首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi is one of the most serious soybean (Glycine max) diseases in tropical and subtropical areas. A soybean line, PI 587855, showed a resistance phenotype against ASR pathogens in Japan and South America at high frequency; however, little is known of the genetic control of this resistance and chromosomal location of the corresponding locus. Therefore, the aim of this study was to study the inheritance of PI 587855 resistance and map the corresponding locus with SSR markers aiming to use the linked markers in marker‐assisted selection. In the segregating population, resistance to ASR appeared to be controlled by a single dominant gene. The ASR resistance locus was mapped near to the chromosomal region where the resistant loci, Rpp1 and Rpp1‐b, were previously mapped. Comparative genetic mapping and disease reaction profiles of other seven lines carrying Rpp1 or Rpp1‐b to four Brazilian ASR isolates revealed that the resistance reaction exhibited by PI 587855 was similar to that of Rpp1‐b‐carrying varieties which have useful resistance to South American ASR strains.  相似文献   

2.
The objective of this study was to investigate the genetic mechanisms of soybean resistance to Asian rust (Phakopsora pachyrhizi Syd. & P. Syd). F2 and F3 generations from 15 diallel crosses involving six soybean cultivars, FT-2, EMBRAPA 48, BRS 154, BRS 184, BRS 214, BRS 231, were used to analyze the genetic control of Asian rust resistance in the soybean parents tested. Genetic models were fitted to means and variances of the generations tested in a completely randomized field experiment with 5,700 hill plots. The experiment was spray-inoculated twice with an isolate that was first detected during the 2002/03 season in Mato Grosso (MT) State and presently prevail in Central Brazil, at a six-day interval, on borders rows and on the useful area, respectively, with a 104 spores/ml distilled H2O suspension. Assessments were made using a diagrammatic scale for disease severity at seven and 39 days after the first detection of Asian rust in the experiments. Evaluations made in the second assessment (39 days) discriminated better between genotypes. Selection at early plant developmental stages may not result in adult resistant plants. Cultivar FT-2, which had presented monogenic resistance to a rust isolated that prevailed in the first two years of rust occurrence in Brazil, showed no resistance to the MT State rust strain used in this experiment, but eleven crosses showed genetic variability for resistance in the second assessment. Soybean rust resistant genes showing predominantly additive effects are dispersed among parents. Narrow sense heritability values ranging from 0.42 to 0.74 at the F3 family level in the second assessment suggested that selection of resistant genotypes is feasible.  相似文献   

3.
A. Graner    S. Streng    A. Drescher    Y. Jin    I. Borovkova  B. J. Steffenson 《Plant Breeding》2000,119(5):389-392
Leaf rust of barley, caused by Puccinia hordei Otth, is an important foliar disease in most temperate regions of the world. Sixteen major leaf rust resistance (Rph) genes have been described from barley, but only a few have been mapped. The leaf rust resistance gene Rph7 was first described from the cultivar ‘Cebada Capa’ and has proven effective in Europe. Previously mapped restriction fragment length polymorphism (RFLP) markers have been used to determine the precise location of this gene in the barley genome. From the genetic analysis of a ‘Bow‐man’/‘Cebada Capa’ cross, Rph7 was mapped to the end of chromosome 3HS, 1.3 recombination units distal to the RFLP marker cMWG691. A codominant cleaved amplified polymorphic site (CAPS) marker was developed by exploiting allele‐specific sequence information of the cMWG691 site and adjacent fragments of genomic DNA. Based on the large amount of polymorphism present in this region, the CAPS marker may be useful for the marker‐assisted selection of Rph7 in most diverse genetic backgrounds.  相似文献   

