首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It was found that the population density of actinomycetes in solonchaks and saline desert soils varied from hundreds to tens of thousands of colony-forming units (CFUs) per 1 g of soil depending on soil type and was by 1–3 orders of magnitude lower than the number of mycelial bacteria in main soil types. Actinomycetes grow actively in saline soils, and the length of their mycelium reaches 140 m per 1 g of soil. Domination of moderately halophilic, alkaliphilic, and haloalkaliphilic actinomycetes, which grow well under 5% NaCl and pH 8–9, is a specific feature of actinomycetal complexes in saline soils. Representatives of Streptomyces and Micromonospora genera were found among the haloalkaliphilic actinomycetes. Micromonospores demonstrated lower (than streptomycetes) adaptability to high salt concentrations. Investigation of the phylogenetic position of isolated dominant haloalkaliphilic strains of streptomycetes performed on the basis of sequencing of the gene 16S rRNA enabled identifying these strains as Streptomyces pluricolorescens and S. prunicolor.  相似文献   

2.
The actinomycetal complexes of saline soils comprise the representatives of the Streptomyces and Micromonospora genera, the number of which are hundreds and thousands of CFU/g soil. Complexes of mycelial bacteria in saline soils are poorer in terms of number (by 1–3 orders of magnitude) and taxonomic composition than the complexes of the zonal soil types. A specific feature of the actinomycetal complexes of saline soils is the predominance of halophilic, alkaliphilic, and haloalkaliphilic streptomycetes that well grow at pH 8–9 and concentrations of NaCl close to 5%. Actinomycetes in saline soils grow actively, and the length of their mycelium reaches 140 m in 1 gram of soil. The haloalkaliphilic streptomycetes grow fast and inhibit the formation of spores at pH 9 and high concentrations of salts (Na2SO4 and MgCl2, 5%) as compared to their behavior on a neutral medium with a salt concentration of 0.02%. They are characterized by the maximal radial growth rate of colonies on an alkaline medium with 5% NaCl.  相似文献   

3.
The influence of SHF radiation on soil streptomycetes   总被引:1,自引:0,他引:1  
Streptomycete cultures isolated from chernozem, soddy-podzolic, and low-moor peat soils were used in the experiment. The spore suspensions responded to SHF radiation (superhigh frequency radiation) at a shorter (30 s) exposition than the suspensions of vegetative streptomycete cells (60 s) did. The SHF radiation affected all the streptomycetes investigated. Both the suppression and stimulation of the respiration intensity, as well as a higher biomass accumulation and a resonance effect, were observed for different species of streptomycetes under the influence of microwaves. The effect of the SHF radiation on the biomass accumulation and the intensity of the other physiological processes may lead to the changes in the number of streptomycetes and their activity in the microbial complex of the soils. The changes in the capability of the streptomycetes concerning the assimilation of substrates under the influence of SHF radiation were revealed using multisubstrate testing.  相似文献   

