首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北京九龙山侧柏生态公益林空间结构分析与评价   总被引:2,自引:0,他引:2       下载免费PDF全文
[目的]分析侧柏生态公益林空间结构并进行经营迫切性评价,为侧柏生态公益林空间结构的优化调整及区域内其它生态公益人工林空间结构优化调整奠定理论基础。[方法]基于北京九龙山侧柏生态公益林的实测数据,选取混交度、大小比数、角尺度、密集度、林层指数、开敞度和竞争指数7个空间结构参数分析侧柏生态公益林的空间结构特征,并从密度、格局、竞争和混交等方面选取10个指标构建了经营迫切性评价指标体系并确定评价标准,进而对侧柏林进行了经营迫切性评价。[结果]侧柏生态公益林空间结构较为简单,林分呈均匀分布,树种组成单一,以零度和弱度混交为主,呈现单种聚集趋势;林木大小分化不明显,侧柏的优势度最大;林木之间较为密集,处于很密集和比较密集的林木比例较高;林分中所有林木几乎都分布在中林层与上林层,林层指数为0.288,林层结构不太明显;林分开敞度和竞争指数分别为0.274和0.318,总体处于生长空间不足、中度竞争状态;侧柏林的经营迫切性指数为0.8,经营迫切性等级为特别迫切,说明侧柏人工林大多数状态特征不符合标准,急需通过采取有效的经营措施优化林分配置,改善森林状况,以实现侧柏人工林可持续发展的目的。[结论]林分空间结构的分析与经营迫切性评价,不仅能够发现林分结构的不合理方面,还能针对性的制定空间结构调整措施,促进侧柏生态公益林不断向健康稳定的方向发展,实现其生态、经济和社会效益的持续发挥。  相似文献   

2.
Aboveground and belowground biomass of 15-year-old under-planted European beech seedlings (Fagus sylvatica L.) in Norway spruce stand were studied along a light gradient in three plots, in the northern part of Slovenia. Differences in soil water content, aboveground and fine root biomass distribution were confirmed between studied plots. Light had significant effect on the total biomass, root-shoot ratio (0.388 ± 0.076 under canopy, 0.549 ± 0.042 in the edge, 0.656 ± 0.047 in the open), specific root length (SRL) of fine beech roots (561.9 ± 42.2 under canopy, 664.3 ± 51.2 in the edge, 618.2 ± 72.8 in the open) and specific leaf area in beech, indicating morphological adjustment to shade. However, SRL of beech fine roots indicated no change between plots. The correlation between total aboveground and root biomass and light below the mature stand canopy was higher in the case of diffuse light intensity. Most fine roots of spruce were concentrated in the top (0–20 cm) soil layer. Beech fine roots under canopy and edge conditions were also concentrated in top (0–20 cm) soil layer and exhibited shift downwards to deeper soil horizons in open plot. Root proportion between beech and spruce changed with light toward beech with increasing light intensity for both fine and coarse roots.  相似文献   

3.
This study investigated the effects of Ips typographus (L.) damage on initial litter quality parameters and subsequent decomposition rates of oriental spruce tree species [Picea orientalis (L.) Link]. The needle litter was collected from highly damaged, moderately damaged and control stands on two aspects (north and south) and two slope position (top and bottom) on each aspect. The litter was analyzed for initial total carbon, lignin and nutrient (nitrogen, phosphorus, potassium, calcium, magnesium and manganese) concentrations. The variability in nitrogen and calcium concentrations and ratios of C:N, lignin:N and lignin:Ca was significantly affected by the insect damaged levels. While nitrogen concentrations in needle litter increased with increasing insect damage (and consequently the ratios of C:N and lignin:N decreased), calcium concentrations decreased (and consequently the ratio of lignin:Ca increased). Aspect and slope positions explained most of the variability in carbon, lignin, phosphorus, potassium, magnesium and manganese concentrations and lignin:P ratio between all studied stands. Litter decomposition was studied in the field using the litterbag technique. The litter from highly damaged stands showed highest decomposition rates followed by moderately damaged and control stands. The mass loss rates were significantly positively correlated with initial nitrogen concentration and negatively with C:N and lignin:N ratios. The effects of microclimate resulting from canopy damage on litter decomposition was also examined at the same time using standard litter with the same litter quality parameters, but they showed no significant differences among the insect damage levels indicating that alteration of the litter quality parameters produced by I. typographus damage played a more important role than altered microclimate in controlling needle litter decomposition rates. However, changes in microclimate factors due to topography influenced decomposition rates.  相似文献   