4.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases on wheat in China. To assess resistance in wheat cultivars and breeding lines in China, 330 leading cultivars and 164 advanced breeding lines were evaluated with stripe rust. In the greenhouse tests, seedlings of the entries were inoculated separately with several Pst pathotypes. In the field tests, the entries were evaluated for stripe rust resistance in Yangling, Shaanxi Province artificially inoculated and in Tianshui, Gansu Province under natural infection of Pst. The oversummering/wintering and spring epidemic zones of resistance genes were postulated using molecular markers for Yr5, Yr9, Yr10, Yr15, Yr17, Yr18, and Yr26, in combination with resistance spectra. Out of the 494 wheat entries, 16 (3.24 %) entries had all-stage resistance (ASR) in all race tests, 99 (20.04 %) had adult-plant resistance (APR), 28 (5.67 %) were considered to have slow-rusting (SR), and 351 (71.05 %) were susceptible to one or more races in both seedling and adult-plant stages. Advanced breeding lines had a higher percentage (37.2 %) of resistant entries (The sum of ASR, APR and SR) than leading cultivars (24.85 %). Among the epidemic regions, southern Gansu had a higher percentage of resistant entries than any other regions. Based on stripe rust reactions and molecular markers, two cultivars were found to possibly have Yr5 while no entries have Yr10 or Yr15. Resistance genes Yr9, Yr17, Yr18, and Yr26 were found in 134 (29.4 %), 45 (9.1 %), 10 (2 %), and 15 (3 %) entries, respectively.  相似文献   

5.
Stripe rust (or yellow rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive diseases of wheat worldwide. Growing resistant cultivars is the best approach to control the disease. To identify and map genes for stripe rust resistance in wheat cultivar ‘Wuhan 2', an F2 population was developed from a cross between the cultivar and susceptible cultivar Mingxian 169. The parents, 179 F2 plants and their derived F2:3 lines were evaluated for responses to Chinese races CYR30 and CYR31 of the pathogen in a greenhouse. A recessive gene for resistance was identified. DNA bulked segregant analysis was applied and resistance gene analog polymorphism (RGAP) and simple sequence repeat (SSR) techniques were used to identify molecular markers linked to the resistance gene. A genetic map consisting of five RGAP and six SSR markers was constructed. The recessive gene, designated Yrwh2, was located on the short arm of chromosome 3B and flanked by SSR markers Xwmc540 and Xgwm566 at 5.9 and 10.0 cM, respectively. The chromosomal location of the resistance gene and its close marker suggest that the locus is different from previously reported stripe rust resistance genes Yr30, QYr.ucw-3BS, Yrns-B1, YrRub and QYrex.wgp-3BL previously mapped to chromosome 3B. Yrwh2 and its closely linked markers are potentially useful for developing stripe rust resistance wheat cultivars if used in combination with other genes.  相似文献   

6.
Summary Molecular mapping is a promising strategy for studying and understanding traits with complex genetic control, such as partial resistance to oat crown rust. The objectives of this research were to develop molecular maps from the progenies of the cross UFRGS7 (susceptible) × UFRGS910906 (partially resistant) and to identify QTLs (quantitative trait loci) associated to partial resistance to oat crown rust in two generations of that population.DNA of 86 genotypes of the F2 and 90 genotypes of the F6 UFRGS7 × UFRGS910906 population were used to generate AFLP markers. Molecular maps were constructed using Mapmaker Exp. 3.0 and QTLs for partial resistance to oat crown rust were identified with Mapmaker/QTL software. Five hundred and fifty seven markers in the F2 and 243 markers in the F6 generations were identified. The F2 map integrated 250 markers in 37 linkage groups. The F6 map integrated 86 markers in 17 linkage groups.Five QTLs were identified for partial resistance to oat crown rust in the F2 generation and three QTLs in the F6. The QTL identified on F6 through the PaaaMctt340 AFLP marker showed consistency across two environments and two generations (F4 and F6), and appear to have potential for marker-assisted selection in oat.  相似文献   

7.
In a segregating homozygous F2 population of bread wheat involving a leaf rust resistance gene Lr28 derived from Aegilops speltoides, six randomly amplified polymorphic DNA (RAPD) markers, three each in coupling and repulsion phase were identified as linked to Lr28, mapped to a region spanning 32 cM including the locus. The F2 and F3 populations were studied in the phytotron challenged with the most virulent pathotype 77-5 of leaf rust. A coupling phase linked RAPD marker S464721 and a repulsion phase linked RAPD marker S326550 flanked the gene Lr28 by a distance of 2.4± 0.016 cM on either side. The flanking markers genetically worked as co-dominant markers when analyzed together after separate amplification in the F2 population by distinguishing the homozygotes from the heterozygotes and increased the efficiency of marker assisted selection by reducing the false positives and negatives. One of the three RAPD markers, S421640 was converted to locus specific SCAR marker SCS421640 which was further truncated by designing primers internal from both ends of the original RAPD amplicon to eliminate a non-specific amplification of nearly same size. The truncated polymorphic sequence characterized amplified region marker (TPSCAR) SCS421570 was 70 bp smaller, but resulted in a single band polymorphism specific to Lr28 resistance. The TPSCAR marker was validated for its specificity to the gene Lr28 in nine different genetic backgrounds and on 43 of the 50 Lr genes of both native and alien origin, suggesting the utility of the SCAR markers in pyramiding leaf rust resistance genes in wheat.  相似文献   

