首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The objective of this study was to evaluate the efficacy of immunohistochemical (IHC) staining for diagnosis of persistent bovine viral diarrhea virus (BVDV) infection using formalin-fixed, paraffin-embedded skin biopsy specimens. Skin from 41 of 42 calves shown to be persistently infected (PI) with BVDV by repeated virus isolation more than 3 weeks apart were immunohistochemically positive for BVDV antigen. Positive IHC staining was most pronounced in the keratinocytes and in hair follicle epithelium, hair matrix cells of the hair bulb, and the dermal papilla. All of the skin sections from 10 calves experimentally infected postnatally with BVDV (10(5) median tissue culture infective doses [TCID50]) and biopsied on days 0, 5, 7, and 9 postinfection were negative for viral antigen. Ten calves from a second group experimentally infected with a higher dose of BVDV (10(8) TCID50) were biopsied when viremic between 10 and 14 days postinfection and 4 calves exhibited positive IHC staining for BVDV; however, staining in these skin biopsies was confined to small foci in the nonfollicular epidermis and follicular ostia. This staining was distinct from that observed in skin obtained from PI cattle. Skin biopsy represents an effective method for identifying animals PI with BVDV.  相似文献   

3.
4.
Bovine viral diarrhea virus (BVDV) affects cattle populations causing clinical signs that range from subclinical immunosuppression to severe reproductive and respiratory problems. Detection and removal of persistently infected (PI) calves is the single most important factor for control and eradication of BVDV. Current testing strategies to detect PI calves rely heavily on immunohistochemistry (IHC) and a commercially available antigen capture ELISA (ACE) assay. These viral assays depend on 1 or 2 monoclonal antibodies which target the E(rns) glycoprotein of BVDV. The sensitivity and specificity of these two tests have been reported previously. The purpose of this research was to characterize a strain of BVDV (AU501) that was undetectable using IHC and ACE based on a single monoclonal antibody, but was consistently detected in samples from a Holstein steer using virus isolation and PCR testing. Sequencing of this AU501 viral isolate revealed a unique mutation in the portion of the genome coding for the E(rns) glycoprotein. This unique field strain of BVDV demonstrates the risk of relying on a single monoclonal antibody for detection of BVDV. Multiple testing strategies, including polyclonal or pooled monoclonal antibodies that detect more than one viral glycoprotein may be necessary to detect all PI calves and facilitate eradication of BVDV.  相似文献   

5.
Several tests for Bovine viral diarrhea virus (BVDV) were applied to samples collected monthly from December 20, 2005, through November 27, 2006 (day 0 to day 342) from 12 persistently infected (PI) cattle with BVDV subtypes found in US cattle: BVDV-1a, BVDV-1b, and BVDV-2a. The samples included clotted blood for serum, nasal swabs, and fresh and formalin-fixed ear notches. The tests were as follows: titration of infectious virus in serum and nasal swabs; antigen-capture (AC) enzyme-linked immunosorbent assay (ELISA), or ACE, on serum, nasal swabs, and fresh ear notches; gel-based polymerase chain reaction (PCR) testing of serum, nasal swabs, and fresh ear notches; immunohistochemical (IHC) testing of formalin-fixed ear notches; and serologic testing for BVDV antibodies in serum. Of the 12 animals starting the study, 3 died with mucosal disease. The ACE and IHC tests on ear notches had positive results throughout the study, as did the ACE and PCR tests on serum. There was detectable virus in nasal swabs from all the cattle throughout the study except for a few samples that were toxic to cell cultures. The serum had a virus titer ≥ log10 1.60 in all samples from all the cattle except for 3 collections from 1 animal. Although there were several equivocal results, the PCR test most often had positive results. The BVDV antibodies were due to vaccination or exposure to heterologous strains and did not appear to interfere with any BVDV test. These findings illustrate that PI cattle may be identified by several tests, but differentiation of PI cattle from cattle with acute BVDV infection requires additional testing, especially of blood samples and nasal swabs positive on initial testing. Also, calves PI with BVDV are continual shedders of infectious virus, as shown by the infectivity of nasal swabs over the 11-mo study.  相似文献   