4.
The oriental sweetgum, Liquidambar orientalis Mill. is a tertiary period relict endemic taxon of the east Mediterranean. The flat deep hydromorphic soils rich in surface waters during summer months are the most productive sites for the dense stands of L. orientalis. It is mainly distributed on sandy soils, with an alkaline pH. The CaCO3 content in the soils show a medium value and the percentage of total salt content is very low, but organic matter content is higher. The monoecious trees are on an average 15–20 m tall and form dense forests confined to floodplains, valleys and along streams and in a few dry habitats. The plant shows a typical leaf dimorphism with sparsely lobed leaves at the top and many lobed leaves on the lower parts. Fresh seeds germinate well and the percentage varies from 60 to 80. A syntaxonomical synthesis of these forests was carried out. All associations of L. orientalis including the newly defined Querco ilicis-Liquidambaretum orientalis association have been evaluated within the alliance Platanion orientalis Karpati & Karpati 1961. This alliance is included in the order Platanetalia orientalis Knapp 1959, and class Alno-populetea Knapp 1959.  相似文献   

5.
Stand density management tools help forest managers and landowners to more effectively allocate growing space so that specific silvicultural objectives can be met. Due to the economic importance of Oriental beech (Fagus orientalis Lipsky) forests in Turkey, a stand density management tool was developed for this species to optimize regeneration success rate and tree growth. For the development of this tool, named stand density management diagram (SDMD), we utilized forest inventory data from the Kastamonu Regional Forest Directorate in Turkey. Previously published forest management approaches and models were employed during the development of the tool. The SDMD illustrates the relation among four forest indexes: the basal area per hectare, number of trees per hectare, forest stand volume per hectare, and quadratic mean diameter of the beech stands. The stand stocking percent (SSP) can be determined based upon any two of these four measurements. The results suggest that SSP is a better predictor of tree growth than BA in Oriental beech forests. The newly developed SDMD allows for a more effective use of the growing space to achieve specific silvicultural objectives including tree regeneration, timber production, thinning planning, and wildlife protection in Oriental beech forests.  相似文献   

6.
Studies on the combined effects of beech–spruce mixtures are very rare. Hence, forest nutrition (soil, foliage) and nutrient fluxes via throughfall and soil solution were measured in adjacent stands of pure spruce, mixed spruce–beech and pure beech on three nutrient rich sites (Flysch) and three nutrient poor sites (Molasse) over a 2-year period. At low deposition rates (highest throughfall fluxes: 17 kg N ha−1 year−1 and 5 kg S ha−1 year−1) there was hardly any linkage between nutrient inputs and outputs. Element outputs were rather driven by internal N (mineralization, nitrification) and S (net mineralization of organic S compounds, desorption of historically deposited S) sources. Nitrate and sulfate seepage losses of spruce–beech mixtures were higher than expected from the corresponding single-species stands due to an unfavorable combination of spruce-similar soil solution concentrations coupled with beech-similar water fluxes on Flysch, while most processes on Molasse showed linear responses. Our data show that nutrient leaching through the soil is not simply a “wash through” but is mediated by a complex set of reactions within the plant–soil system.  相似文献   