8.
The Puccinia striiformis f. sp. tritici (Pst) pathotype, 134 E16A+, detected in 2002 in Australia, produced relatively lower and higher adult plant stripe rust responses, respectively, on cultivars Kukri and Janz in comparison to the pre-2002 Pst pathotype 110 E143A+. Molecular mapping of adult plant stripe rust response variation among 180 Kukri/Janz-derived doubled haploid lines over 4 years, two each with Pst pathotypes 110 E143A+ and 134 E16A+, was performed. QYr.sun-7B and QYr.sun-7D were consistently contributed by Kukri and Janz, respectively. QYr.sun-7D corresponded to the genomic location of Yr18 and QYr.sun-7B remains to be formally named. QYr.sun-1B, QYr.sun-5B, and QYr.sun-6B were detected during more than one season irrespective of the Pst pathotypes used, whereas QYr.sun-3B was identified only during the 2003 crop season. QYr.sun-1A contributed by Janz, and QYr.sun-2A from Kukri, were detected only against Pst pathotypes 110 E143A+ and 134 E16A+, respectively. The DH lines showing better resistance than the either parent carried combinations of 4 to 6 QTL. These lines are currently being used as stripe rust resistance donors in wheat breeding programs.  相似文献   

9.
Asian soybean rust (ASR) caused by Phakopsora pachyrhizi severely reduces seed yield in soybean. Molecular tagging of ASR resistance can help in the process of resistance breeding. In this study, an F2 population of cross (susceptible cultivar ‘NRC 7’ × resistant exotic genotype EC 241780) was used for bulked segregant analysis (BSA) with 25 SSR (simple sequence repeat) primers linked with six Rpp genes. Among them, five polymorphic SSR markers, viz., Sct 187, SSR 1859, Satt 191 (Rpp1b like loci) and Satt 215, Sat_361 (Rpp2 loci) distinguished the ASR resistant and susceptible bulks and individuals. In combined marker analysis, the markers Satt 191 (Rpp1b like loci) and Satt 215 (Rpp2 loci) were linked with ASR severity score and were also confirmed in individual 110 F2 segregants. Hence, these markers could be utilized in the marker assisted rust resistance breeding of Rpp1b like and Rpp2 genes. In silico candidate gene analysis for hypersensitive response revealed that Satt 191 linked region was rich in genes encoding apoptotic ATPase having leucine‐rich repeat (LRR) domain.  相似文献   

10.
D. Singh  V. Mohler  R. F. Park 《Euphytica》2013,190(1):131-136
A temporarily designated gene LrARK12c (identified from spelt wheat cv. Altgold Rotkorn) with an intermediate low infection type was found effective against prevalent Australian Puccinia triticina (Pt) pathotypes. The gene was mapped to chromosome 1B between markers Xgwm18 and Xbarc187, with linkage distances of 1.0 and 1.3 cM, respectively. While it was not possible to assign a definitive chromosomal arm location to LrARK12c, it maps close to the centromere based on physical mapping of SSR marker loci using deletion lines. Other genes conferring resistance to Pt in chromosome 1B include Lr33, Lr44 and Lr46. Genetic analysis showed that LrARK12c and Lr44 are genetically independent. Comparisons of markers linked to LrARK12c and Lr46 indicate that Lr46 should be well distal to the centromere. Lr33 is not effective in the seedling stage with Australian Pt pathotypes, therefore question of possible allelism of LrARK12c and Lr33 cannot be resolved using Australian Pt pathotypes. Genetic studies, chromosome mapping and allelism tests indicated that LrARK12c is a new and genetically independent leaf rust resistance locus, and hence it was designated Lr71 in accordance with the rules of wheat gene nomenclature.  相似文献   

