首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 106 毫秒
1.
2.
Summary -Amylase activity was assayed by measuring reducing power equivalent for 80 accessions of cultivated barley, Hordeum vulgare L., representing major barley growing areas of China. Replications were applied at two different levels of the experiment and enzyme activity was assayed on four consecutive days starting on the 6th day after germination. The area under the curve formed by connecting the four data points was integrated as the measurement of -amylase activity. The results established that there was extensive variation in -amylase activity in cultivated barley; about three-fold difference existed among accessions assayed. Comparisons were also made between six- and two-rowed, and between covered and naked barleys. The results showed that high -amylase activity was not necessarily associated with six-rowed type, and that covered barleys were slightly higher in -amylase activity than naked ones.  相似文献   

3.
This study was carried out to identify superior barley genotypes for the rainfed areas of western Iran using a participatory varietal selection (PVS) approach. Three field experiments were conducted in two randomly selected farmers’ fields and in one rainfed research station in the 2006–07 cropping season with 69 genotypes (including one local and one improved check). Several univariate and multivariate methods were used to analyze qualitative (farmers’ scores) and quantitative (grain yield) data. Individual farmers’ scores in each village were positively correlated, indicating that the farmers tended to discriminate genotypes in similar fashion, although the genotypes actually selected by farmers were different in the two villages. In recent years, a greater number of farmers in western Iran preferred the improved variety (Sararood-1) over the local barley (Mahali), while in this project the farmers preferred the new genotypes over the two checks. This was also verified by the quantitative data showing that the checks were outyielded by the new genotypes. Farmers were efficient in identifying the best genotypes for their specific environment, as shown by biplot analysis, indicating their competence in selection. The genotypes selected by the breeder and farmers were almost similar but some differences existed. In conclusion, PVS is a powerful way to involve farmers for selecting and testing new cultivars that are adapted to their needs, systems and environments.  相似文献   

4.
5.
A. C. Zeven 《Euphytica》1980,29(1):17-19
Summary It was investigated whether separate maintenance breeding during 12 years of three stocks of Zephyr barley had an effect on the yielding ability and other characteristics. Trials carried out on two sites and over two years showed that the stocks were still morphologically identical and produced the same yield. Apparently the long lasting separate maintenace of the three stocks had no effect on the genetical composition for morphology and yielding ability. Zemir, the French stock of Zephyr headed two days earlier.  相似文献   

6.
Cultivated barley is the major livestock feed grain in the Northern Plains and Northwestern United States due to the fact that its short growing season and limited rainfall limit the planting and production of corn. Starch and fiber content play a significant role in feedlot performance of animals raised on barley feed. To study the underlying genetic locations and mechanisms for these traits, a recombinant inbred line population was derived from a cross between the hulled barley cultivar Valier and a hull-less Swiss landrace line, PI370970. Valier has a high acid detergent fiber content (ADF) and low starch and protein while PI370970 contains low ADF and high starch and protein content. To detect associated QTLs, data were collected and analyzed from irrigated and rain-fed environments. A total of 30 main effect QTLs and four epistatic QTLs were identified which conditioned ADF, starch and protein content under rain-fed, irrigated and combined analyses. These QTLs were located on chromosomes 2H, 3H, 5H, 6H and 7H. Major ADF and starch QTL were identified on chromosome 7H near the nud locus (the locus controlling hulled vs. hull-less caryopsis). High heritability estimates for both ADF and starch content suggest that early selection for these traits during breeding would be productive. Low ADF-QTL were independently verified in a second population in a different genetic background.  相似文献   

