因素研究   总被引:17,自引:3,他引:14  
保护地过量施用氮肥是造成氮素氨挥发损失的主要原因。本文采用"密闭室间歇通气法"研究了常规施肥、常规+C/N、推荐施肥和单施有机肥4种施肥措施下保护地菜田土壤的氨挥发特性。结果表明:减少施肥量和秸秆还田技术能有效降低氨挥发损失;整个监测周期内,不同处理氨挥发量均较小,常规施肥处理损失量最高,占总施氮量的0.73%,化肥氮对氨挥发的贡献率较大(大于70%),不同处理氨挥发损失量大小顺序为常规施肥常规+C/N推荐施肥单施有机肥;氨挥发监测周期内表层土壤(0—1cm)pH值呈先下降后上升的趋势,下降幅度以常规施肥处理最大,约0.5个pH值单位;土壤pH值、0—1cm土层铵态氮含量与氨挥发速率呈显著正相关(P0.05)。  相似文献   

4.
长期有机无机肥配施对冬小麦籽粒产量及氨挥发损失的影响   总被引:11,自引:2,他引:11  
【目的】黄淮海地区作为华北平原重要的农业生产区,氮肥投入量大、利用率低的现象较为普遍,氮肥损失和农业面源污染严重。本研究在长期肥料定位试验基础上,连续多年监测不同施肥处理下冬小麦田氮素挥发损失量及其规律,探讨减少黄淮海地区麦田氨挥发的有效施肥方式,为提高冬小麦产量及肥料利用效率提供科学依据。 【方法】2011~2015 年利用水肥渗漏研究池进行试验,以石麦 15 (SM15) 为材料,以不施氮肥 (CK) 为对照处理,在同等施氮量下设置单施尿素 (U)、单施牛粪 (M) 和尿素牛粪 1∶1 配施 (U + M) 3 种氮肥配比处理,随机区组设计。采用通气法连续 4 年原位监测不同施肥处理下小麦氨挥发损失量、小麦籽粒产量及氮肥利用率。 【结果】2011~2015 年氨挥发损失量年际间变化较大,最大变幅可达 19.69 kg/hm2,年际间施肥后氨挥发速率变化规律趋势相似。不同施肥处理对土壤氨挥发有显著影响,冬小麦季氨挥发主要发生在施肥后 15 d 内,拔节期追肥的氨挥发速率显著高于播种期施用基肥。四年间氨挥发损失量平均达 7.26~42.40 kg/hm2,与不施氮肥相比,施氮处理的氨挥发损失量升高 1.40~4.84 倍,表明施用氮肥显著促进土壤氨挥发;施氮处理的氮肥损失率以 U 处理最高,达到 19.5%,M 处理最低,为 5.7%,U + M 处理为 12.3%,介于两处理之间,U + M 处理和 M 处理的氮肥损失率较 U 处理四年平均分别降低了 37.0% 和 71.1%,表明单施有机肥或有机无机肥配施可显著抑制氨挥发损失。2011~2015 年各施肥处理冬小麦产量均以 U + M 处理最高,达 9461.5 kg/hm2,较 U 和 M 处理分别增产 6.8% 和 9.1%。各处理的冬小麦籽粒吸氮量、地上部吸氮量同样以 U + M 处理最大,较 U 和 M 处理分别提高 7.1%、12.6% 和 5.4%、12.9%。U + M 处理的氮肥利用率在四年均最高,达 41.96%,较 U 和 M 处理分别提高 16.5%~19.6% 和 38.6%~58.7%。 【结论】综合籽粒产量及氮素利用效率,有机无机肥配施比单施化肥能显著降低氨挥发损失,提高籽粒产量和氮肥利用率,有利于实现冬小麦高产与肥料高效的协同,可作为黄淮海区域小麦生产中的增产增效的优化施肥方式。  相似文献   

