共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
与大田玉米剥皮作业相比,种子玉米剥皮对苞叶剥净率、籽粒破碎率和落粒率具有较高的农艺要求。针对种子玉米缺乏高效低损的剥皮手段问题,采用TRIZ理论联合显式动力学仿真与高速摄像技术开展了种子玉米剥皮机构设计方法研究。首先,基于TRIZ理论解决了种子玉米剥皮机构关键结构设计问题,并完成了剥皮机构的详细设计;其次,利用LS-DYNA进行了剥皮系统-种子玉米果穗的显式动力学仿真,分析种子玉米果穗运动过程及受力情况,验证了剥皮机构设计的合理性;搭建了高速摄像试验台,通过对种子玉米剥皮过程高速摄像的逐帧分析,并与仿真结果相比,得出3种工况下速度最大误差分别为0.035、0.066、0.095m/s,验证了剥皮辊分段设计的合理性;最后选择苞叶剥净率、籽粒破碎率及落粒率为性能指标开展了种子玉米剥皮试验,在3种工况下,试验结果满足种子玉米剥皮机构的性能指标要求。 相似文献
3.
玉米是我国重要的粮食作物,目前多数地区的玉米收获仍然以手工为主,收获环节已经成为制约玉米机械化生产发展的瓶颈。为此,以先玉335为样本,在测定玉米苞叶纵向和横向拉力的基础之上,分析玉米苞叶纵向拉力与苞叶层数的关系、横向拉力与玉米苞叶层数的关系以及苞叶纵向拉力与横向拉力之间的关系。试验结果表明:玉米苞叶纵向拉力的最大值为86.892 9N,最小值为57.357 6N;横向拉力的最大值为10.001 7N,最小值为3.771 2N;纵向拉力和横向拉力由外层到内层均呈减小趋势;玉米苞叶单位截面上纵向平均拉力约为横向拉力的8~10倍。因此,设计玉米联合收获机剥皮机构过程中,在权衡苞叶剥净率与籽粒破碎率的同时,应综合考虑苞叶纵向和横向的拉力。 相似文献
4.
针对我国鲜食玉米收获过程中剥皮装备机械工作效率低、剥皮损坏率高等问题,在现有剥皮装置结构的基础上,设计了一种“柔性分段辊型+螺旋调节架”组合式和橡胶频率振动板相匹配的柔性剥皮装置。根据鲜食玉米物理特性,对鲜食玉米剥皮过程进行力学与运动学分析,确定了影响剥皮性能的主要因素,并对该剥皮装置进行了结构设计及参数分析。运用ANSYS Workbench/LS-DYDA模块对鲜食玉米果穗剥皮过程进行仿真,根据理论分析和仿真结果设计了剥皮样机,开展了剥皮试验。为获得样机最佳试验物料,以果穗长度、果穗直径、果穗含水率作为试验因素进行单因素试验,确定长度为260~280 mm、直径为64~66 mm、含水率为66.5%~69%的果穗作为剥皮机正交试验物料的样品。利用Design-Expert软件设计三因素三水平正交试验,以剥皮辊转速、剥皮辊倾角和振动板振动频率作为试验因素,以苞叶剥净率、籽粒破损率作为试验指标。结果表明:对苞叶剥净率和籽粒破损率影响由大到小均为剥皮辊转速、剥皮辊倾角、振动板振动频率;最优参数组合为:剥皮辊转速478.72 r/min、剥皮辊倾角8.05°、振动板振动频率259.20次/... 相似文献
5.
大田玉米收获机收获制种玉米时容易产生伤穗落籽、杂物堵塞等现象,本文针对适收期制种玉米生物特性,设计了一种大型制种玉米联合收获机,采用小行距对行柔性板式摘穗割台和可替换组合式剥皮装置,确保低损摘穗、输送、剥皮作业,降低籽粒损失与损伤;其中割台上方配备钢质覆胶弧形摘穗板,“橡胶+钢质”夹持输送链和六棱低速拉茎辊,可替换组合式剥皮装置采用柔性破皮+揉搓+降速组合形式。通过Plackett-Burman试验设计筛选提取影响机具指标的主要因素,采用Box-Behnken试验设计原理,以机具前进速度、拉茎辊转速和剥皮辊转速为试验因素,以总损失率与含杂率为性能指标,通过田间试验对机具进行检验,优化得出机具最佳作业参数。试验结果表明,优化后,当机具前进速度为4.87km/h、拉茎辊转速为877.27r/min、剥皮辊转速为442.52r/min时,果穗总损失率为1.61%,含杂率为0.55%。田间试验结果表明,当收获机前进速度为4.9km/h、拉茎辊转速为880r/min、剥皮辊转速为450r/min时,果穗总损失率为1.64%,含杂率为0.57%,满足制种玉米机械化联合收获的作业要求,可为制种玉米联合收获机设计与试验提供参考。 相似文献
6.