7.
Morphology and vertical distribution patterns of spruce and beech live fine roots (diameter ≤2 mm) were studied using a soil core method in three comparable mature stands in the Solling: (1) pure beech, (2) pure spruce and (3) mixed spruce–beech. This study was aimed at determining the effects of interspecific competition on fine root structure and spatial fine root distribution of both species. A vertical stratification of beech and spruce fine root systems was found in the mixed stand due to a shift in beech fine roots from upper to lower soil layers. Moreover, compared to pure beech, a significantly higher specific root length (SRL, P<0.05) and specific surface area (SSA, P<0.05) were found for beech admixed with spruce (pure beech/mixed beech SRL 16.1–23.4 m g−1, SSA 286–367 cm2 g−1). Both indicate a flexible ‘foraging’ strategy of beech tending to increase soil exploitation and space sequestration efficiency in soil layers less occupied by competitors. Spruce, in contrast, followed a more conservative strategy keeping the shallow vertical rooting and the root morphology quite constant in both pure and mixed stands (pure spruce/mixed spruce SRL 9.6/7.7 m g−1, P>0.10; SSA 225/212 cm2 g−1, P>0.10). Symmetric competition belowground between mixed beech and spruce was observed since live fine roots of both species were under-represented compared to pure stand. However, the higher space sequestration efficiency suggests a higher competitive ability of beech belowground.  相似文献   

8.
闽楠天然次生林自然更新的影响因子研究   总被引:3,自引:0,他引:3       下载免费PDF全文
[目的]分析闽楠天然次生林自然更新与环境因子之间的关系,为其科学经营及保护提供参考依据。[方法]以江西省吉安市闽楠天然次生林为研究对象,通过标准地调查获取数据,运用多元数量化模型I建立闽楠幼树幼苗重要值与环境因子的关系模型,采用单因素方差分析单个环境因子对闽楠幼树幼苗更新的影响。[结果]研究表明:密度(闽楠下种母树株数、郁闭度、株数密度)、坡位、腐殖质层厚度、坡向、林下植被盖度、凋落物层厚度是影响闽楠天然次生林自然更新的主要因素,偏相关系数在0.325 7 0.715 7之间,t检验结果为极显著或显著;模型复相关系数为0.966,F检验结果为极显著(F=30.96~(**))。[结论]闽楠下种母树株数对其幼树幼苗的更新起着最主要的作用,而郁闭度与株数密度过高或过低、凋落物层越厚、腐殖质层越薄、林下植被盖度越大均不利于其自然更新,同时,半阴坡、下坡位条件下的闽楠幼树幼苗的更新好于其它坡向与坡位。为促进闽楠幼树幼苗的自然更新,林分中闽楠下种母树应保留200株·hm~(-2)以上,以及对郁闭度、林下植被盖度及凋落物层厚度等实施相应的调控措施。  相似文献   

9.
Beech leaf disease (BLD) is a currently undiagnosed and seemingly lethal disease that was discovered in 2012 on American beech trees (Fagus grandifolia) in north‐east Ohio in the United States. Since its discovery, BLD has spread rapidly and can now be found in forests in 10 counties in Ohio, eight counties in Pennsylvania and five counties in Ontario, Canada. The initial symptoms of the disease appear as a dark green, interveinal banding pattern on the lower canopy foliage. These initial symptoms typically occur in the shrub or sampling layer of a beech stand. The later symptoms result in solidly darkened leaves that are shrunken and crinkled. The symptoms appear to progress through the buds as the affected buds are eventually aborted and no new leaves are produced. We fear this disease has the potential to drastically alter the Eastern deciduous forests of the United States on its own and through potential compounding disease effects. In addition, BLD poses a threat to global forests as symptoms of the disease were detected on European (F. sylvatica) and Oriental (F. orientalis) beech species in nurseries in north‐eastern Ohio. Due to its rapid spread and variability in environmental conditions where it has been detected, it seems unlikely that BLD is an abiotic disorder. Thus, intense efforts are underway to determine the causal agent of BLD. Relevant stakeholders are advised to be alert for BLD symptoms in beech forests in the Northern Hemisphere, and substantial resources should be invested in understanding this emerging forest disease.  相似文献   

10.
European beech Fagus sylvatica and Norway spruce Picea abies are economically and ecologically important forest trees in large parts of Europe. Today, the beech forest reaches its northern distribution limit in south-eastern Norway and it is expected to expand northwards due to climate warming. This expansion will likely result in fundamental ecosystem changes. To increase our knowledge about the competitive balance between spruce and beech, we have investigated how beech and spruce litter affect spruce seedling emergence, growth and uptake of C and N. We did this in a seed-sowing experiment that included litter layer removal as well as reciprocal transplantations of litter layers between spruce and beech forests. Our results show that spruce seedling emergence was significantly impaired by both litter layer types, and especially so by the beech litter layer in the beech forest. The low seedling emergence in beech forests is concurrent with their lower light availability.  相似文献   