11.
12.
The genetic base for soybean cultivars is narrow compared to most other crop species. Twenty-seven wild perennial Glycine species comprise the tertiary gene pool to soybean that may contain many genes of economic importance for soybean improvement. We evaluated 16 accessions of G. argyrea, G. clandestina, G. dolichocarpa, and G. tomentella for resistance to Heterodera glycines (HG), also known as the soybean cyst nematode, and to multiple isolates of Phakopsora pachyrhizi, the causal fungus of soybean rust. All 16 accessions were classified as resistant to H. glycines HG Type 2.5.7, based on number of cysts per root mass with plant introductions (PIs) 483227, 509501, 563892, and 573064 (all G. tomentella) void of any cysts indicating no reproduction by this pest. All 16 accessions had an immune reaction to one isolate of P. pachyrhizi. Regardless of isolate, no sporulating uredinia were observed on G. argyrea (PI 505151) and G. tomentella (PIs 483227, 509501, and 573064). These results demonstrate that some accessions within the perennial Glycine species harbour resistance to both H. glycines and P. pachyrhizi and would be good candidates for wide hybridization programs seeking to transfer potentially unique multiple resistance genes into soybean.  相似文献   

13.
Molecular genetics of race non-specific rust resistance in wheat   总被引:1,自引:0,他引:1  
Over 150 resistance genes that confer resistance to either leaf rust, stripe rust or stem rust have been catalogued in wheat or introgressed into wheat from related species. A few of these genes from the ‘slow-rusting’ adult plant resistance (APR) class confer partial resistance in a race non-specific manner to one or multiple rust diseases. The recent cloning of two of these genes, Lr34/Yr18, a dual APR for leaf rust and stripe rust, and Yr36, a stripe rust APR gene, showed that they differ from other classes of plant resistance genes. Currently, seven Lr34/Yr18 haplotypes have been identified from sequencing the encoding ATP Binding Cassette transporter gene from diverse wheat germplasm of which one haplotype is commonly associated with the resistance phenotype. The paucity of well characterised APR genes, particularly for stem rust, calls for a focused effort in developing critical genetic stocks to delineate quantitative trait loci, construct specific BAC libraries for targeted APR genes to facilitate robust marker development for breeding applications, and the eventual cloning of the encoding genes.  相似文献   

14.
Soybean plants react differentially to soybean mosaic virus (SMV) strains because of interactions among different resistant genes in the soybean genome. Three independent genes resistant to SMV have been identified by inheritance studies and linkage analyses. To develop durable SMV-resistant soybean cultivars, it is necessary to determine which soybean SMV resistance genes can be readily transferred from resistant to susceptible cultivars in a breeding system. Here, we report the type and number of resistance gene(s) in four Korean elite soybean cultivars using a combination of disease reaction symptoms, inheritance studies, and molecular marker mappings. The disease reactions of Sowonkong and Keunolkong soybean varietals in response to infection with SMV strains suggested that both cultivars most likely harbor the Rsv1 gene similar to that in York. Subsequent inheritance studies confirmed that Sowonkong has the Rsv1 gene. The inheritance studies suggested that Sinpaldalkong harbored the Rsv1 gene, which was then confirmed by molecular marker mapping. The inheritance studies also suggested that Jinpumkong 2, which is the most resistant to SMV infection among the four cultivars, contained the Rsv1 and Rsv3 genes; this was confirmed by molecular marker mapping. Our approach, which combined inheritance studies and molecular linkage analyses, allowed the efficient identification of resistance gene(s) in four Korean soybean cultivars.  相似文献   

15.
Holdfast是来自英国的小麦品种,多年来一直保持良好的条锈病持久抗性。本研究目的是发掘Holdfast的条锈病成株抗性基因及其紧密连锁的分子标记,为小麦持久抗性品种选育提供材料和方法。利用铭贤169和Holdfast杂交后代重组自交系(recombinant inbred lines, RIL)群体,于2014—2015和2015—2016年度在甘肃甘谷、甘肃中梁和四川成都进行条锈病成株抗性鉴定,并统计最大严重度(maximum disease severity, MDS)。基于小麦660K SNP芯片和BSA(bulkedsegregantanalysis)技术初步确定抗病基因所在的染色体后,将目标区域的SNP标记转化为KASP(KompetitiveallelespecificPCR)标记,检测整个RIL群体,进行基因型分析。最后进行RIL群体条锈病成株抗性的QTL分析,在5AL和7AL染色体上发现了2个成株抗性QTL。5A染色体长臂上1个条锈病成株抗性QTL QYr.gaas-5AL,在所有环境下均存在,可解释6.5%~9.3%的表型变异; QYr.gaas-5AL位于标记Ax-109948955和Ax-108798241之间,连锁距离分别为0.5 cM和1.1 cM。在7A染色体长臂上定位到1个条锈病成株抗性QTL QYr.gaas-7AL,在2015年和2016年甘谷环境中均稳定存在,分别解释6.2%和7.3%的表型变异;QYr.gaas-7AL位于标记Ax-110361069和Ax-108759561之间,连锁距离分别为0.5 cM和0.7 cM。携带QYr.gaas-5AL和QYr.gaas-7AL抗病等位基因家系的MDS显著低于感病等位基因家系的MDS,表明QYr.gaas-5AL和QYr.gaas-7AL可有效降低条锈病严重度,可应用于小麦抗条锈育种。  相似文献   