种子玉米在剥皮过程中存在大量的籽粒破碎、脱落等损失问题,严重影响种子玉米的单产与经济效益。因此,本研究采用理论分析、离散元仿真与正交试验相结合的方法,探究种子玉米果穗与剥皮机构的互作机理,确定剥皮机构的最优工作参数组合以优化种子玉米剥皮过程。首先,对种子玉米果穗在剥皮机构中的受力及运动进行了理论分析,探究了在剥皮过程中剥皮机构-种子玉米的相互作用关系,并确定了影响剥皮性能的主要因素。其次,基于DEM建立种子玉米果穗-剥皮机构相互作用仿真模型,通过对玉米果穗籽粒损伤及脱落分析,确定了剥皮辊转速、剥皮辊倾角和摆杆摆幅的较优工作范围。最后,根据Box-Behnken设计方法,设计了三因素三水平的正交试验,通过方差分析和响应面分析,筛选出种子玉米剥皮机构的最佳工作参数组合:剥皮辊转速为300r/min,剥皮辊倾角为10°,摆杆摆动幅度为5°,此时苞叶剥离率为94.13%,籽粒脱落率为1.564%,籽粒破碎率为1.292%。试验获得的剥皮装置的最优工作参数组合,明显提高了种子玉米的剥皮效果。 相似文献
7.
根据农艺过程中对玉米剥皮装置的要求,设计了与4YW-2型玉米联合收获机配套使用的玉米剥皮装置,该部分主要由入料口、剥皮装置、压送装置、输送搅龙及传动装置等部分组成,可以一次作业完成玉米穗的传送、剥皮、玉米与苞叶的分隔收集等作业。为此,以玉米苞叶的剥净率、落籽率、籽粒损失率和生产率为主要指标,计算了部分零部件的结构尺寸。该玉米剥皮装置在4YW-2型玉米联合收获机上配置紧凑协调,作业顺畅可靠,玉米剥皮过程中剥净率达90%以上、作业损失率低于4%,保证了联合收获的作业性能指标,提高了联合收获机的生产效率。 相似文献
8.
以黄淮海地区为代表的一年两熟制地区,由于玉米可生长期短、收获时间紧,收获时果穗含水率较高,摘穗时易产生断茎,且苞叶与果穗贴合紧密,剥皮作业质量效果较难保证,剥净率与啃穗率、脱落籽粒破损之间矛盾突出。目前,对高含水率(≥40%)果穗剥皮装置的系统理论与试验研究均较少,因而本文设计了5因素玉米剥皮试验装置,可以进行槽型布置和平面布置两种剥皮装置的室内试验。通过调整压送器与剥皮辊距离、剥皮辊倾角、剥皮辊转速、压送轮转速及剥皮辊组合形式等关键因素水平,以苞叶剥净率、啃穗落粒率和籽粒破损率为评价指标,进行多因素多水平正交试验,确定剥皮装置的最佳参数组合,为玉米联合收获机剥皮装置选型和参数设计提供依据。 相似文献
9.
10.
11.
12.
为提高玉米秸秆皮瓤分离效率,达到皮瓤分类利用,以秸秆群为研究对象,设计辊齿式碾压揭皮辊,实现秸秆皮瓤有效分离。采用密度理论法(SIMP)设计了辊齿式碾压揭皮辊,并进行了有限元模拟仿真分析,确定了碾压揭皮辊半径为33 mm,齿型刀片齿刃高2 mm、厚度2 mm、刃角30°。为寻找最佳参数组合,以皮瓤分离率为试验指标,碾压揭皮辊转速、辊齿间隙、切段长度为试验因素,进行二次回归正交旋转组合设计试验。运用Design-Expert进行试验数据处理与分析,建立评价指标与试验因素之间的数学模型,并对参数进行优化,确定玉米秸秆皮瓤分离碾压揭皮辊的最佳参数组合为:碾压揭皮辊转速为295 r/min,辊齿间隙为5 mm,切段长度为22 mm时,皮瓤分离率为85%。经试验验证,试验结果与分析结果基本一致。 相似文献
13.