5.
黄淮海平原是我国重要的粮食主产区,针对该区域氮肥利用率低且损失率高等问题,以国家土壤质量新乡观测实验站为研究平台,监测长期不同施肥模式下小麦玉米轮作体系土壤氮素损失规律,探讨减少黄淮海平原土壤氨挥发的科学施肥方式,为提高氮肥利用效率提供理论依据。设置了对照(CK)、单施化肥(NPK)、单施有机肥(M)、秸秆还田配施化肥 (NPK+S)、化肥增施有机肥(NPK+M)5个处理,于小麦季观测潮土氨挥发损失,分析土壤矿质氮含量、pH值对氨挥发的影响。结果表明,长期施肥对小麦产量及氮素吸收有显著影响。各施肥处理小麦产量均显著高于CK处理,且籽粒、秸秆和颖壳产量以NPK+M处理最高,分别达11.6、13.38和3.34 t·hm-2,较NPK处理分别增加15.6%、39.1%和18.4%。各处理的小麦地上部吸氮量以NPK+M处理最大,达306.67 kg·hm-2,较NPK、NPK+S处理分别提高14.3%、44.7%。不同施肥处理对土壤氨挥发有显著影响,小麦季土壤氨挥发速率峰值主要在施肥后1~4 d 内,其中NPK+S处理观测到的峰值高达N 0.40 kg·hm-2·d-1,  相似文献   

6.
太湖水稻土麦季尿素氨挥发损失   总被引:11,自引:4,他引:11  
Ammonia volatilization losses from urea applied as a basal fertilizer and a top dressing at tillering stage in a wheat field of Taihu Region, China, were measured with a micrometeorological technique. Urea as fertilizer was surface broadcast at 81 (low N) and 135 (high N) kg N ha-1 as basal at the 3-leaf stage of the wheat seedling on December 2002, and 54 (low N) and 90 (high N) kg N ha-1 as top dressing on February 2003. Ammonia volatilization losses occurred mainly in the first week after applying N fertilizer and mainly during the period after basal fertilizer application, which accounted for more than 80% of the total ammonia volatilization over the entire wheat growth period. Regression analysis showed that ammonia volatilization was affected mainly by pH and NH4^ -N concentration of the surface soil and air temperature.Ammonia volatilization flux was significantly correlated with pH and NH4^ -N concentration of the surface soil and with daily air average temperature and highest temperature. Thus, application of urea N fertilizer to wheat should consider the characteristics of ammonia volatilization in different periods of N application so as to reduce ammonia losses.  相似文献   

7.
太湖地区冬小麦季土壤氨挥发与一氧化氮排放研究   总被引:1,自引:0,他引:1  
采用密闭室连续抽气法和静态箱法同步研究了太湖地区冬小麦季田间小区试验中不同施氮处理的氨挥发与一氧化氮(NO)排放的规律。结果表明,麦季氨挥发主要发生在施肥后 7~10d,以基肥期挥发量最大,为NH3-N 0.49~9.36 kg/hm2,占整个麦季观测期间挥发量的60.4%~74.7 %;NO的排放则主要发生在施用基肥后的30d 内,量虽小但持续时间较长,排放速率为NO-N 0.009~0.304 mg/(m2.h),该时期总损失量为NO-N 0.68~1.23 kg/hm2,约占整个麦季观测期排放量的 93%。氨挥发和 NO 排放均随施氮量的增加而增加。各施氮处理麦季观测期的氨挥发总损失量为NH3-N 7.6~12.6 kg/hm2,损失率4.62%~5.26%;NO排放总量为NO-N 0.73~1.3 kg/hm2,损失率0.27%~0.41%。研究结果对综合评价太湖地区麦季氮肥的气态损失及其环境效应、指导合理施肥都具有重要意义。  相似文献   

8.
黄河上游灌区稻田氨挥发损失研究   总被引:6,自引:1,他引:6  
采用密闭气室间歇式抽气法研究了黄河上游灌区不同施肥处理下稻田氨挥发损失特征。结果表明,在水稻全生育期不同施肥处理下稻田氨挥发量为N 27.6~94.1 kg/hm2,肥料氮损失率为16.4%~22.2%;不同施肥阶段氨挥发损失持续时间为10 d左右,氨挥发最大峰值均发生在施肥后2~3d;分蘖肥后氨挥发损失量最大,损失量占全生育期损失总量的27.1%~37.0%。温度、光照、pH值是黄河上游灌区氨挥发的主要影响因素,稻田田面水铵浓度与氨挥发呈显著线性正相关。稻田氨挥发损失量随氮肥施用量的增加而增加,与习惯施肥(N300)相比,减氮20%(N240)及有机肥和化肥配合施用(N240-1/2OM)均能有效减少稻田氨挥发损失,且这两个处理的水稻产量最高,是生态效益和经济效益双赢的最佳模式。  相似文献   

