首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIM:To study the effect of ligustrazine on pulmonary hypertensive rats induced by hypoxic hypercapnia. METHODS:Thirty rats were randomly divided into three groups:control group(A),hypoxic hypercapnic group(B), hypoxic hypercapnia+ligustrazine(lig.) group(C). RESULTS: (1) Mean pulmonary arterial pressure(mPAP)of group B was significantly higher than that of group A and mPAP of group C was significantly lower than that of group B(P<0.01),differences of mean carotid pressure(mCAP) were not significant among three groups (P>0.05); (2)Electron microscopy and immunohistochemistry showed ligustrazine could inhibit the diposition of collagenous fiber(collagen typeⅠ)in pulmonary arterioles induced by hypoxic hypercapnia; (3) Plasma endothelin level of group C was significantly lower than that of group B (P<0.01), serum (NO 2-/NO3-) of group C was significantly higher than that of group B (P<0.01). CONCLUSION:Ligustrazine can inhibit pulmonary hypertension and the diposition of collagen type Ⅰ in pulmonary arterial wall induced by hypoxic hypercapnia.  相似文献   

2.
AIM:To investigate the expression of matrix metalloproteinases(MMPs) in pulmonary arterioles of rats with chronic hypoxia and hypercapnia-induced pulmonary hypertension.METHODS:MMP-2, MMP-9 and MMP-2 mRNA, MMP-9 mRNA were observed in pulmonary arterioles by the techniques of immunohistochemistry and in situ hybridization.RESULTS:①The mean pulmonary artery pressure (mPAP) and weight ratio of right ventricle to left ventricle and septum (RV/LV+S) of hypoxia-hypercapnia groups were higher than those of normal control group (P<0.01). ②Light microscopy showed that vessel wall and media of pulmonary arterioles were thicker in rats of hypoxia-hypercapnia groups than normal control group. There were vessel smooth muscle cell hypertrophy, vessel cavity straitness in hypoxia-hypercapnia group, but no same performance was found in normal control group. ③The expression of MMP-2, MMP-9 and MMP-2 mRNA, MMP-9 mRNA in pulmonary arterioles were significantly higher in rats of hypoxia-hypercapnia groups than control group (P<0.01).CONCLUSION:Expression of matrix metalloproteinases in pulmonary arterioles is enhanced by hypoxia hypercapnia. This may be involved in pulmonary vascular remodeling in rats with pulmonary hypertension.  相似文献   

3.
AIM: To investigate the effect of hypercapnia on hypoxia-induced pulmonary hypertension and the changes of lysyl oxidase (LOX) and extracellular matrix collagen cross-links in the rat. METHODS: Sprague-Dawley rats were randomly divided into 4 groups:normoxia group, hypoxia group, hypercapnia group and hypoxia+hypercapnia group. LOX activity was detected by fluorescence spectrophotometry. LOX protein expression was detected by immunohistochemistry and Western blot. The mRNA expression of LOX in the pulmonary artery was detected by real-time PCR. RESULTS: The levels of mean pulmonary artery pressure (mPAP), RV/(LV+S) and WA/TA in hypoxia group were significantly higher than those in normoxia group (P<0.01). Moreover, the levels of mPAP and RV/(LV+S) in hypoxia+hypercapnia group were significantly lower than those in hypoxia group (P<0.01). However, no significant difference of mPAP and RV/(LV+S) between hypercapnia group and normoxia group was observed. In hypoxia group, the collagen cross-links in the lung tissue was significantly higher than that in normoxia group and hypercapnia group (P<0.01). Importantly, collagen cross-links in the lung tissue of hypoxia+hypercapnia group was significantly lower than that in hypoxia group (P<0.01). There was no significant difference in collagen cross-links between hypercapnia group and normoxia group. The expression of LOX at mRNA and protein levels and its activity in the pulmonary arteries of hypoxia group were significantly increased as compared with normoxia group (P<0.01). Furthermore, the expression of LOX at mRNA and protein levels and its activity in the pulmonary arteries in hypoxia+hypercapnia group were lower than those in hypoxia group (P<0.01). CONCLUSION: Hypoxia not only up-regulates LOX but also promotes collagen cross-linking in the rat lung, which contributes to the development of pulmonary hypertension. Hypercapnia inhibits hypoxia-induced LOX expression and collagen cross-linking, therefore impairing the progress in hypoxia-induced pulmonary hypertension.  相似文献   