14.
指夹式玉米精量排种器导种投送运移机理分析与试验 总被引:5,自引:0,他引:5
为研究指夹式玉米精量排种器籽粒投送运移规律,提高排种器导种性能,建立了导种投送过程的运动学和动力学模型,分析了各因素对运移稳定性及投送落种轨迹的影响。采用多因素二次通用旋转组合试验研究了工作转速和倾斜角对排种均匀稳定性的影响,运用Design-Expert 6.0.10软件对试验数据进行优化分析得到其最佳工作条件。在此基础上,运用镜面反射成像原理,搭建了排种轨迹测定试验台,结合高速摄像与图像目标追踪技术对落种籽粒轨迹运移规律进行了研究。试验结果表明,在工作转速为15~45 r/min、倾斜角为0°工况下,籽粒正面轨迹及侧面轨迹的水平位移随工作转速增加而增加,株距变异系数随工作转速增加而降低;当工作转速大于35 r/min时,籽粒轨迹及落点位置分布逐渐离散,株距变异系数明显增加,其正面水平位移稳定在12.9~14.3 mm内,侧面水平位移稳定在3.7~4.8 mm内,平均株距变异系数为15.13%。在工作转速为30 r/min、倾斜角为-12°~12°工况下,轨迹投种角随倾斜角的增加而减小,其整体角度稳定在66.4°~79.6°内。该研究为优化设计指夹式玉米精量排种器关键部件及配套导种管提供了参考。 相似文献
15.
16.
基于DEM-CFD耦合的玉米气吸式排种器仿真与试验 总被引:1,自引:0,他引:1
针对DEM-CFD计算量大的问题,首先利用Fluent仿真,通过设计进气口位置的三因素三水平正交试验,以充种区型孔压强、自清种区型孔压强、清种区型孔压强、携种区型孔压强为评价指标,进行极差和方差分析,确定最佳进气口位置参数;其次,基于离散单元法理论建立玉米籽粒黏结颗粒Bonding模型,对气道流场划分结构化网格,并设置相关参数,实现玉米气吸式排种器DEM-CFD气固耦合仿真;提取排种盘吸附玉米种子时的型孔流场压强,发现每个区域的压强都能稳定过渡,且压强由大到小为充种区、自清种区、清种区、携种区、卸种区;通过理论计算得出吸附压强最小值,并与仿真结果进行对比,结果表明仿真结果均大于理论计算吸附压强最小值;采用第1代常规气室结构排种器和本文设计排种器进行风压测定对比试验分析,验证了所选进气口位置参数的合理性;最后,以改变排种盘转速为例,选取排种器常用作业速度8、10、12、14km/h,以合格指数、重播指数、漏播指数为排种性能评〖JP2〗价指标,通过仿真考察其排种性能,并与台架试验进行对比。结果表明,在仿真模拟中,当作业速度不大于14km/h、〖JP〗负压为3kPa时,合格指数均不小于89.7%,漏播指数不大于7.8%,重播指数不大于2.5%;台架试验中,在相同的作业速度和负压下,粒距合格指数均不小于90.3%,重播指数不大于2.7%,漏播指数不大于7%;仿真试验与台架试验结果较为接近,验证了仿真模拟的可行性。 相似文献
17.
制种玉米父本整秆切除铺放机设计与试验 总被引:1,自引:0,他引:1
为了提高制种玉米生产管理的机械化水平,设计了一种父本整秆切除铺放机,主要由切割机构、茎秆输送机构和液压传动系统等组成。切割机构采用斜向无支撑旋转切割方式,根据玉米植株被完全切断的条件,结合设计的一字型刀片结构参数,确定了刀片的旋转角速度,通过刀片的运动分析,验证了刀片结构的合理性;茎秆输送机构采用装有长、短夹齿的回转输送链和压杆相互配合的方式,通过对输送过程中茎秆受力和输送链运动分析,得出了茎秆被牢固夹持并有序输送时的相关技术参数;留茬高度调节由升降油缸驱动平行四边行机构实现,刀片和输送链由负载敏感液压系统传动实现。田间试验表明,设计的制种玉米父本整秆切除铺放机性能稳定、可靠,切断率为100%,铺放整齐率达95%,满足了机械化父本切除作业的要求。 相似文献