9.
长期定位施肥对小麦玉米间作土壤酶活性的影响   总被引:2,自引:1,他引:2  
马忠明  杜少平  王平  包兴国 《核农学报》2011,25(4):796-801,823
为探讨长期施肥条件下土壤酶活性的动态变化以及土壤酶活性之间的相关性,对灌漠土小麦/玉米间作不同肥料长期定位试验地第26年耕层土壤过氧化氢酶、蔗糖酶、碱性磷酸酶和脲酶酶活性进行了测定与分析。结果表明,长期定位施肥下,间作小麦/玉米生育期内土壤过氧化氢酶、蔗糖酶和碱性磷酸酶总体均呈先升高后下降的变化趋势,在小麦拔节期至灌浆...  相似文献   

10.
长期定位施肥土壤酶活性及其肥力变化研究   总被引:31,自引:0,他引:31       下载免费PDF全文
对小麦-玉米轮作区长期定位施肥土壤酶活性及其肥力变化的研究结果表明,与未施肥(对照)相比,长期施肥处理土壤脲酶、碱性磷酸酶、转化酶和过氧化氢酶活性均明显提高,其中有机肥(秸秆、厩肥)配施化肥效果明显优于单施化肥;施肥后休闲处理未提高土壤酶活性,表明施肥(化肥、有机肥)后作物根系及其分泌物具有刺激土壤酶活性的作用,且土壤酶活性高低与作物产量(即土壤肥力)相关性显著.  相似文献   

11.
在北京海淀区东北旺乡利用风洞法氨挥发测定系统,研究了不同施肥方式、施肥量和添加剂对鸡粪在农田施用过程中氨挥发的影响。结果表明,施肥方式显著影响鸡粪氨挥发,试验期间在田间裸地24000kg·hm^-2施肥量下,表施的累积氨挥发氮损失为19.8%,而表施后立即深翻5-9cm,氨挥发损失为3.3%;不同施肥量下,24000kg·hm^-2之比12000kg·hm^-2和8000kg·hm^-2的氨挥发损失分别减少2.1%和4.9%,但统计差异不显著;锯末对鸡粪氨挥发没有起到抑制作用,未添加锯末处理的氨挥发损失为19.5%,而添加锯末处理的氨挥发损失为21.1%;过磷酸钙对鸡粪氨挥发抑制效果显著,未添加过磷酸钙处理的氨挥发损失为31.8%,而添加过磷酸钙处理的氨挥发损失为21.9%,比未添加降低了31.1%。  相似文献   

12.
The effect of tillage management on NH3-N volatilization and its influence on succeeding corn (Zea mays L.) silage production were studied at the University of Massachusetts Agricultural Experiment Station (South Deerfield, MA) during 2010–2012 growing seasons. Tillage treatments consisted of disking before and after manure application, solid-tine aeration before and after manure application, and no-till management. The greatest NH3-N loss (61 percent) occurred within the first 8 h after slurry manure application regardless of tillage management. The greatest NH3-N emission occurred with surface application (no-till), which ranged between 5.2 and 10.3 kg NH3-N ha?1 (9–20 percent of NH3-N applied) over the 3 years of the study. Immediate incorporation of manure into soil through disking reduced NH3-N loss by 66 to 75 percent. Ammonia loss abatement with aeration before or after manure application ranged from 13 to 41 percent compared with surface manure application. Tillage management did not influence corn silage yield or quality.  相似文献   

13.
水氮调控对设施土壤氨挥发特征的影响   总被引:1,自引:0,他引:1  
基于连续6年设施番茄水氮调控定位试验,采用高分辨激光光谱法观测分析灌水下限(土壤水吸力为W_1:25 kPa、W_2:35 kPa、W_3:45 kPa)和施氮量(N_1:75 kg N/hm~2、N_2:300 kg N/hm~2、N_3:525 kg N/hm~2)对设施土壤氨挥发通量、累积挥发量、番茄产量及单产累积排放量的影响。结果表明:灌水下限、施氮量及两者交互作用极显著的影响设施土壤氨挥发通量峰值、累积挥发量、单产氨挥发累积量、氨挥发损失率和番茄产量。氨挥发通量表现为施氮后6~8天氨挥发达到峰值。经验S模型可以较好地表征基肥和追肥2个时期氨挥发累积量随时间的变化,氨挥发特征参数表现为基肥期以灌水下限和水氮交互影响为主,追肥期以施氮量和水氮交互影响为主。与基肥相比,采用滴灌追肥可显著的降低氨挥发累积量94.78%~96.30%。受土壤pH和土壤NH_4~+-N含量及施肥带比例影响,氨挥发的氮损失率在0~2%。施氮量为300 kg N/hm~2和灌水下限25 kPa组合的水氮处理(W_1N_2)是协调氨挥发量和设施番茄产量的最佳水氮管理模式。  相似文献   