4.
In salt-affected soils, soil organic carbon (SOC) levels are usually low as a result of poor plant growth; additionally, decomposition of soil organic matter (SOM) may be negatively affected. Soil organic carbon models, such as the Rothamsted Carbon Model (RothC), that are used to estimate carbon dioxide (CO2) emission and SOC stocks at various spatial scales, do not consider the effect of salinity on CO2 emissions and may therefore over-estimate CO2 release from saline soils. Two laboratory incubation experiments were conducted to assess the effect of soil texture on the response of CO2 release to salinity, and to calculate a rate modifier for salinity to be introduced into the RothC model. The soils used were a sandy loam (18.7% clay) and a sandy clay loam (22.5% clay) in one experiment and a loamy sand (6.3% clay) and a clay (42% clay) in another experiment. The water content was adjusted to 75%, 55%, 50% and 45% water holding capacity (WHC) for the loamy sand, sandy loam, sandy clay loam and the clay, respectively to ensure optimal soil moisture for decomposition. Sodium chloride (NaCl) was used to develop a range of salinities: electrical conductivity of the 1:5 soil: water extract (EC1:5) 1, 2, 3, 4 and 5 dS m−1. The soils were amended with 2% (w/w) wheat residues and CO2 emission was measured over 4 months. Carbon dioxide release was also measured from five salt-affected soils from the field for model evaluation. In all soils, cumulative CO2-C g−1 soil significantly decreased with increasing EC1:5 developed by addition of NaCl, but the relative decrease differed among the soils. In the salt-amended soils, the reduction in normalised cumulative respiration (in percentage for the control) at EC1:5 > 1.0 dS m−1 was most pronounced in the loamy sand. This is due to the differential water content of the soils, at the same EC1:5; the salt concentration in the soil solution is higher in the coarser textured soils than in fine textured soils because in the former soils, the water content for optimal decomposition is lower. When salinity was expressed as osmotic potential, the decrease in normalised cumulative respiration with increasing salinity was less than with EC1:5. The osmotic potential of the soil solution is a more appropriate parameter for estimating the salinity effect on microbial activity than the electrical conductivity (EC) because osmotic potential, unlike EC, takes account into salt concentration in the soil solution as a function of the water content. The decrease in particulate organic carbon (POC) was smaller in soils with low osmotic potential whereas total organic carbon, humus-C and charcoal-C did not change over time, and were not significantly affected by salinity. The modelling of cumulative respiration data using a two compartment model showed that the decomposition of labile carbon (C) pool is more sensitive to salinity than that of the slow C pool. The evaluation of RothC, modified to include the decomposition rate modifier for salinity developed from the salt-amended soils, against saline soils from the field, suggested that salinity had a greater effect on cumulative respiration in the salt-amended soils. The results of this study show (i) salinity needs to be taken into account when modelling CO2 release and SOC turnover in salt-affected soils, and (ii) a decomposition rate modifier developed from salt-amended soils may overestimate the effect of salinity on CO2 release.  相似文献   

5.
Sodicity and salinity can adversely affect soil structure and are common constraints to plant growth in arid regions. Current remote sensing techniques cannot distinguish between the various classes of salt-affected soils. Field and laboratory measurements of salt-affected soils are time-consuming and expensive. Mapping of the salt-affected soils can be used in soil conservation planning to identify regions with different degrees of limitations. There is a need to use existing field and laboratory measurements to create maps of classes of salt-affected soils. The objectives of this study are to classify salt-affected soils, use existing field data to interpolate and validate geospatial predictions of the classes of salt-affected soils using Geographic Information Systems (GIS), and create maps showing the different classes and distribution of salt-affected soils. The classification framework for salt-affected soils is based on electrical conductivity (ECe), soil pH and the sodium adsorption ratio (SAR), and provides four degrees of limitations to salt-affected soils: slight (normal soils), moderate (saline soils), severe (sodic soils), and extreme (saline-sodic soils). Spatial interpolation of the field data from northwestern Libya was verified by cross-validation, and maps of the salt-affected soils in the region were created. The majority of soils in this region of Libya are normal (slight degree of limitation). Twenty percent of the topsoil is saline-sodic (extreme degree of limitation). Land use recommendations and rehabilitation strategies can be developed from such maps of salt-affected soil classes. The methodology followed in this study can be applied to other arid regions around the world, particularly in developing countries where budgetary constraints limit detailed field and laboratory measurements of sodicity and salinity.  相似文献   