7.
More than half of the barley grown in the USA is used for livestock feed, with the remaining stocks diverted for human food and malting purposes. The use of barley grain as a major source of cattle feed has been criticized because of its rapid digestion in the rumen, which can result in digestive disorders in cattle. In sacco dry matter digestibility (ISDMD) and particle size (PS) after dry rolling have been found to play a role in the feedlot performance of barley as a feed grain. Reducing the rate of ISDMD is predicted to result in significantly improved animal health and average daily gain. A recombinant inbred line population derived from a cross between a high ISDMD, two-rowed barley cultivar (Valier) and a six-rowed Swiss landrace line (PI370970) exhibiting far slower ISDMD has been developed for studying the underlying genetic locations and mechanisms of these traits. To detect associated quantitative trait loci (QTLs), we collected and analyzed data from irrigated and rain-fed environments. A significant negative correlation was observed between ISDMD and PS. High heritability estimates for ISDMD and PS suggest that early selection for these traits during breeding would be achievable. Four QTLs were identified on chromosomes 2H, 6H, and 7H, explaining 73–85% of ISDMD phenotypic variation, while three QTLs on 2H and 7H were associated with variation in PS and explained 58–77% of its variation. A major QTL on chromosome 2H tightly linked to the morphology-modifying gene vrs1 was found to dramatically control 35–62% of the phenotypic variation of ISDMD and 26–53% of that of PS. The impact of the vrs1 locus on ISDMD was validated in two populations representing different genetic backgrounds. Our results suggest that it may also be advantageous to simultaneously overlap these QTLs around the vrs1 locus.  相似文献   

8.
Although there are numerous studies on the genetic control of flowering time in barley, little is known on the genetic control of duration of different particular pre-heading phases. Extending the stem elongation phase (SE), without modifying total time to heading, has been proposed as a trait to raise yield potential. Moreover, studying the genetic control of pre-heading phases would be of interest for a better understanding of crop phenology which is crucial for adaptation. We studied the genetic control of the leaf and spikelet intitiation phase (LS), the stem elongation phase, and within this, from the onset of jointing to flag leaf (J-FL), and from then to heading (FL-HD), in the Steptoe × Morex population, which is known to segregate for some major developmental genes, under different environmental conditions. After a preliminary greenhouse study in which the appropriateness of the population was tested, 130 double haploid lines and the two parents were grown under four field environments that differed in photoperiod and temperature conditions. Amongst all QTLs detected (13), only three were significant for HD and for both LS and SE and with the same allele direction (although with greater effects in one phase than the other in some cases). Genotype by environment interactions for LS and HD were due to both photoperiod and other factors as temperature or its interaction with photoperiod, while for SE responses to only photoperiod were negligible. QTL × E interactions were important for some QTLs, and either cross-over (e.g. Ppd-H1) or quantitative (e.g. Ppd-H2). However, heritability across field environments for the ratio SE/LS was high (0.8) and several of the QTL effects that were significant for only LS or SE, were conserved across different environments, that is, they were significant with the increasing allele derived from the same parent in all or most environments.  相似文献   

9.
The advanced backcross quantitative trait locus (AB-QTL) analysis has proven its usefulness to identify and localize favourable alleles from exotic germplasm and to transfer those alleles into elite varieties. In a balanced design with up to six environments and two nitrogen fertilization (N treatment) levels, a 4-factorial mixed model analysis of variance (ANOVA) was used to identify QTL main effects, QTL × environment interaction effects and QTL × N treatment interaction effects in the spring barley BC2DH population S42. The yield-related traits studied were number of ears per m2, days until heading, plant height, thousand grain weight (TGW) and grain yield. In total, 82 QTLs were detected for all traits. This finding was compared to a previous QTL study of the same population S42, where the current field data was reduced to one half through restriction of the analysis to the standard N treatment level (von Korff et al., Theor Appl Genet 112: 1221–1231, 2006). These authors located 54 QTLs for the same traits by applying a 3-factorial mixed model similar to the current model but excluding the factor N treatment. We found that QTL × environment interaction, alone or in combination, accounted for 24 of the newly uncovered QTLs, whereas QTL × N treatment interaction was of lesser importance with six new cases in total. A valuable QTL interacting with N treatment has been identified on chromosome 7H where lines carrying the wild barley allele were superior in number of ears per m2 in either N treatment. We conclude that in population S42 the extension of the phenotype data set and the inclusion of N treatment into the mixed model increased the power of QTL detection by providing an additional replication rather than by revealing specific N treatment QTLs.  相似文献   