4.
AIM:To investigate the expression of soluble guanylate cyclase protein and its mRNA in rat pulmonary artery after exposure to hypoxia and hypercapnia.METHODS:Male Sprague-Dawley rats were randomly split into 4 group, which were hypoxic hypercapnic (HH 1 week, HH 2 weeks, HH 4 weeks) group and control group, to copy pulmonary hypertensive animal model. The expression of sGCα1 and β1 subunits protein of medial and small pulmonary artery was performed by immunohistochemistry with a polycolonal antibody. In situ hybridization was performed on the rat lung tissue using sGC oligonuclear probe to assay the expression of sGCα1subunit mRNA.RESULTS:The sGCα1 and β1 subunits protein and sGCα1 subunit mRNA were faint staining in the pulmonary small and medium artery in HH1 week, HH 2 weeks and HH 4 weeks groups compared with control group (all P<0.01).CONCLUSION:sGC subunit mRNA and protein expression in pulmonary small and medium artery were decreased after exposure to hypoxia and hypercapnia, which took part in the development of the pulmonary hypertension.  相似文献   

5.
AIM: To observe the change of CX3CL1/fractalkine (FKN) in the rats with monocrotaline-induced pulmonary hypertension, and to study the intervention of puerarin. METHODS: The pulmonary hypertension model was established in vivo by intraperitoneal injection of monocrotaline. Thirty male Sprague-Dawley rats (270-310 g) were randomly divided into 3 groups: control group (C), monocrotaline model group (M)and puerarin treatment group (M+P). The mean pulmonary arterial pressure (mPAP), mean right ventricular pressure (mRVP), mean carotid arterial pressure (mCAP) and the weight ratio of right ventricle (RV) to left ventricle plus septum (LV+S) were also detected. The structural changes of pulmonary arterioles were observed under optical microscope. Remodeling of lung blood vessels was determined by measuring the ratio of vessel wall area to total area (WA/TA) and the medium thickness of pulmonary artery (PAMT). The concentration of soluble fractalkine(sFKN) in plasma was measured by ELISA. The expression of FKN in the pulmonary artery wall was measured by immunohistochemistry. The mRNA level of FKN in the lung tissues was detected by RT-PCR.RESULTS: mPAP, mRVP, RV/(LV+S), WA/TA and PAMT in M group were higher than those in C group (P<0.01). RV/(LV+S), WA/TA and PAMT in M+P group were significantly lower than those in M group (P<0.01). No significant difference of mCAP among the 3 groups was observed. The levels of sFKN, FKN mRNA and FKN protein in M group were higher than those in C group (P<0.01), and the above data in M+P group were lower than those in M group(P<0.05). The serum level of sFKN had a positive correlation with PAMT and RV/(LV+S) (r=0.719, r=0.685,respectively, P<0.01).CONCLUSION: Puerarin down-regulates the expression of FKN and suppresses the development of pulmonary hypertension and pulmonary vessel remodeling.  相似文献   

6.
AIM: To study the effect of chronic hypoxia on L-Arginine/NO pathway in rat pulmonary artery. METHODS: Changes in pulmonary artery L-Arginine(L-Arg) transport, nitric oxide synthase (NOS) activity, plasma nitrite level and L-Arg level in HPH rats were investigated. RESULTS: (1) The mean pulmonary arterial pressure (mPAP) and weight ratio of right ventricle to left ventricle and septum (RV/LV+S) of HPH group were higher than those in control group (P<0.01). (2) Plasma L-Arg level in HPH group was not significantly changed. (3) At low (0.2 mmol/L)or high(5.0 mmol/L)concentration of L-Arg, the velocity of L-Arg transport in HPH group was lower than that in control group (P<0.05 or P<0.01). (4) The activity of pulmonary artery tNOS, iNOS and cNOS in HPH group were increased by 38.0%, 32.8% and 53.0%, respectively (P<0.01), compared with control group. (5) Plasma NO level of HPH group was decreased, which was negative correlation to mPAP and RV/LV+S (P<0.01). CONCLUSION: The decrease of nitric oxide generation might result from L-Arg transport injury, while pulmonary artery tNOS, iNOS and cNOS activity were enhanced during chronic hypoxia.  相似文献   