6.
Excess of exchangeable sodium (Na) in salt-affected soils causes ion toxicity and decrease in nutrient uptake by plants, particularly potassium (K). A number of studies have been conducted to investigate the effect of K-fertilization on plant growth under sodic and saline-sodic conditions but the results are much diverse to process for concrete recommendations. To explore the possible reasons, it was hypothesized that Na applied as NaCl to produce salinity/sodicity in the soil may release non-exchangeable K, minimizing the effect of K-fertilization. Incubation studies were conducted for 2, 4 and 6 days in the light (sandy loam) and heavy (clay loam) textured soils producing two saline/sodic levels, i.e. 20 and 30 sodium adsorption ratio (SAR) along with control (SAR 3). Potassium fertilizer applied was calculated according to 40 (general recommendations based on soil-nutrient status), 80 and 160 kg K ha?1. Interestingly, it was observed that addition of NaCl possibly released non-exchangeable K from the soil minerals and increased the K concentration in soil solution. Total K release was more in heavy textured soil but initial release was more in light textured soil. This release may eliminate the effect of K-fertilization applied under salt stress induced by NaCl. Therefore, it is suggested that while studying Na–K interaction in salt-affected soils, NaCl should be avoided to produce salinity, and naturally occurring saline-sodic soils may be used. Soil Na–K interaction studies including ameliorating effect of K under sodic or saline-sodic conditions should be conducted carefully considering the above-stated argument.  相似文献   

7.
A digital version of the map of salt-affected soils on a scale of 1 : 2.5 M has been used to calculate the areas of these soils in the four federal okrugs (the Southern, Central, Volga, and Northwestern) of European Russia. The total area of soils with soluble salts in the upper meter reaches 23.3 million ha. More than half of them are solonchakous soils (with soluble salts in the layer deeper than 30 cm), and about 25% are saline from the surface. Soils of sulfate and chloride-sulfate salinization predominate (>50% of the area of salt-affected soils). Alkaline soda-saline soils and soils with the participation of soda comprise about 6%. We consider this value to be underestimated and requiring refinement, because soils of solonetzic complexes with neutral salts in the upper horizons may also contain soda in the solonetzic and subsolonetzic horizons, which was not always taken into consideration upon assessing the chemical composition of the salts. Solonetzes proper and solonetzic soils predominate among the salt-affected soils in the European part of Russia. The area of solonetzes is up to 9.4 million ha. The area of solonetzic soils (including solonetzic soils with salts in the layers of 0–100 and/or 100–200 cm) is 15.5 million ha. The highest percentage (32.2%) of salt-affected soils is in the Southern federal okrug.  相似文献   

8.
The active growth and development of psychrotolerant actinomycetes take place in peat and podzolic soils of the tundra and taiga at temperatures below 10°C. The population density of psychrotolerant mycelial prokaryotes in these soils reaches thousands and tens of thousands of CFU/g of soil, and the length of their mycelium is up to 380 m/g of soil. The application of fluorescent in situ hybridization (the FISH method) demonstrated that the metabolically active psychrotolerant representatives of the phylogenetic group of Actinobacteria comprise up to 30% of the total number of bacteria in prokaryotic microbial communities of oligotrophic peat bog and podzolic soils. The portion of metabolically active mycelial actinobacteria exceeds the portion of unicellular actinobacteria. Psychrotolerant streptomycetes isolated from peat bog soils possess pectinolytic, amylolytic, and antagonistic activities at low temperatures (5°C).  相似文献   

9.
东亚和邻近地区受盐影响土壤的性质及盐化危险   总被引:5,自引:0,他引:5  
Asia is the largest distribution area of salt-affected soils in the world,Very few countries in Asia could escape from hazard of salinization.This paper deals with various salt-affected soils spreading in East Asia and its neighboring regions (including China,Japan,Kampuchea,Democratic Peolpe‘s Republic of Kores,Republic of Korea,Laos,Mongolia,Burma,Thailand and Vietnam),Principles of occurrence of salinization,and features of salt-affected soils in these regions have been studied in the present paper,Based on studies on types,features and distribution patterns of salt-affected soils.a salt-affected soil map of East Asia and its neighboring regions has been complied.Mechanism and manifestation of the salinization hazard on the regional agriculture and ecological environment,measures of preventing salinization hazard and exploiting salt-affected soils in these regions are also discussed.  相似文献   