16.
17.
70份国外小麦品种(系)的苗期和成株期抗叶锈病鉴定   总被引:1,自引:0,他引:1  
小麦叶锈病是小麦生产中的重要病害之一,培育持久抗病品种是最经济、有效和环保的方法。本研究用19个不同毒力的叶锈菌小种苗期接种70份国外引进小麦品种(系)及36个已知抗叶锈病基因的载体品种进行抗性鉴定,同时在2016—2017年度分别于河北保定和河南周口对70份国外引进品种进行田间抗叶锈性鉴定。为进一步检测材料中所携带的苗期和成株抗叶锈病基因,利用12个与已知基因紧密连锁的分子标记进行检测,综合基因推导、系谱分析和分子标记检测的结果,在33份材料中鉴定出15个抗叶锈病基因,包括Lr1、Lr2a、Lr26、Lr3ka、Lr11、Lr17、Lr30、Lr10、Lr14a、Lr2b、Lr13、Lr15、Lr21、Lr44和Lr45,田间鉴定筛选出39份品种表现慢锈性。苗期和田间表现表明,国外品种中含有丰富的对我国叶锈菌小种有效的苗期和成株期抗叶锈病基因,可作为小麦抗叶锈病抗源在抗病育种中加以利用。  相似文献   

18.
19.
Leaf rust, caused by Puccinia triticina, is an important disease for wheat production, both in China and worldwide. In laboratory studies spelt wheat (Triticum aestivum ssp. spelta) landrace Altgold was resistant to P. triticina races THT and PHT and genetic analysis indicated that it possessed a dominant leaf rust resistance gene, temporarily designated LrAlt. F6 recombinant inbred lines (RILs) derived from a cross with the susceptible common wheat cultivar Nongda 3338 were used to map LrAlt with SSR markers. The resistance gene was distal to SSR loci Xbarc212, Xwmc382, Xgwm636, and Xwmc407 on the short arm of chromosome 2A. The closest markers Xbarc212 and Xwmc382 which co-segregated were 1.8 cM away from LrAlt. The relationships of LrAlt and other wheat leaf rust resistance genes located on the short arm of chromosome 2A were discussed, suggesting that LrAlt might be a new leaf rust resistance gene.  相似文献   

20.
Bacterial leaf pustule (BLP) caused by Xanthomonas axonopodis pv. glycines (Xag) is a serious soybean disease. A BLP resistant genotype ‘TS-3’ was crossed with a BLP susceptible genotype ‘PK472’, and a segregating F2 mapping population was developed for genetic analysis and mapping. The F2 population segregation pattern in 15:1 susceptible/resistance ratio against Xag inoculum indicated that the resistance to BLP in ‘TS-3’ was governed by two recessive genes. A total of 12 SSR markers, five SSR markers located on chromosome 2 and seven SSR markers located on chromosome 6 were identified as linked to BLP resistance. One of the resistance loci (r1) was mapped with flanking SSR markers Sat_183 and BARCSOYSSR_02_1613 at a distance of 0.9 and 2.1 cM, respectively. Similarly, SSR markers BARCSOYSSR_06_0024 and BARCSOYSSR_06_0013 flanked the second locus (r2) at distances of 1.5 and 2.1 cM, respectively. The identified two recessive genes imparting resistance to BLP disease and the SSR markers tightly linked to these loci would serve as important genetic and molecular resources to develop BLP resistant genotypes in soybean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号