7.
AIM: To investigate the roles of Panax notoginoside (PNS) and ERK1/2 signaling pathway in the pathological process of chronic hypoxic hypercapnia pulmonary hypertension in rats.METHODS: The animal model of chronic hypoxic hypercapnia pulmonary hypertension was set up in 72 male Sprague-Dawley rats and the animals were randomly divided into 6 groups: normal (N) group, hypoxic hypercapnia for 3-day (H3d) group, hypoxic hypercapnia for 1-week (H1w) group, hypoxic hypercapnia for 2-week (H2w) group, hypoxic hypercapnia for 4-week (H4w) group and PNS treatment (Hp) group.The rats in Hp group were injected with PNS (50 mg·kg-1·d-1, ip) before placing the animals into the hypoxic hypercapnia chamber.The rats in other groups were injected with normal saline (2 mL/kg, ip).The morphological changes of the pulmonary artery were observed under microscope with HE staining.Western blotting was used to detect the protein expression of p-ERK.The protein levels of p-ERK in the lung tissues and pulmonary blood vessels were determined by immunohistochemistry.RESULTS: The ratios of WA/TA in H1w, H2w, H4w and Hp groups were higher than that in N group (P<0.05).The ratio of WA/TA in Hp group was obviously lower than that in H4w group (P<0.05).The protein expression of p-ERK was barely positive in N group, but was up-regulated in the pulmonary tissues in all hypoxic rats.Compared with N group, the protein level of p-ERK was markedly up-regulated in H3d group, reached its peak in H2w group, and tended to decline in H4w group (P<0.05).In pulmonary arterial tunica intima and tunica media, p-ERK protein was dramatically expressed in all hypoxic rats compared with the control animals (P<0.05).In the lung tissues, the protein level of p-ERK in Hp group was lower than that in H4w group (P<0.05).In pulmonary arterial tunica intima and tunica media, the protein level of p-ERK in Hp group was lower by 84.86% than that in H4w group (P<0.05).CONCLUSION: ERK1/2 as a signal transducer may play an important role in the development of hypoxia and hypercapnia induced pulmonary hypertension.PNS inhibits the expression of ERK1/2, thus attenuating the development of pulmonary hypertension and improving pulmonary vascular remodeling.  相似文献   

8.
AIM: To study the effect of chronic hypoxic hypercapnia on expression of heme oxygenase-1 (HO-1). METHODS: Sprague-Dawley rats were randomly divided into three groups: control group(A),hypoxic hypercapnic group(B), hypoxic hypercapnia+hemin group(C). HO-1 and HO-1 mRNA were observed in pulmonary arterioles by the technique of immunohistochemistry and in situ hybridization. RESULTS: ① mPAP and weight ratio of right ventricle (RV) to left ventricle plus septum (LV+S) were significantly higher in rats of B group than those of A and C group (P<0.01). Differences of mCAP were not significant in three groups(P>0.05). ② Blood CO concentration was significantly higher in rats of B group than that of A group (P<0.01), it was much higher in C group than that of B group(P<0.01). ③ Light microscopy showed that vessel well area/total area (WA/TA), density of medial smooth muscle cell (SMC) and media thickness of pulmonary arterioles were much higher in rats of B group than those of A and C group (P<0.01). ④ The observation by electron microscopy showed proliferation of medial smooth muscle cells and collageous fibers of pulmonary arterioles in rats of B group, hemin could reverse the changes mentioned above. ⑤ HO-1 and HO-1 mRNA in pulmonary arterioles was significantly higher in rats of B group than those of A group(P<0.01), and they were significantly higher in rats of C group than those of B group (P<0.01). CONCLUSION: Expression of HO-1 mRNA and HO-1 in pulmonary arterioles was enhanced by hypoxic hypercapnia. Hemin partly inhibited pulmonary hypertension and pulmonary vessel remodeling by enhancing the expression of HO-1 mRNA and HO-1.  相似文献   

9.
AIM: To study the effect of chronic hypoxic hypercapnia on gene expression of thromboxane synthase and prostacyclin synthase in pulmonary arterioles. METHODS: Sprague-Dawley rats were randomly divided into two groups: control group and hypoxic hypercapnic group. TXS mRNA and PGI2-SmRNA were observed in pulmonary arterioles by in situ hybridization. RESULTS: mPAP, weight ratio of right ventricle (RV) to left ventricle plus septum(LV+S), contents of TXB2 and 6-keto-PGF1α in plasma and lung and TXS mRNAin pulmonary arterioles were much higher in rats of hypoxic hypercapnic group than those of control group. Differences of PGI2-SmRNA in pulmonary arterioles were not significant in two groups. Light microscopy showed hypertrophy of vessel smooth muscle cells and vessel cavity straitness were found in hypoxic hypercapnic group. CONCLUSION: Changes of gene expressions of thromboxane synthase and prostacyclin synthase and imbalance of TXA2/PGI2 may play an important role in hypoxic hypercapnic pulmonary hypertension.  相似文献   

