首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 62 毫秒
1.
目前Sentinel-1/2协同反演植被土壤含盐量的研究大多是基于Sentinel-2光谱信息和Sentinel-1后向散射系数,没有考虑Sentinel-2光谱信息容易受土壤亮度等信息影响,Sentinel-1后向散射系数容易受土壤粗糙度和水分影响。为进一步提高Sentinel-1/2协同反演植被土壤含盐量的精度,用水云模型对雷达卫星后向散射系数进行校正,消除植被影响;然后协同Sentinel-2纹理特征,基于VIP、OOB、PCA 3种变量筛选和RF、ELM、Cubist 3种机器学习回归模型构建植被土壤含盐量反演模型。研究结果表明:经过水云模型去除植被影响后的雷达后向散射系数及其极化组合指数与土壤含盐量的相关性有一定程度的提高。不同变量选择方法与不同机器学习方法耦合模型在反演土壤含盐量中,OOB变量筛选方法与RF、ELM和Cubist 3种机器学习方法的耦合模型精度最佳,建模集和验证集的R2都在0.750以上,且验证集的RMSE和MAE均最小;其中OOB-Cubist耦合模型精度最高,且R2v/R2c为0.955,具有良好的鲁棒性。研究可为机器学习协同物理模型、光学卫星协同雷达卫星在土壤含盐量反演中的进一步应用提供思路。  相似文献   

2.
基于Sentinel-2遥感影像的玉米冠层叶面积指数反演   总被引:9,自引:0,他引:9  
叶面积指数是描述玉米冠层结构的重要参数之一,决定玉米冠层的光合作用、呼吸作用、蒸腾和碳循环等生物物理过程,因此精确反演叶面积指数对玉米长势监测具有重要意义。以河北省保定市的涿州市、高碑店市、定兴县为研究区,利用Sentinel-2遥感影像和LAI-2000地面同步实测数据进行玉米冠层叶面积指数反演,使用归一化差异光谱指数和比值型光谱指数两类指数,构建了单变量和多变量玉米冠层叶面积指数反演模型,通过决定系数(R2)和均方根误差(RMSE)筛选出最佳模型。研究结果表明,由NDSI(783,705)构建的单变量模型为最优反演模型,其决定系数为0.534 2,均方根误差为0.288 5。因此,基于Sentinel-2遥感影像利用植被指数反演玉米冠层叶面积指数的方法可作为判断玉米长势状况的初步判断依据。  相似文献   

3.
为探明沈乌灌域节水改造后因渠道衬砌、引排水量减少引起的土壤含盐量时空分布特征及变化规律,采用区域土壤信息定点监测,结合经典统计学、空间插值以及机器学习建模反演等技术手段,利用Landsat 8卫星获取光谱数据,通过对实测土壤含盐量、光谱指数及波段反射率进行处理,运用Adaboost回归、BP神经网络回归、梯度提升树回归、KNN回归、决策树回归、随机森林回归方法构建了沈乌灌域土壤含盐量空间反演模型。采用最优反演模型对沈乌灌域土壤含盐量空间分布特征进行了遥感反演。结果表明: 通过全变量单一回归法筛选出相关系数大于0.55的9个光谱因子,使用SPSS PRO软件构建6种机器学习反演模型,对比6种反演模型精度,验证集决定系数R2由大到小依次为随机森林回归、梯度提升树回归、Adaboost回归、KNN回归、决策树回归、BP神经网络回归。其中随机森林回归模型的拟合精度最佳,训练集与验证集的决定系数R2分别为0.834和0.86,说明随机森林回归模型的反演效果较好。反演结果表明:节水改造后非盐渍土面积增加391.7km2,占灌域总面积的21%,中度盐渍土面积、重度盐渍土面积、盐土面积分别减少95.61、63.37、45.7km2,分别占灌域总面积的5%、3%、2%。综上所述,节水改造工程完成后,沈乌灌域土壤盐渍化程度减轻,作物生长安全区面积增加,但由于渠道衬砌以及引排水量减少,土壤盐分淋洗效果减弱,土壤盐分在灌域内部运移,整体土壤环境得到改善,局部地区出现盐分聚集。  相似文献   