10.
Multi-environment trials represent a highly valuable tool for the identification of the genetic bases of crop yield potential and stress adaptation. A Diversity Array Technology®-based barley map has been developed in the ‘Nure’ × ‘Tremois’ biparental Doubled Haploid population, harbouring the genomic position of a gene set with a putative role in the regulation of flowering time and abiotic stress response in barley. The population has been evaluated in eighteen location-by-year combinations across the Mediterranean basin. QTL mapping identified several genomic regions responsible for barley adaptation to Mediterranean conditions in terms of phenology, grain yield and yield component traits. The most frequently detected yield QTL had the early flowering HvCEN_EPS2 locus (chromosome 2H) as peak marker, showing a positive effect from the early winter parent ‘Nure’ in eight field trials, and explaining up to 45.8 % of the observed variance for grain yield. The HvBM5A_VRN-H1 locus on chromosome 5H and the genomic region possibly corresponding to PPD-H2 on chromosome 1H were significantly associated to grain yield in five and three locations, respectively. Environment-specific QTLs for grain yield, and clusters of yield component QTLs not related to phenology and or developmental genes (e.g. on chromosome 4H, BIN_09) were observed as well. The results of this work provide a valuable source of knowledge and tools for both explaining the genetic bases of barley yield adaptation across the Mediterranean basin, and using QTL-associated markers for MAS pre-breeding and breeding programmes.  相似文献   

11.
Journal of Crop Science and Biotechnology - Barley is one of the most important cereal crops cultivated over a wider environment in the diverse agro-ecologies in Ethiopia. Study on genotype by...  相似文献   

12.
Summary F2-plant progenies, derived from seven crosses between susceptible erectoides breeding lines and conventional, nutans breeding lines with partial resistance to leaf rust incited by Puccinia hordei Otth., derived from Vada x Cebada Capa, were examined in a field and a glasshouse experiment. In the field experiment, the nutans plant progenies generally were more resistant to leaf rust and powdery mildew than the erectoides progenies. In the glasshouse experiment, the components of partial resistance to leaf rust of six erectoides and six nutans progenies derived from one cross were studied. The nutans progenies generally had lower infection frequencies than erectoides progenies with a similar infection level in the field experiment. The variation for leaf rust and powdery mildew infection in the field was similar for the nutans and erectoides progenies. This suggests that erectoides lines with a fairly high level of partial resistance to leaf rust and powdery mildew can be selected from these populations.  相似文献   

13.
Two dominant, closely linked and complementary genes, Btr1 and Btr2, control rachis brittleness in barley. Recessive mutations in any of these genes turn the fragile rachis (brittle) into a tough rachis phenotype (non-brittle). The cross of parents with alternative mutations in the btr genes leads to a brittle F1 hybrid that presents grain retention problems. We evaluated rachis fragility through a mechanical test and under natural conditions, in F1 crosses with different compositions at the btr genes. Brittleness was significantly higher in Btr1btr1Btr2btr2 crosses compared to hybrids and inbred parents carrying one of the mutations (btr1btr1Btr2Btr2/Btr1Btr1btr2btr2). This fact could jeopardize the efficient harvest of hybrids bearing alternative mutations, reducing the choice of possible crosses for hybrid barley breeding and hindering the exploitation of potential heterotic patterns. Furthermore, non-brittle hybrids showed higher brittleness than inbreds, suggesting the presence of other dominant factors affecting the trait. In conclusion, this work encourages a deeper study of the genetic control of the rachis brittleness trait and urges the consideration of rachis tenacity as a target for hybrid barley breeding.  相似文献   

14.
The interest in organic grown cereals has increased the need for variety tests under organic growing systems and/or the knowledge on whether growth characteristics describe yield differently under conventional and organic conditions. This paper is a contribution to that question by examining the relationships between some important growth characteristics in barley trials in both systems in Northern Sweden and in Denmark. Mixed model analyses were used for regressions of growth characteristics (or transformations of those) on yield (and log-transformed yield), allowing the slope to depend on the growing system. The analyses showed that diseases seemed to have a less negative effect on yield in the organic growing system than in the conventional growing system if pesticides were not applied. For other characteristics the effect depended on the country. This was the case for grain characteristics where the effect of volume weight in the Swedish trials was much larger in the conventional growing system than in the organic growing system, while a non-significant difference in the opposite direction was found for the trails from Denmark. For the trials from Denmark the effect of grain weight was much larger in the organic growing system than in the conventional growing system, but there was only a small and non-significant difference in the Swedish trials. In both countries there was a significant interaction between the two grain characteristics.  相似文献   