14.
Ammonia (NH3) volatilization is the major pathway for mineral nitrogen (N) loss from N sources applied to soils. The information on NH3 volatilization from slow-release N fertilizers is limited. Ammonia volatilization, over a 78-d period, from four slow-release N fertilizers with different proportions of urea and urea polymer [Nitamin 30L (liquid) (L30), Nitamin RUAG 521G30 (liquid) (G30), Nitamin 42G (granular) (N42), and Nitroform (granular) (NF)] applied to a sandy loamy soil was evaluated. An increase in temperature from 20 to 30 °C increased cumulative NH3 volatilization loss in the sandy soil by 1.4-, 1.7-, and 1.8-fold for N42, L30, and G30, respectively. Increasing the proportion of urea in the slow-release fertilizer increased NH3 volatilization loss. At 30 °C, the cumulative NH3 volatilization over 78 d from a sandy soil accounted for 45.6%, 43.9%, 22.4%, and <1% of total N applied as N42, L30, G30, and NF, respectively. The corresponding losses in a loamy soil were 9.2%, 3.1%, and 1.7%. There was a significantly positive correlation between NH3 volatilization rate and concentration of NH4-N released from all fertilizers, except for NF (n = 132; r = 0.359, P = 0.017 for N42; r = 0.410, P = 0.006 for L30; and r = 0.377, P < 0.012 for G30). Lower cumulative NH3 volatilization from a loamy soil as compared to that from a sandy soil appeared to be related to rapid nitrification of NH4-N in the former soil than that in the latter soil. These results indicate the composition of slow-release fertilizer, soil temperature, and soil type are main factors to dominate NH3 volatilization from slow- release fertilizers.  相似文献   

15.
在不同施肥处理条件下,分别定量测定了玉米田土壤氮素自生固氮作用、氨化作用、硝化作用、反硝化损失、氨挥发、NO3--N淋溶损失等氮素循环转化途径。研究结果表明,不施肥的土壤生态系统每年土壤全氮将减少-110.5kg/hm2。施肥能够有效地提高土壤氮素转化能力,农肥的氮素转化作用明显高于化肥的氮素转化作用。各处理反硝化损失的氮量为7.26~21.66kg/hm2,淋溶损失量为0.09~0.21kg/hm2,氨挥发损失的氮量为0~15.23kg/hm2。玉米田施肥处理总的氮素平衡处于盈余状态,不施肥处理的氮素平衡处于亏缺状态。单施农肥的盈余量高于单施化肥及农肥化肥配比处理的盈余量,低量施肥模式土壤中氮素的输入和输出基本处于平衡状态,高量施肥模式土壤中氮素处于盈余状态,虽有利于培肥地力,但却造成了肥料的浪费。  相似文献   

16.
春季有机肥和化肥配施对苹果园土壤氨挥发的影响   总被引:18,自引:0,他引:18  
采用磷酸甘油-双层海绵通气法对旱地苹果产区不同有机肥和化肥配施下的氨挥发进行了研究。结果表明,不同有机肥和化肥配施显著影响了氨挥发速率和损失量。各处理氨挥发速率峰值大小和出现时间存在差异,纯化肥(100%N)处理峰值最高,达2.07kg N/(hm2.d),而纯有机肥(100%Y)处理峰值出现时间最早。氨挥发损失量以100%N处理为最大,达10.39kg N/hm2,占施氮量的3.46%,显著高于其它处理;50%N+50%Y处理氨挥发损失量和占施氮量的比例均为最低。有机无机肥配施可以有效减少氨挥发损失,以有机肥和化肥各半最好。  相似文献   

17.
控/缓释肥料减少氨挥发和氮淋溶的效果研究   总被引:31,自引:2,他引:31  
采用“静态吸收法”和“土柱淋溶法”室内模拟实验,分别研究了6种控/缓释肥料施入土壤中的氨挥发和氮淋溶情况。结果表明:6种控/缓释肥料处理都不同程度的降低了氨挥发量和N素淋溶量。与尿素比较,6种控/缓释肥料氨挥发量分别较普通尿素减少16.62%,23.78%,32.15%,0.11%,16.59%和37、78%,氮淋溶量分别较普通尿素减少15.84%,38.27%,68.87%,46.17%,52.51%和62.01%。试验还表明控/缓释氮肥氨挥发量与不同氮肥引起的土壤脲酶活性、pH值有密切关系。  相似文献   