4.
基于无人机多光谱遥感的土壤含盐量反演模型研究   总被引:7,自引:0,他引:7  
为探究无人机多光谱遥感技术快速监测植被覆盖下的土壤含盐量问题,以内蒙古河套灌区沙壕渠灌域内4块不同盐分梯度的耕地为研究区域,利用无人机搭载多光谱传感器获取2018年8月遥感影像数据,并对0~40cm〖JP〗的土壤进行盐分测定。分别引入敏感波段组、光谱指数组、全变量组作为模型输入变量,采用支持向量机(Support vector machine,SVM)、BP神经网络(Back propagation neural network,BPNN)、随机森林(Random forest,RF)、多元线性回归(Multiple linear regression, MLR)4种回归方法,建立基于3组输入变量下的土壤盐分反演模型,并进行精度评价,比较不同输入变量、不同回归方法对模型精度的影响,评价并优选出最佳盐分反演模型。结果表明,通过分析3个变量组的R2和RMSE,光谱指数组在4种回归方法中均取得了最佳的反演效果,敏感波段组和全变量组在不同的回归方法中反演效果不同。4种回归方法中,3种机器学习算法反演精度明显高于MLR模型,且MLR模型中的敏感波段组和全变量组均出现了“过拟合”现象,RF算法在3种机器学习算法中表现最优,SVM算法和BPNN算法在基于不同变量组的模型中表现也不相同。基于光谱指数组的RF的盐分反演模型在12个模型中取得了最佳的反演效果,R2c和R2v分别达到了0.72和0.67,RMSEv仅为0.112%。  相似文献   

5.
大田葵花土壤含盐量无人机遥感反演研究   总被引:5,自引:0,他引:5  
以内蒙古河套灌区沙壕渠灌域内大田葵花为研究对象,划分4块不同盐分梯度的试验地,利用无人机搭载六波段多光谱相机和热红外成像仪获取遥感数据,并同步采集区域内不同土壤深度处的盐分数据。利用灰色关联法对构建的光谱指数进行筛选,同时结合冠层温度数据,采用偏最小二乘回归(PLSR)、支持向量机(SVM)、反向传播神经网络(BPNN)和极限学习机(ELM) 4种建模方法构建大田葵花不同生育期、不同土壤深度的盐分反演模型。结果表明,基于葵花现蕾期数据构建的盐分反演模型整体效果优于开花期,以优选盐分指数和光谱指数作为变量组构建的模型效果优于植被指数变量组,盐分反演效果较好的土壤深度为0~20 cm和20~40 cm。不同建模方法对比结果表明,机器学习盐分反演模型的效果优于偏最小二乘回归模型,其中在葵花现蕾期0~20 cm土壤深度处,以光谱指数作为变量组构建的BPNN盐分模型反演效果最好,建模集和验证集R2分别达到0.773和0.718,验证集RMSE、CC分别达到0.062%和0.813。本研究成果可为无人机遥感在大田葵花土壤盐分监测方面的应用及相关研究提供参考。  相似文献   

6.
基于全子集-分位数回归的土壤含盐量反演研究   总被引:2,自引:0,他引:2  
为提高植被覆盖条件下卫星遥感对土壤含盐量的估测精度,以河套灌区解放闸灌域为研究区,以高分一号卫星影像为数据源,同步采集不同深度土壤含盐量,通过全子集筛选法(Best subset selection)分析不同波段和光谱指数对于不同深度土壤含盐量的敏感性,并采用人工神经网络(Artificial neural network,ANN)、支持向量机(Support vector machine,SVM)和分位数回归(Quantile regression,QR) 3种方法,构建全子集筛选前后0~20 cm、20~40 cm、0~40 cm、40~60 cm、0~60 cm等不同深度下的土壤含盐量反演模型。结果表明,B4、BI、SI1、SI3是0~20 cm、0~40 cm处土壤含盐量的敏感变量组合,B4、BI、NDVI为20~40 cm、40~60 cm、0~60 cm处土壤含盐量的敏感变量组合;在各深度下,分位数回归模型的精度最高,模型的决定系数R2c1、R2v1均在0. 4以上,均方根误差RMSEc1、RMSEv1均小于0. 4%,SVM次之,ANN最差;在20~40 cm深度下QR反演模型效果优于其他深度,为本文土壤含盐量估算的最优模型,其建模和验证的决定系数R2c1、R2v1分别为0. 611和0. 671,建模和验证均方根误差RMSEc1、RMSEv1分别为0. 177%和0. 160%。本研究可为卫星遥感大范围监测植被覆盖条件下土壤盐渍化程度提供参考。  相似文献   