11.
Nitrogen fixation during litter decomposition was studied for 34 months using litterbags containing newly fallen litter of coniferous species Cryptomeria japonica and Pinus densiflora and that of deciduous species Quercus serrata. Litterbags were set in contact with the forest floor in a deciduous broad-leaved forest near the top of a slope and in a C. japonica stand at the middle of the slope at a watershed in eastern Japan. Nitrogen-fixing activity, estimated by acetylene reduction after 16 and 19 months of incubation, was 62.65–3.86 nmoles C2H4 h−1 g−1 DW in Cryptomeria litter, but only 1.07–0.09 in Pinus and 0.72–0.04 in Quercus. The rate of N increase in decomposing litter was highest in Cryptomeria. Fungal biomass in decomposing litter, estimated by ergosterol content, increased during the initial 16 months of incubation in Cryptomeria and Quercus, and during the initial 19 months of incubation in Pinus. The litter decomposition rate was highest in Cryptomeria among the three species, due to increased N content and fungal biomass in Cryptomeria litter. Thus, N increase in decomposing Cryptomeria litter affects the subsequent N dynamics and decomposition pattern.  相似文献   

12.
Based on data acquired from the spatial information system Silva-SI, the majority of the entire forest area in Slovenia (22,220 forest compartments with a total area of 7446 km2, classified into eight forest categories) was analysed for changes in the distribution of European beech (Fagus sylvatica L.) in the period 1975–2005 using a binary logistic regression model in terms of selected site, stand and management variables. Additionally, changes in the abundance of beech in forest stands in which beech was present at the beginning and the end of the analysed period were analysed. Beech expanded its area by more than 1200 ha per year on average, i.e. the annual expansion rate amounted to 0.24%. Among the 18 studied variables, three site, four stand and no management variables were included in the binary logistic regression model of beech expansion. Beech expansion was more pronounced at lower altitudes, on sites with steep topography, and on sites with a higher proportion of beech in potential natural vegetation. The probability of beech expansion reduced by a factor of 0.54 when the distance to the nearest compartment with beech increased by 1 km. Among other stand variables, the proportion of early successional phases and the proportion of silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst.) also influenced the expansion of beech. During the observed period the growing stock of beech almost doubled, its proportion in total growing stock increasing from 27% to 32%. Significant differences were found in changes of beech proportion in the total growing stock among different forest categories; a decrease in the beech proportion was registered in alpine coniferous forests and thermophilous deciduous forests, while in other forest categories the proportion of beech increased. The recent development of forest stands and their current structure indicate a further expansion of beech and an increase in the proportion of beech in forest stands.  相似文献   

13.
The aim of this study is to investigate the effects of forest conversion on forest floor vegetation. ‘Ecological’ forest conversion, as defined by an interdisciplinary southern Black Forest project group, describes the transformation of even-aged spruce (Picea abies L. H. Karst.) stands to structured continuous cover forests consisting of spruce (Picea abies), silver fir (Abies alba Mill.) and beech (Fagus sylvatica L.). In order to analyse the conversion process, four conversion stages were defined in a conceptual forest development model. Four forest districts deemed to be representative of the southern Black Forest region were selected for the study. The ground vegetation was initially classified independently from the stand structures. Subsequently, the relationship between stand structures, as determined by development stage, and ground vegetation was analysed. It was revealed that forest conversion modified the ground vegetation. The main factors influencing ground vegetation were the influence of broadleaves, predominately beech (F. sylvatica), on the canopy composition and litter coverage on the one hand; and the canopy coverage of spruce, the proportion of needle litter and the associated light penetration on the other. The prevalence of moss and vascular plant species preferring acidic sites found in spruce forests decreased during the transition process, whereas, species requiring a moderate base supply increased in abundance. The continuous cover forest representing the final stage of conversion increasingly contained a mixture of ground vegetation species normally associated exclusively with either conifer or deciduous forest. Due to the fact that there is an associated ground vegetation specific to the different stages of forest conversion in stands dominated by Norway spruce or European beech and a mixture in the latest conversion stages, large-scale forest conversion should be avoided in favour of management promoting a diversity of silvicultural goals and treatments in neighbouring stands. Only a variety of treatments ensures the maintenance of floristic diversity in the long-term.  相似文献   