6.
The prevalence of bovine viral diarrhea virus (BVDV) in persistently infected (PI) cattle in beef breeding herds was determined using 30 herds with 4530 calves. The samples were collected by ear notches and tested for BVDV antigens using immunohistochemistry (IHC) and antigen capture enzyme-linked immunosorbent assay (ACE). Animals with initial positives on both IHC and ACE were sampled again using both tests and serums were collected for viral propagation and sequencing of a viral genomic region, 5′-untranslated region (5′-UTR) for viral subtyping. Samples were also collected from the dams of PI calves. There were 25 PI calves from 4530 samples (0.55%) and these PI calves were from 5 of the 30 herds (16.7%). Two herds had multiple PI calves and 3 herds had only 1 PI calf. Only 1 of the 25 dams with a PI calf was also PI (4.0%). The subtype of all the PI isolates was BVDV1b. Histories of the ranches indicated 23 out of 30 had herd additions of untested breeding females. Twenty-four of the 30 herds had adult cowherd vaccinations against BVDV, primarily using killed BVDV vaccines at pregnancy examination.  相似文献   

7.
OBJECTIVE: To determine whether viral involvement with platelets obtained from cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) is associated with altered platelet function or decreased platelet counts. SAMPLE POPULATION: Platelets obtained from 8 cattle PI with BVDV and 6 age-, sex-, and breed-matched uninfected control cattle. PROCEDURE: Manual platelet counts were determined, and platelet function was assessed through optical aggregometry by use of the aggregation agonists ADP and platelet-activating factor. Identification of BVDV in serum and preparations of purified platelets was determined by use of virus isolation tests. RESULTS: No significant difference in platelet counts was detected between cattle PI with BVDV and control cattle. In response to the aggregation agonists, maximum aggregation percentage and slope of the aggregation curve were not significantly different between cattle PI with BVDV and control cattle. We isolated BVDV from serum of all PI cattle and from purified platelets of 6 of 8 PI cattle, but BVDV was not isolated from serum or platelets of control cattle. CONCLUSIONS AND CLINICAL RELEVANCE: Isolation of BVDV from platelets in the peripheral circulation of cattle immunotolerant to BVDV does not result in altered platelet function or decreases in platelet counts.  相似文献   

8.
OBJECTIVE: To report the prevalence of bovine viral diarrhea virus (BVDV) in calves and calf groups (ie, calves from the same farm) in beef breeding herds and evaluate the ability of biosecurity risk assessment questionnaires to identify calf groups with positive results for BVDV. DESIGN: Nonrandom survey. ANIMALS: 12,030 calves born in spring from 102 operations. PROCEDURES: Cow-calf producers that voluntarily enrolled in a screening project submitted ear notch specimens from calves and answered a 29-question survey instrument. Ear notch specimens were tested for BVDV with an antigen-capture ELISA (ACE), and ear notch specimens with positive ACE results for BVDV were immediately retested by performing immunohistochemistry (IHC). Follow-up testing, 3 to 4 weeks after initial positive ACE results, was done by use of a second IHC test and virus isolation on a subsequently submitted ear notch specimen from the same calves to identify those that were persistently infected (PI). RESULTS: 102 producers submitted ear notch specimens for BVDV screening. Initially, 24 of 12,030 calves had positive ACE results for BVDV. A second ear notch specimen was submitted for 20 of these 24 calves. Of 20 retested calves, 12 had positive ICH results for BVDV, confirming PI status. The 12 PI calves came from 4 calf groups (3 singletons and 1 calf group with 9 PI calves). CONCLUSIONS AND CLINICAL RELEVANCE: Prevalence of BVDV in calf groups was low, and questions designed to identify high-risk biosecurity behaviors had little value in identifying calf groups with positive results for BVDV.  相似文献   

9.
引起牛病毒性腹泻/黏膜病(bovine viral diarrhea-mucosal disease,BVD-MD)的病原为牛病毒性腹泻病毒(Bovine viral diarrhea virus,BVDV),牛感染后会出现与其他腹泻病相似的症状,仅通过临床表现和病理观察很难做出准确鉴别;其次持续感染(PI)牛是该病主...  相似文献   