7.
基于无人机遥感技术获取农田土壤盐分信息为盐渍化治理提供了快速、准确、可靠的理论依据。本文在内蒙古河套灌区沙壕渠灌域试验地上采集了取样点0~20cm的土壤含盐量,并使用M600型六旋翼无人机平台搭载Micro-MCA多光谱相机采集图像。利用Otsu算法对多光谱图像进行图像分类(土壤背景和植被冠层),基于分类结果分别提取剔除土壤背景前后的光谱指数和图像纹理特征,采用支持向量机(SVM)和极限学习机(ELM)构建土壤含盐量监测模型,其4种建模策略分别为:未剔除土壤背景的光谱指数(策略1)、剔除土壤背景后的光谱指数(策略2)、未剔除土壤背景的光谱指数+图像纹理特征(策略3)、剔除土壤背景的光谱指数+图像纹理特征(策略4),通过比较4种建模策略的模型精度以筛选出最优变量组合。结果表明:策略3、4所计算出的土壤含盐量反演精度高于策略1、2,策略1~4验证集决定系数R2v分别为0.614、0.640、0.657、0.681,因此利用图像纹理特征+植被指数对提高土壤含盐量的反演精度有重要意义。对比策略3、4,图像纹理特征+植被指数受到土壤背景的影响,策略4精度低于策略3精度,其R2v分别为0.614、0.657;各变量处理的最优模型均为ELM模型,建模集R2c分别为0.625、0.644、0.618、0.683,标准均方根误差分别为0.152、0.134、0.206、0.155。相比于SVM模型,ELM模型提高了土壤含盐量的反演精度。  相似文献   

8.
为及时、有效地监测盐渍化土壤含盐量,以内蒙古河套灌区沙壕渠灌域为研究区,将Sentinel-1雷达影像作为数据源,同步采集不同深度土壤含盐量数据,通过组合两组雷达后向散射系数构建多种指数,并用灰度关联(Gray correlation degree,GCD)排除共线性强的指数,采用偏最小二乘回归(Partial least squares regression,PLSR)、分位数回归(Quantile regression,QR)和支持向量机(Support vector machine regression,SVM)3种方法,构建0~10cm、10~20cm不同深度下的土壤含盐量反演模型。结果表明,在3种回归方法中,SVM回归模型的精度最高,模型建模集决定系数R2c、验证集决定系数R2p均在04以上,建模集均方根误差RMSEc、验证集均方根误差RMSEp均小于03%,分位数回归模型次之,偏最小二乘回归模型最差;在各反演深度下,0~10cm深度的反演精度均高于10~20cm深度的反演精度,其中在0~10cm深度下SVM反演模型效果优于其他模型,R2c、R2p分别为0568和0686,RMSEc、RMSEp分别为0.201%和0.151%。本研究可为雷达遥感监测裸土期土壤盐渍化提供参考。  相似文献   

9.
不同植被覆盖度下无人机多光谱遥感土壤含盐量反演   总被引:1,自引:0,他引:1  
准确快速获取植被覆盖条件下农田土壤盐分信息,为土壤盐渍化治理提供依据。利用无人机遥感平台,获取2019年7、8、9月内蒙古河套灌区沙壕渠灌域试验地的多光谱遥感图像以及取样点0~10cm、10~20cm、20~40cm、40~60cm深度处土壤含盐量,通过多光谱遥感图像计算得到光谱指数,选择归一化植被指数(NDVI-2)代入像元二分模型计算植被覆盖度,并划分为T1(裸土)、T2(低植被覆盖度)、T3(中植被覆盖度)、T4(高植被覆盖度)4个覆盖度等级;同时,对光谱指数进行全子集变量筛选,并利用偏最小二乘回归算法和极限学习机算法,构建不同覆盖度下各深度土壤含盐量反演模型。研究结果表明,裸土和高植被覆盖度下的反演模型精度高于低植被覆盖度和中植被覆盖度下的反演模型精度;对比PLSR和ELM 2种SSC反演模型精度,ELM模型的反演精度比PLSR模型高;覆盖度T1、T2、T3和T4的最佳反演深度分别为0~10cm、10~20cm、20~40cm、20~40cm。研究结果为无人机多光谱遥感监测农田土壤盐渍化提供了思路。  相似文献   

10.
基于多源遥感协同反演的区域性土壤盐渍化监测   总被引:4,自引:0,他引:4  
为进一步推动多源遥感技术在农业生产与管理中的应用,以内蒙古河套灌区解放闸灌域为试验区,利用地面实测光谱和地表组合粗糙度数据,联合C波段微波雷达SAR四极化后向散射系数数据,分别利用主成分回归(PCR)、多元逐步回归(MSR)和偏最小二乘回归(PLSR)选取盐分特征波段,并建模评价土壤盐渍化分布。首先,对光谱反射率及其对数、一阶与二阶导数4种光谱数据进行相关性分析,发现相较于原始光谱和对数变换,光谱的一、二阶导数具有更好的相关性,二阶导数变换的618~622 nm、1 802~1 806 nm、2 169~2 173 nm、2 344~2 348 nm这4个特征波段的相关系数分别为0.37、0.28、0.39和0.27;PLSR筛选的波段相较MSR选取的波段延后,但其二阶导数变换模型拟合度小于MSR。其次,在对比二阶导数变换的PCR、MSR和PLSR土壤盐分模型基础上,最终确定了协同光谱特征波段中心反射率二阶导数和雷达后向散射特性、地表组合粗糙度的BP人工神经网络(BPANN)模型为最佳预测模型,其预测模型的R~2为0.890 8,稳定性和预测精度均优于前述经验回归模型。融合多源遥感数据的神经网络模型可快速精准监测土壤盐渍化分布,为灌区土壤退化防治提供基础信息指导。  相似文献   