10.
AIM: To clarify the role of nitric oxide (NO) system in development of chronic hypoxic hypercapnic pulmonary hepertension. METHODS: Male Sprague-Dawley rats were randomly divided into control group and hypoxic hypercapnic group. NO content of plasma was determined, constitutive nitric oxide synthase (cNOS) and inducible nitric oxide synthase (iNOS) were examined using the technique of immunohistochemistry, expression of cNOS mRNA and iNOS mRNA of arteriole were detected by in situ hybridization. RESULTS: Plasma NO concentration, cNOS activity and cNOS mRNA expression in arteriole of chronic hypoxic hypecapnic group were significantly lower than that of control group (P<0.01); activity of iNOS and expression of iNOS mRNA in arteriole showed significantly higher compared with control. CONCLUSION: The disturbance of NO production and NOS expression in arteriole are involved in hypoxic hypercapnic pulmonary hepertension.  相似文献   

11.
AIM: To explore the regulatory effect of intermedin (IMD) on pulmonary collagen synthesis and accumulation in rats with pulmonary hypertension induced by high pulmonary blood flow.METHODS: Healthy male SD rats (n=20) were randomly divided into control group (n=7), shunt group (n=7) and shunt with IMD group (n=6). The shunting of abdominal aorta and inferior vena cava was produced in rats of shunt group and shunt with IMD group. After 8 weeks, IMD was administered into the rats of shunt with IMD group subcutaneously by mini-osmotic pump for 2 weeks. Mean pulmonary artery pressure (mPAP), relative medial thickness (RMT) of pulmonary arteries, contents of hydroxyproline, collagen type I and III, bone morphogenetic protein-2 (BMP-2), and the mRNA expression of procollagen I and III in lung tissues were measured and compared. RESULTS: Compared with control group, mPAP and RMT of medium and small pulmonary arteries in the rats of shunt group were significantly increased. Meanwhile, the lung hydroxyproline, collagens I and III and BMP-2 contents, and the mRNA expression of lung procollagen I and III were all significantly increased compared with control group. However, IMD significantly decreased mPAP, alleviated the changes of pulmonary vascular micro-structure, decreased the collagen accumulation and pulmonary tissue homogenate BMP-2 contents, and inhibited the mRNA expression of procollagen I and III in the lung tissue of shunting rats.CONCLUSION: IMD plays a protective role in the development of pulmonary hypertension and pulmonary vascular structural remodeling induced by high blood flow by inhibiting pulmonary collagen synthesis and accumulation, possibly in association with the BMP-2 pathway.  相似文献   

12.
13.
14.
AIM:To investigate the expression of volume-activated chloride channel (CLC3) in rat pulmonary artery smooth muscle cells (PASMCs) treated with hypoxia and hypercapnia and its relationship with MAPK pathway. METHODS:The method of enzyme digestion was used to isolate the PASMCs in male SD rat for cell primary culture. The cells were identified by immunofluorescence cytochemical method with mouse anti-rat α-smooth muscle actin antibody. The rat model of hypoxia and hypercapnia was established. The protein expression of CLC3 was detected by Western blotting. The mRNA expression of CLC3 was determined by RT-PCR. RESULTS:Compared with control group, the mRNA and protein expression of CLC3 in PASMCs was significantly raised in hypoxia and hypercapnia group. Compared with hypoxic and hypercapnic group, the expression of CLC3 was significantly reduced in ERK inhibitor U0126+ hypoxia and hypercapnia group, and was up-regulated in p38 inhibitor SB203580+ hypoxia and hypercapnia group. p38 activator anisomycin significantly decreased the expression of CLC3 at mRNA and protein levels in hypoxia and hypercapnia group. CONCLUSION:The expression of CLC3 at mRNA and protein levels in PASMCs increases under hypoxia and hypercapnia conditions. The ERK1/2 pathway mediates CLC3 expression in PASMCs induced by hypoxia and hypercapnia. Activation of p38 MAPK pathway down-regulates the expression of CLC3 at mRNA and protein levels induced by hypoxia and hypercapnia.  相似文献   