10.
11.
OBJECTIVE: To determine whether serologic evaluation of 5 unvaccinated 6- to 12-month-old heifers is a valid method for identifying herds that contain cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV). ANIMALS: 14 dairy herds with a history of BVDV infection, with health problems consistent with BVDV infection, or at risk for contracting BVDV infection. PROCEDURE: 5 unvaccinated 6- to 12-month-old heifers were randomly selected from each herd. Neutralizing antibody titers for type-I and -II BVDV were determined. A herd was classified as likely to contain PI cattle when at least 3/5 heifers had antibody titers > or = 128. Virus isolation was performed on all cattle to identify PI cattle. Genotype of isolated viruses was determined by nested multiplex polymerase chain reaction. RESULTS: 6 of 14 herds contained PI cattle. Sensitivity and specificity of serologic evaluation of 5 heifers for identifying these herds were 66 and 100%, respectively. In herds that contained PI cattle, the predominant BVDV titer in the tested heifers corresponded to the genotype of the isolated virus. CONCLUSIONS AND CLINICAL RELEVANCE: Serologic evaluation of unvaccinated 6- to 12- month-old heifers is an accurate method for identifying herds containing PI cattle. Both type-I and -II BVDV antibody titers should be determined to prevent herd misclassification. The genotype of BVDV found in PI cattle can be predicted by the predominant neutralizing antibody titers found in tested heifers. Serologic evaluation of 5 unvaccinated heifers can be used to determine whether a herd is likely to contain PI cattle.  相似文献   

12.
Bovine viral diarrhea virus (BVDV) is one of the most relevant pathogens affecting today's cattle industries. Although great strides have been made in understanding this virus in cattle, little is known about the role of wildlife in the epidemiology of BVDV. While persistently infected cattle are the most important reservoir, free-ranging ungulates may become infected with BVDV as demonstrated by serosurveys and experimental infections. Therefore, free-ranging wildlife may maintain BVDV as the result of an independent cycle and may serve as a reservoir for the virus. Systematic studies on prevalence of BVDV-specific antibodies or frequency of persistent BVDV infection in North American wildlife are sparse, and no information is available from the southeastern United States. The objective of this study was to evaluate blood and skin samples from hunter-harvested white-tailed deer (Odocoileus virginianus) for evidence of BVDV infection. Virus-neutralizing antibodies were detected in 2 of 165 serum samples. Skin biopsy immunohistochemistry (IHC) was performed on samples from 406 deer using a BVDV-specific monoclonal antibody (MAb) (15c5), and BVDV antigen was detected in one sample. A similar IHC staining pattern was obtained using a second BVDV MAb (3.12F1). Viral antigen distribution in the skin sample of this deer resembled that found in persistently infected cattle and in a previously described persistently infected white-tailed deer; thus, the deer was presumed to be persistently infected. Evidence of BVDV infection in free-ranging white-tailed deer should encourage further systematic investigation of the prevalence of BVDV in wildlife.  相似文献   

13.
Bovine viral diarrhea viruses (BVDV) cause both acute and persistent infections. While diagnostic tests have been designed to detect animals persistently infected (PI) with BVDV, the reliability of these tests in detecting acute BVDV infections is not known. It is also possible that acute BVDV infections may be confused with persistent infections in surveys for PI animals. In this study, 2 tests presently in use in diagnostic laboratories to test for PI animals, polymerase chain reaction amplification followed by probe hybridization (RT-PCR/probe) of serum samples and immunohistochemical detection of viral antigen in skin biopsies (IHC), were evaluated for their ability to detect acute BVDV infections. Sixteen colostrum-deprived, BVDV-free, and BVDV-antibody-free calves were infected with 6 different BVDV strains. Clinical signs, seroconversion, and virus isolation indicated that inoculated animals did replicate virus. Virus could be detected in 19% (3/16) of acutely infected animals by the RT-PCR/probe technique. No acutely infected animals were positive by IHC.  相似文献   

14.
Bovine viral diarrhea virus (BVDV) infections cause substantial economic losses to the cattle industries. Persistently infected (PI) cattle are the most important reservoir for BVDV. White-tailed deer (Odocoileus virginianus) are the most abundant species of wild ruminants in the United States and contact between cattle and deer is common. If the outcome of fetal infection of white-tailed deer is similar to cattle, PI white-tailed deer may pose a threat to BVDV control programs. The objective of this study was to determine if experimental infection of pregnant white-tailed deer with BVDV would result in the birth of PI offspring. Nine female and one male white-tailed deer were captured and housed at a captive deer isolation facility. After natural mating had occurred, all does were inoculated intranasally at approximately 50 days of pregnancy with 10(6) CCID(50) each of a BVDV 1 (BJ) and BVDV 2 (PA131) strain. Although no clinical signs of BVDV infection were observed or abortions detected, only one pregnancy advanced to term. On day 167 post-inoculation, one doe delivered a live fawn and a mummified fetus. The fawn was translocated to an isolation facility to be hand-raised. The fawn was determined to be PI with BVDV 2 by serial virus isolation from serum and white blood cells, immunohistochemistry on skin biopsy, and RT-PCR. This is the first report of persistent infection of white-tailed deer with BVDV. Further research is needed to assess the impact of PI white-tailed deer on BVDV control programs in cattle.  相似文献   