10.
The taxonomic and functional structure of actinomycete complexes in the litters and upper horizons of the soils under an artificial coniferous–broad-leaved forest located around the town of Chanchun (Tszilin province, PRС). The complex of actinomycetes included representatives of the Streptomyces, Micromonospora, Streptosporangium, and Streptoverticillium genera and oligosporous forms. In the actinomycete complexes, streptomycetes prevailed in the abundance (61–95%) and frequency of occurrence (100%). In the parcels of Korean pine (Pinus koraiensis) and Mongolian oak (Quercus mongolica), streptomycetes of 19 species from 8 series and 4 sections were isolated. The most representative, as in European forest biomes, was the Cinereus Achromogenes series. A distinguishing feature of the streptomycete complex in the biomes studied was the high participation of species from the Imperfectus series. The verification of the functional activity of natural isolates made it possible to reveal strains with high antagonistic and cellulolytic abilities. A high similarity of actinomycete complexes was found in Eurasian forest ecosystems remote from each other, probably due to the similarity of plant polymers decomposable by actinomycetes.  相似文献   

11.
我国盐渍土改良利用分区   总被引:3,自引:0,他引:3  
刘文政  王遵亲  熊毅 《土壤学报》1978,15(2):101-112
我国西北、华北、东北和滨海地区,广泛分布着大面积的盐渍土.这种土壤,土层深厚,地形平坦,适于机耕.但土壤中含有盐碱,对农业生产发展的影响很大.建国以后,为了迅速恢复和发展农业生产,对一些流域进行了规划,改建和兴建了很多灌区,进行了巨大的农田水利工程建设,对促进盐渍地区的农业生产和改造盐碱地起了很大的作用.  相似文献   

12.
胡纪常  祝寿泉 《土壤学报》1981,18(3):281-289
滨海盐渍土是否有碱化问题,特别是在开垦利用以后,土壤是否会向碱化方向演化,这是很多生产单位所关心的问题。对此,过去已做了不少工作。有人认为滨海盐渍土由于长期受海水浸渍,土壤胶体表面吸附着大量的钠离子,因此有比较高的碱化度,盐渍程度愈重则碱化度愈高,随着土壤脱盐同时脱碱,当不致进一步碱化[3]。也有人认为滨海盐债土耕垦后不会发生碱化,其碱化度随改良利用年限而降低[1]。还有人在滨海盐溃土耕垦种稻后,观测到在土壤脱盐过程中,土壤pH值和总碱度有所增高,认为土壤发生了碱化[2,5]1)。我们就这一间题曾先后对浙江上虞、乐清,江苏东台、大丰、滨海、灌云以及辽宁兴城、锦县、大洼等县的滨海地区进行了调查研究和室内试验。  相似文献   

13.
Microbial biomass and its activities in salt-affected coastal soils   总被引:2,自引:0,他引:2  
Seasonal fluctuations in salinity are typical in coastal soils due to the intrusion of seawater in the groundwater. We studied the effect of salinity on the microbial and biochemical parameters of the salt-affected soils of the coastal region of Bay of Bengal, Sundarbans, India. The average pH values and average organic C (OC) contents of soils from nine different sites cultivated with rice (Oryza sativa) ranged from 4.8 to 7.8 and from 5.2 to 14.1 g kg−1, respectively. The average electrical conductivity of the saturation extract (ECe) during the summer season was about five times higher than that during the monsoon season. Within the nine sites, three soils (S3, S4, and S5) were the most saline. The average microbial biomass C (MBC), average basal soil respiration (BSR), and average fluorescein diacetate hydrolyzing activity (FDHA) were lowest during the summer season, indicating a negative influence of soil salinity. About 59%, 50%, and 20% variation in MBC/OC, FDHA/OC, and BSR/MBC (metabolic quotient, qCO2), respectively, which are indicators of environmental stress, could be explained by the variation in ECe. The decrease in MBC and microbial activities with a rise in salinity is probably one of the reasons for the poor crop growth in salt-affected coastal soils.  相似文献   