15.
AIM: To explore the effects of hydroxylamine on the pulmonary arterial pressure in chronic hypoxic hypercapnic rats. METHODS: Twenty-four male Sprague-Dawley rats were randomly divided into 3 groups (8 rats in each group): the normal control group (NC), hypoxic hypercapnia+normal saline group (NS), hypoxic hypercapnia+hydroxylamine group (HA). The animals in NS and HA groups were kept in the O2 (9%-11%) and CO2 (5%-6%) cabin, 8 h a day and 6 days a week for 4 weeks. Before entering the cabin, the rats in HA group were administered with 1 mL hydroxylamine (12.5 mg/kg) by intraperitoneal injection, while the rats in NS group were given intraperitoneal injection of 1 mL saline solution. The mean pulmonary arterial pressure (mPAP) was measured by external jugular vein cannulation. The heart was removed, and the right ventricle (RV) and the left ventricle plus the septum (LV+S) were dissected. The ratio of the wet weight of the RV to that of the LV+S was calculated. The changes of the pulmonary vascular construction were observed under optical microscope. The concentration of H2S in the plasma was measured with a spectrometer. The expression of cystathionine-γ-lyase (CSE) in the pulmonary arterioles and bronchi was measured by immunohistochemistry and RT-PCR. RESULTS: The values of mPAP, RV/(LV+S),vessel wall area/total area (WA/TA) and media thickness of pulmonary arterioles (PAMT) in NS group and HA group were significantly higher than those in NC group (P<0.05). The level of H2S in the plasma, the content of CSE protein and the expression of CSE mRNA in NC group were significantly lower than those in NS group (P<0.05). The values of mPAP, RV/(LV+S), WA/TA and PAMT in HA group were significantly lower than those in NS group (P<0.05). The level of H2S in the plasma, the content of CSE protein and the expression of CSE mRNA in HA group were significantly higher than those in NS group (P<0.05). CONCLUSION: Hydroxylamine may decrease the pulmonary arterial hypertension induced by chronic hypoxic hypercapnia in rats by increasing the level of H2S in the plasma, the content of CSE protein and the mRNA expression of CSE, thus improving the pulmonary vascular structural remodeling.  相似文献   

16.
AIM: To investigate the effect of diltiazem on mean pulmonary arterial pressure (mPAP) and nitric oxide synthase (NOS) in arterioles in chronic hypoxic hypercapnic rats. METHODS: Twenty-four rats were randomly divided into three groups: control group (A), hypoxic hypercapnic group (B), hypoxic hypercapnia+ diltiazem group (C), constitutive endothelial NOS (ceNOS) were observed in arterioles of rats using the technique of immunohistochemistry, ceNOS mRNA were observed by the technique of in situ hybridization. RESULTS: (1) mPAP was significantly higher in rats of B group than that of A and C group(P<0.01). Differences of mCAP were not significant between A group and B groups (P>0.05), but mCAP was lower in rats of C group than that in B group. (2) Light microscopy showed WA/TA (vessel wall area/total area) was significantly lower in rats of C group than that of B group (P<0.01), electron microscopy showed that diltiazem inhibited the proliferation of smooth muscle cells and collageous fibers of pulmonary arterioles in chronic hypoxic hypercapnic rats. (3) Immunohistochemistry showed the average value of integral light density (LD) of ceNOS in pulmonary arterioles was significantly higher in rats of C group than that of B group (P<0.01), in situ hybridization showed LD of ceNOS mRNA in pulmonary arterioles was significantly higher in rats of C group than that of B group (P<0.01). CONCLUSION: Diltiazem inhibited pulmonary hypertension, the proliferation of smooth muscle cells and collagenous fibers of pulmonary arterioles in chronic hypoxic hypercapnic rats by incresing the expression of ceNOS in pulmonary arterioles.  相似文献   

17.
中国园艺学会第九届第8次常务理事扩大会决定,“中国园艺学会第七届青年学术讨论会”由山东农业大学园艺科学与工程学院和山东省园艺学会承办,将于2006年7月或8月在山东泰安举行。  相似文献   