11.
基于ETM+遥感影像的农田土壤含水率反演研究   总被引:1,自引:1,他引:1  
以河套灌区解放闸灌域为研究区域,以Landsat ETM+影像为数据源,采用土壤水分光谱法并借助回归分析建立农田土壤水分遥感反演模型并进行模型检验.结果表明,模型精度达到81%以上.可为河套灌区农田大范围的土壤水分实时、快速监测提供方法依据.  相似文献   

12.
为探究植被覆盖条件下GF-1卫星反演农田土壤含水率的可行性,以河套灌区解放闸灌域沙壕渠为研究区,采用GF-1卫星遥感影像作为数据源,通过全子集筛选法确定不同土壤深度下光谱指数的最优自变量组合,并分别采用多元线性回归(MLR)、BP神经网络(BPNN)、支持向量机(SVM)3种算法,构建不同深度下土壤含水率反演模型。结果表明,全子集筛选后模型反演精度有较大提升,且过拟合现象减弱;植被覆盖条件下各深度土壤含水率敏感程度从大到小依次为0~40cm、0~60cm、20~40cm、0~20cm、40~60cm;植被覆盖条件下各模型对土壤含水率反演能力由强到弱依次为BPNN、SVM、MLR;筛选后BPNN在深度0~40cm下的建模集和验证集R2adj均能达到0.50以上,RMSE在0.02%以内。研究结果可为植被覆盖条件下利用GF-1卫星监测农田土壤含水率提供参考。  相似文献   

13.
基于多源数据融合的盐分遥感反演与季节差异性研究   总被引:7,自引:0,他引:7  
为提高多光谱盐分遥感反演的精度,利用实测高光谱与多光谱进行数据融合,并分析了不同季节盐分遥感的差异性。以河套灌区永济灌域为研究区域,以实测光谱仪测定的土壤高光谱数据和Landsat-8 OLI多光谱数据为基础,通过光谱变换和多元逐步回归方法筛选特征波段和特征光谱指数,构建了春、秋两季土壤盐分多光谱、高光谱反演模型,并利用特征光谱指数的线性回归构建了高-多光谱数据融合反演模型。结果表明:高光谱的反射率总体比多光谱高36.83%,春季反射率比秋季平均高23.78%。利用模型中最优变量特征光谱指数对多光谱模型与高光谱模型进行融合,高多光谱融合反演模型训练集和验证集R2平均值分别为0.651和0.635,RMSE平均值分别为2.44 g/kg和2.49 g/kg,精度明显高于对应的多光谱反演模型,其中训练集、验证集的R2平均值分别提高了36.19%和35.64%,RMSE平均值分别降低了34.28%和41.72%。春季多光谱、高光谱和融合反演模型的精度均高于秋季,其中训练集R2平均值比秋季模型分别提高了6.03%、6.05%和4.40%,验证集R2平均值分别提高了19.07%、12.21%和1.75%。构建的高多光谱融合模型反演灌域春秋两季平均盐分含量分别为6.05、5.97 g/kg,平均相对误差分别为9.65%和10.68%,总体上该区域春季土壤主要为重盐化土,秋季土壤主要为中盐化土。  相似文献   

14.
针对干旱区复杂环境下水体光谱特性空间差异大、水体提取方法适用性差的问题,本研究基于Sentinel-2卫星多光谱数据,通过超分辨率算法重建10 m空间分辨率多光谱影像,将短波红外(Short-wave infrared, SWIR)重建波段、近红外(Near-infrared, NIR)重建波段作为水体识别特征波段,在此基础上采用超像素分割算法识别水体像元,基于24种光谱指数、支持向量机(Support vector machine, SVM)、神经网络(Neural network, NN)、K-means共构建60种水体提取方法,采用总体精度(Overall accuracy, OA)、准确率(Precision)、F1值、马修斯相关系数(Matthews correlation coefficient, MCC)等水体提取精度指标进行综合评价,以黑河流域为典型研究区,确定干旱区最佳水体提取方法。结果表明,基于Sentinel-2绿色波段(中心波长为560 nm)与超分辨率重建短波红外波段(中心波长为1 610 nm)构建的改进的归一化水体指数方法,显著增强水体提取时对干旱区细小水...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号