14.
The number and composition of the actinomycetal population was studied in urbanozems in the city of Kirov. It was shown that the total population of actinomycetes was an order of magnitude lower than that in the background territories, and the generic structure of the actinomycetal complex and the species composition of the streptomycetes were transformed under the influence of the urbanization factors. The obtained data were compared with the concentrations of the mobile forms of Pb, Zn, Cu, Fe, and Mn in different ecotopes (industrial, traffic, and recreation zones). The increase of the relative portion of micromonosporic actinomycetes in comparison with the background (reference) soils was observed in the complexes of the industrial and transport ecotopes mostly contaminated with heavy metals. It was found that the antibiotic potential of the streptomycetes in the contaminated soils was lower than in the soils of the background territories.  相似文献   

15.
The relationships between soil salinization and the zonal and provincial bioclimatic conditions, the lithological composition of the sediments, and the geomorphic features of the territory have been analyzed for the Southern federal okrug of Russia. It is shown that the lithological and geomorphic conditions (relief, salinity of parent materials, degree of drainage, and the depth of saline groundwater) play an important role in the distribution of salt-affected soils against the background of the more general regularities specified by the climate. The participation of salt-affected soils in the soil cover of the Southern federal okrug increases in the eastward direction from the forest-steppe zone to the semidesert zone in agreement with an increase in the aridity and continentality of the climate. The chemical composition of soil salts also changes: the sulfate and soda-sulfate types predominate in the forest-steppe zone; the sulfate type or the sulfate type with the participation of soda, in the steppe zone; the sulfate-chloride type, in the dry steppe zone; and the chloride type, in the semidesert zone. The lithological and geomorphic conditions within the particular zones and provinces affect the distribution pattern of the salt-affected soils and the degree and chemistry of the soil salinization. The areas of salt-affected soils were calculated with the use of a digital version of the Map of Salt-Affected Soils of Russia (1: 2.5 M scale) with due account for the participation of these soils in the soil cover of the particular delineations and the data on the depth of the upper boundary of the salt-bearing horizons, the degree and chemistry of the soil salinization, and the area of solonetzes and solonetzic soils.  相似文献   

16.
Factual materials on salt-affected soils in the Barguzin Depression (Buryat Republic) are generalized. A geomorphic map of the depression has been developed. The distribution of salt-affected soils and the specificity of salinization in different geomorphic regions are characterized. These soils tend to be developed within the low lacustrine–alluvial plain of the depression, on the floodplain of the Barguzin River and its tributaries. Smaller areas of salt-affected soils are found on the river terraces. They are virtually absent on ancient sandy ridged terraces (kuituns). The genesis and chemistry of soil salinization are mainly related to the discharge of slightly saline deep water along tectonic faults and fissures. An additional source of soil salinity is represented by surface water flows. The presence of permafrost preventing the leaching of salts and the cryoarid climate favoring the migration of salts toward the soil surface during the dry spring and early summer periods and during the soil freezing in the winter contribute to the soil salinization. Slightly saline hydromorphic solonchakous soils predominate among salt-affected soils of the depression; the portion of semihydromorphic saline soils is smaller. Automorphic saline soils rarely occur in the depression. Strongly saline soils— solonchaks—are widespread within lacustrine depressions around salt lakes. Soils of the soda and sulfate salinization predominate. The content of chlorides is small; their increased amounts, as well as the presence of sulfates, are indicative of the discharge of dee ground water onto the surface. The soda type of salinization is also related to the discharge of deep stratal water with further transformation of salt solutions during freeze–thaw cycles. Under anaerobic conditions, the formation of soda is favored the processes of sulfate reduction.  相似文献   