18.
AIM: To investigate the effect of chronic hypoxia-hypercapnia and L-arginine (L-Arg) liposome on L-Arg transport in rats pulmonary artery. METHODS: Forty Sprague-Dawley rats were randomly divided into four groups, normal control group (NC), chronic hypoxia-hypercapnia group (HH), chronic hypoxia- hypercapnia group+L-Arg (HL) and chronic hypoxia-hypercapnia group+L-Arg liposome (HP). Changes in pulmonary artery L-Arg transport and pulmonary arterial microscopy were observed. RESULTS: (1) The mean pulmonary artery pressure (mPAP) and weight ratio of right ventricle to left ventricle and septum (RV/LV+S) in HH group were higher than those in NC group, and in HP group was lower than that in HH group and HL group, but there was no significant difference between HL group and HH group; (2) At 0.005 mmol/L, 0.01mmol/L, 0.02mmol/L, 0.05 mmol/L, 0.1 mmol/L and 0.2mmol/L concentration of L-Arg, the velocity of L-Arg transport in HH group was lower than that in NC group, and in HL group higher than in HH group, and in HP group was much higher than that in HH group and in HL group. (3) Light microscopy showed that vessel well area/total area (WA/TA) and media thickness of pulmonary arterioles (PAMT) were much higher in rats of HH group than those in NC group, WA/TA and PAMT in HP group were obviously improved. CONCLUSION: The above results indicated that there existed a functional disturbance in L-Arg transport of pulmonary artery in rats chronically exposed to hypoxia-hypercapnia, and it was obviously enhanced when liposome was used as L-Arg carrier. Thus, it appears that liposome-L-Arg may have clinical perspective in the treatment of chronic hypoxic pulmonary hypertension.  相似文献   

19.
AIM:To investigate the role of Panax notoginseng saponin R1 in the pathological process of hypo-xia hypercapnia-induced pulmonary vasoconstriction (HHPV) and to observe the relationship with MAPK signal pathway in rats. METHODS:The model of pulmonary artery ring perfusion in vitro was used, and the rings were divided randomly into the following groups: normoxia group (N group); hypoxia hypercapnia group (H group); H+DMSO incubation group (HD group); H+R1 group, which was divided into 3 subgroups: low-concentration R1 group (RL group), middle-concentration R1 group (RM group) and high-concentration R1 group (RH group); H+SB203580 (p38 MAPK inhibitor) incubation group (S group); H+U0126 (ERK1/2 inhibitor) incubation group (U group); H+R1+SB203580 incubation group (RS group); H+R1+U0126 (RU group). Under acute hypoxia hypercapnia condition, the effects of different concentrations of R1 or R1 at the optimal concentration combined with U0126 or SB203580 on the 3 stages of HHPV were observed. At the same time, the changes of ring tension were recorded via the method of hypoxia hypercapnia condition reactivity. RESULTS:Under the hypoxia hypercapnia condition, a biphasic pulmonary artery contractile response (phase I acute vasoconstriction, phase I vasodilation and phase II persistent vasoconstriction) in the secondary pulmonary artery rings was observed. The treatments in HD group and RL group distinctly relieved the early phase I acute vasoconstriction of HHPV and reversed the phase II persistent vasoconstriction, but the effect in RM group was not obvious. The treatment in RH group enhanced both the early phase I acute vasoconstriction and the phase II persistent vasoconstriction of HHPV. RL and RH groups had significant differences compared with HD group. In contrast to HD group, the values of systolic peak in RS and RU groups decreased dramatically, and the phase II persistent vasoconstriction reversed to relaxation state. The HHPV in RS and RU groups was significantly relieved as compared with RL group. The HHPV in RS and RU groups was relieved as compared with S group and U group. CONCLUSION:R1 at concentration of 8 mg/L relieves acute HHPV in rats. The mechanism may be associated with p38 MAPK and ERK1/2 signaling pathway.  相似文献   

20.
AIM:To study the role and the mechanism of heme oxygenas/endogenous carbon monoxide on nitric oxide synthase/nitric oxide system in rats with pulmonary hypertension induced by hypoxic hypercapnia.METHODS:Sprague-Dawley rats were randomly divided into three groups: control group (A group), hypoxic hypercapnic group (B group), hypoxic hypercapnia+hemin group (C group). Blood CO concentration (COHb%), NO concentration, HO-1 activity, iNOS, cNOS in blood serum and lung homogenate were measured, respectively. RESULTS:① mPAP and RV/(LV+S) of B group were significantly higher than those of A and C group(P<0.01).② Blood CO concentration, activity of HO-1in blood serum and lung homogenate in rats of B group were significantly higher than those of A group, but were significantly lower than those of C group (P<0.01). ③ NO concentration in blood serum and lung homogenate in rats of B group were significantly lower than those of A group, those of C group were significantly higher than those of B group (P<0.01).④The activity of iNOS in blood serum and lung homogenate in rats of B group were significantly higher than those of A group, but were significantly lower than those of C group (P<0.01). Activity of cNOS in blood serum and lung homogenate of B group were significantly lower than those of A group (P<0.01), and there was no significant difference between cNOS in B and C group.CONCLUSION:Endogenous carbon monoxide upregulated iNOS/NO system in rats with chronic pulmonary hypertension induced by hypoxic hypercapnia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号