15.
To improve our knowledge on the genetic control of drought tolerance, the Oregon Wolfe Barleys (OWB), considered as a reference population in genetic mapping, were subjected to various types of water deficit. Overall, when investigating numerous environments and replications, 40 QTLs were identified in three developmental stages. Based on these loci five QTL clusters were separated, which affect various drought-related traits in at least two developmental stages. Several candidate genes were identified for each QTL cluster using an expressed sequence tag (EST)-based map with high marker density. The putative role of the candidates in drought tolerance is discussed. The phenotypic effect of three of the five candidate genes was also tested on 39 barley landraces and cultivars and a significant relationship was found between the allelic composition of these genes and yield production under stress conditions. This study presents a relevant example of the use of reliable QTL data in the candidate gene approach, while also demonstrating how the results could be practically utilized in marker-assisted selection (MAS).  相似文献   

16.
β-glucan is the soluble dietary fiber component and occurs at its highest in barley. This study aims to evaluate the inheritance of β-glucan content in barley grains and to map quantitative trait loci (QTL) associated with this trait. F5-derived 107 lines from the cross of the six-rowed waxy hulless barley, ‘Yonezawa Mochi’ and the six rowed non-waxy hulless barley,’ Neulssalbori’ were measured for their agronomic traits and β-glucan level at four different environments. These recombinant lines showed significant genotypic variation (P < 0.01) and normal distribution for β-glucan content with a range of 43.6–62.1 g kg−1 across environments. A significant genotype-by-environment interaction was also found. The broad-sense heritability estimates for β-glucan content ranged from 0.42 to 0.82 across environments. Using one-factor analysis and composite interval mapping, a main effect of QTL associated with β-glucan content was identified in the genomic region near waxy gene (wx) and HVM4 on chromosome 7H. The major QTL at this region explained on average 44.4% of the variation for the mean of β-glucan content across environments with LOD values that ranged from 5.7 in Suwon in 2001 to 13.9 in Suwon in 2003. Two minor QTLs were identified but their significance of association with β-glucan content was inconsistent across environments.  相似文献   

17.
Cell wall degradation is a crucial process within the malting process of barley. Therefore, the haplotype diversity of genes for two cell wall degrading enzymes, (1 → 3),(1 → 4)-β-d-Glucan-4-glucanohydrolase and (1 → 4)-β-Xylan-endohydrolase 1, was investigated and associations to malting quality parameters were performed. The (1 → 3),(1 → 4)-β-d-Glucan-4-glucanohydrolase gene glb2 had two major haplotypes defined by three SNPs and one INDEL, which explained 8.9 and 9.5% of the total variation of malt extract content and viscosity in the spring barley gene pool, respectively. The most significant associations of (1 → 4)-β-Xylan-endohydrolase 1 gene X-1 were found for diastatic power, saccharification VZ45 and soluble nitrogen with 18, 12 and 8% of the total variation explained by SNP3 in the spring barleys. High-throughput markers were developed for both genes which can be used for marker assisted selection.  相似文献   

18.
Genetic resistance is an efficient and environmentally acceptable way of limiting the damaging effects of plant pathogens on yield and quality of crops. Tests of winter barley variety Venezia revealed an unknown resistance to all tested Blumeria graminis f. sp. hordei isolates. Response type arrays (RTAs) obtained here were created using common avirulent (RT 0) isolates and virulent (RT 4) isolates that first appeared in 2011. RTA of Venezia was identical to RTAs of six other varieties, but differed from RTAs of all other previously tested varieties. Venezia was the first variety to be registered with this resistance, and it is recommended that the resistance be designated Ve. Among 905 isolates randomly collected from the Czech aerial pathogen populations from 2009 to 2015, 13 contained Ve virulence. Each of the isolates differed from the others and thus belonged to different pathotypes. Seven of these 13 pathotypes were collected in the western region of the Czech Republic in an area close to Germany, where Venezia was grown. This finding could support the hypothesis that pathotypes virulent to Venezia have migrated from Germany into the Czech Republic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号