17.
ABSTRACT

The properties of secondary salt-affected soils developed from improper irrigation and drainage management and their effects on rice growth and yield are well documented. However, relevant information on coastal reclaimed tideland (RTL) soils, which are classified as primary salt-affected soils developed through salt-accumulated sediments is lacking. In this paper, we reviewed the physical and chemical properties of RTL soils in comparison with non-RTL soils and analyzed the relationship between rice production and soil salinity in RTL to suggest agricultural management practices for sustainable rice production and soil carbon sequestration in RTL. Similar to the secondary salt-affected soils, RTL soils were characterized by high alkalinity, salinity, and sodicity, and rice yield was negatively correlated with salinity. However, it was also found that lower fertility (e.g., organic matter and phosphorus) of RTL soils than non-RTL soils might also hamper rice growth and thus carbon input via plant residues in RTL soils. Correlation between years after reclamation and soil properties of RTL showed that cultivation of rice with annual fertilization and organic matter inputs increased soil fertility but salinity and sodicity did not show a significant tendency of change, suggesting that natural desalinization in RTL soils is hard to be achieved with conventional rice cultivation. Therefore, it is suggested that fertilization management as well as salinity management via drainage, gypsum application, tillage, and proper irrigation may be necessary to improve rice production and carbon sequestration in RTL soils.  相似文献   

18.
Soil actinomycetes as potential biofungicides   总被引:1,自引:0,他引:1  
The biological control of fungal diseases in plants is considered an efficient and environmentally friendly alternative or supplement to fungicides. Soil antagonistic streptomycetes are particularly suitable for the biological control; they proved to be highly efficient in reducing the incidence of fungal pathogens. Streptomycetes isolated from the podzolic soils were evaluated for the biosuppression of fungal populations. Seventeen strains of streptomycetes (out of the total 279 isolates) were found to be strongly antagonistic to fungal pathogens in vitro and were selected for further experiments in situ. The full protection of plants against Fusarium spp. was obtained with the Streptomyces hygroscopicus strain K49.  相似文献   

19.
盐化和有机质对土壤结构稳定性及阿特伯格极限的影响   总被引:14,自引:1,他引:14  
对甘肃景电灌区盐化和有机质对土壤团聚体的稳定性、黏粒的分散性及阿特伯格极限进行了调查研究。研究结果表明该灌区盐化土壤中水溶性盐以钠盐为主,土壤具有钠质现象。随含盐量和交换性钠离子百分率(ESP)的增加土壤团聚体的稳定性显著降低,黏粒的分散性显著增加,阿特伯格极限具有降低的趋势,明确地说明盐化和伴随着的钠质化是土壤结构性能退化的主要原因。随有机质含量的增加,土壤团聚体的稳定性显著增加,黏粒的分散性显著降低,阿特伯格极限显著增加,说明增加有机质含量可以显著改善盐化土壤的结构性能。可以根据如下公式利用有机质含量(OM)和ESP预测团聚体的稳定性:WSAR=19.4 0.98OM-1.43 ESP(R2=0.5741,n=67)。团聚体稳定性、黏粒分散性、流限和塑限互相之间显著相关,说明流限和塑限可以作为反映盐化土壤结构状况的指标。  相似文献   

20.
A retrospective monitoring of changes in land use on cultivated salt-affected soils of Azov district in Rostov oblast for a period from 1968 to 2013 was performed within the framework of the creation of a problem- oriented system of retrospective monitoring of the soil cover and land uses. A higher dynamism of land uses on salt-affected soils in comparison with that on nonsaline soils was shown. A decisive role of the anthropogenic factor in the increasing soil salinization in the region was established. The areas of meadow ecosystems with participation of salt-affected soils considerably increased at the end of the 1960s–the beginning of the 1970s. It is argued that their development with a corresponding worsening of the salt status of regional soils was initiated by the wide-scale planting of shelterbelts in the 1940s and 1950s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号