18.
在防雨棚池栽试验中应用通气法研究了水氮耦合对稻田土壤氨挥发速率的动态变化及损失量。结果表明,稻田施用氮肥后有明显NH3挥发损失,整个生育期累计氨挥发量为31.67~69.70kg·hm^-2,占施氮量的17.95%~28.64%;不同生育时期氨挥发量的大小依次为返青期〉拔节孕穗期〉分蘖期〉抽穗开花期〉乳熟期,挥发高峰出现在施氮肥后的1~3d内;随着施氮水平增加,田间氨挥发量显著增加。与此同时,稻田水分状况对NH3挥发损失具有重要影响,与常规灌溉模式相比,控制灌溉条件下氨挥发总量和氨挥发损失率均较小,且不同施氮水平间差异显著。就氨挥发损失率而言,在试验条件下水氮耦合效应显著,以控制灌溉模式下施氮量为180kg·hm^-2时的氨挥发损失率最低,为17.59%。  相似文献   

19.
ABSTRACT

Ammonia (NH3) volatilization from fertilizer applications reduces efficiency and poses environmental hazards. This study used semi-open static chambers to measure NH3 volatilization from organic fertilizers (feather meal, blood meal, fish emulsion, cyano-fertilizer) to evaluate the impacts of fertilizer source, application method, and rate on NH3 volatilization. In 2014, two application rates (28 and 56 kg N ha?1) were applied to lettuce (Lactuca sativa L.). Solid fertilizers (feather meal, blood meal) were preplant applied in a subsurface band, whereas liquid fertilizers (fish emulsion, cyano-fertilizer) were applied weekly through drip irrigation beginning two weeks after transplanting. In 2015, a single application rate (28 kg N ha?1) was applied to cucumber (Cucumis sativus L.). Solid fertilizers were applied in either subsurface or surface bands. There was a significant difference in NH3 volatilization among fertilizers, but there was little difference between application rates. Liquid fertilizers had lower NH3 emissions than solid fertilizers due to their timing and placement. In 2014, blood meal at 56 kg N ha?1 and feather meal at both rates had the highest NH3 fluxes. In 2015, surface-banded blood and feather meal had the highest NH3 fluxes. Fertilizer decisions for organic systems should consider NH3 emission losses and practices for their reduction.  相似文献   

20.
日光温室栽培下土面及整棚氨挥发比较   总被引:1,自引:0,他引:1  
日光温室氮素投入量高,氨挥发损失是值得关注的问题之一。但目前对温室系统氨挥发排放测定多以土面氨挥发为主,而日光温室是一种半封闭式种植系统,由土面挥发出的部分NH3会被植物冠层吸收或溶解于棚膜水中回流于土壤,因此土面氨挥发难以准确反映日光温室排放到大气中氨的量,从而难以准确估计日光温室栽培系统NH3的实际排放量。为此,采用间歇式密闭室通气法连续测定了三季作物(番茄、西瓜、番茄)生长期间不同施肥处理(包括:不施氮+常规灌溉(N0+FI)、常规施氮+常规灌溉(FT+FI)、优化施氮+常规灌溉(OPT+OI)及优化施氮+优化灌溉(OPT+OI)4个处理)土面氨挥发损失量;同时连续两季采用风量罩测定通风口处气体流量,采用抽气法对通风口处氨浓度进行连续监测,以估算监测整棚(通风口处)氨挥发损失速率及损失量。结果表明,温室施肥后当天土面氨挥发速率出现峰值,7 d后施肥与未施肥对照无显著差异,三季种植期间各施氮处理其氨挥发排放量分别为N 2.82~4.97、6.59~9.97和15.77~21.83 kg hm-2,相应的氨挥发系数分别为0.64%~1.50%、3.11%~4.21%和2.59%~3.90%;整棚氨挥发速率趋势与土面氨挥发基本一致,整棚氨挥发量第二季及第三季分别为N 2.22 kg hm-2和N 2.92 kg hm-2,仅占土面表氨挥发的13.38%~33.69%,氨挥发系数仅为0.46%~1.48%,显著低于土面氨挥发量。可见若以土面氨挥发来估算日光温室氨挥发会显著高估了我国日光温室系统氨挥发损失量,建议采用整棚观测的方法估算日光温室体系氨排放损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号