15.
16.
Calves persistently infected (PI) with Bovine viral diarrhea virus (BVDV) represent an important source of infection for susceptible cattle. We evaluated vaccine efficacy using calves PI with noncytopathic BVDV2a for the challenge and compared tests to detect BVDV in acutely or transiently infected calves versus PI calves. Vaccination with 2 doses of modified live virus vaccine containing BVDV1a and BVDV2a protected the calves exposed to the PI calves: neither viremia nor nasal shedding occurred. An immunohistochemistry test on formalin-fixed ear notches and an antigen-capture enzyme-linked immunosorbent assay on fresh notches in phosphate-buffered saline did not detect BVDV antigen in any of the acutely or transiently infected calves, whereas both tests had positive results in all the PI calves.  相似文献   

17.
A new diagnostic approach testing tissue samples derived from cattle ear tagging for bovine viral diarrhoea virus (BVDV) antigen in a commercially available antigen capture enzyme‐linked immunosorbent assay (ACE) was developed. To validate this method, 99 positive and 469 negative samples were tested. With those samples the assay yielded a sensitivity of 100% and specificity of ≥99.6%. Serum and ear tissue samples from 11 persistently infected (PI) BVDV calves were tested. While serum samples were negative after intake of colostrum, the ear tissue samples could be detected positive for BVDV all the time. Testing multiple samples derived from the same ear from PI cattle yielded positive results and low variation. Using cattle ear tags combining the ear tag application with sampling of a small ear tissue plug and testing those tissue samples with an ACE could be a reliable and economic way of BVDV testing.  相似文献   

18.
A new diagnostic approach testing tissue samples derived from cattle ear tagging for bovine viral diarrhoea virus (BVDV) antigen in a commercially available antigen capture enzyme-linked immunosorbent assay (ACE) was developed. To validate this method, 99 positive and 469 negative samples were tested. With those samples the assay yielded a sensitivity of 100% and specificity of >or=99.6%. Serum and ear tissue samples from 11 persistently infected (PI) BVDV calves were tested. While serum samples were negative after intake of colostrum, the ear tissue samples could be detected positive for BVDV all the time. Testing multiple samples derived from the same ear from PI cattle yielded positive results and low variation. Using cattle ear tags combining the ear tag application with sampling of a small ear tissue plug and testing those tissue samples with an ACE could be a reliable and economic way of BVDV testing.  相似文献   

19.
20.
Economic losses due to infection with Bovine viral diarrhea virus (BVDV) have prompted introduction of organized control programs. These programs primarily focus on the removal of persistently infected (PI) animals, the main source of BVDV transmission. Recently, persistent BVDV infection was demonstrated experimentally in white-tailed deer, the most abundant wild ruminant in North America. Contact of cattle and white-tailed deer may result in interspecific BVDV transmission and birth of persistently infected offspring that could be a threat to control programs. The objective of this study was to assess the potential for interspecific BVDV transmission from persistently infected cattle cohabitated with pregnant white-tailed deer. Seven female and one male white-tailed deer were captured and bred in captivity. At approximately 50 days of gestation, two cattle persistently infected with BVDV 1 were cohabitated with the deer. In a pen of approximately 0.8 ha, both species shared food and water sources for a period of 60 days. Transmission of BVDV as indicated by seroconversion was demonstrated in all exposed adult deer. Of the seven pregnancies, four resulted in offspring that were infected with BVDV. Persistent infection was demonstrated in three singlet fawns by immunohistochemistry and ELISA on skin samples, PCR, and virus isolation procedures. Furthermore, two stillborn fetuses were apparently persistently infected. This is the first report of BVDV transmission from cattle to white-tailed deer using a model of natural challenge. Under appropriate circumstances, BVDV may efficiently cross the species barrier to cause transplacental infection and persistently infected offspring in a wildlife species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号