14.
On the basis of nine Norway spruce (Picea abies (L.) Karst.) and ten European beech (Fagus sylvatica L.) thinning experiments in Germany, for which both residual and removed stock had been registered first during 1870, I scrutinize how moderate and heavy thinning from below (B-, C-grade) affects the production of merchantable volume compared with light thinning (A-grade). In relation to A-grade, cumulative merchantable volume (CV) of B- and C-grade amounts in average to 103–107% in juvenile and to 97–102% in mature Norway spruce stands. The corresponding findings for European beech are 101–106% and 94–102%. CV of individual stands varies between 89% and 130% for Norway spruce and 73% and 155% for European beech (CV of A-grade = 100%). These findings are substantiated by the relation between stand density (SDI) and periodic annual increment (PAI). On the B- and C-grade plots of spruce and beech, respectively, SDI was reduced down to 41–91% and 31–83% of the A-grade. When SDI is reduced in young stands, PAI follows a unimodal curve. Norway spruce’s PAI culminates in 109% if SDI is reduced to 59%; European beech’s PAI culminates in 123% when density is reduced to 50%. Whereas Norway spruce’s growth reacts most positively on thinning under poor site conditions and with increment reduction on favourable sites, European beech behaves oppositely. With stand development the culmination point of the unimodal relation moves towards maximum density, so that in older stands PAI follows the increasing pattern, which is the left portion of a unimodal curve. A model is presented which apparently unifies contradictory patterns of stand density–growth reactions by integrating relative stand density, average tree size and site fertility effects, and makes the findings operable for forest management.  相似文献   

15.
[目的]探讨竹林与其林下植被凋落物叶之间相互影响的潜在机制,为合理经营管理毛竹林林下植被提供理论参考。[方法]采用原位分解袋法研究了四川长宁毛竹与林下植被芒箕凋落物叶分解和养分释放过程。[结果](1)芒箕凋落物叶初始C、N、P含量和羟基碳高于毛竹(P 0. 05),而C∶N、C∶P、烷基碳、氧烷基碳和芳香碳低于毛竹(P 0. 05)。(2)凋落物叶分解和养分释放速率芒箕整体高于毛竹,芒箕和毛竹分解常数(k)分别为0. 58±0. 03和0. 73±0. 02,C、N、P养分释放均表现为净释放。(3)凋落物叶混合对分解速率没有显著影响,但抑制了N、P元素整个分解周期和C元素中后期的释放。(4)凋落物叶分解过程中元素含量变化格局表现为C含量和C∶N比整体呈下降趋势,N含量和N∶P比有小幅上升,P含量有微弱的下降趋势,C∶P比呈波动性变化。(5)凋落物叶分解速率与土壤温度、初始凋落物叶N和P含量呈显著正相关(P 0. 01),与初始凋落物叶的C∶N和C∶P呈极显著负相关(P 0. 01),与土壤含水量相关不显著。[结论]单独分解过程中,毛竹凋落物叶分解速率低于林下植被芒箕,养分释放特征均表现为直接释放;混合分解过程中,毛竹和芒箕凋落物叶分解速率无显著混和效应,但养分释放的混合效应表现出一定负效应和不同阶段性。  相似文献   

16.
In Central Europe, the conversion of pure Norway spruce stands (Picea abies [L.] Karst.) into mixed stands with beech (Fagus silvatica L.) and other species like e.g. Douglas fir (Pseudotsuga menziesii [Mirb.] Franco) is accomplished mainly by underplanting of seedlings beneath the canopy of overstorey spruce trees after partial cutting treatments what means exposure to shade and below-ground root competition by the overstorey to the seedlings. Particularly about the second factor, our knowledge is limited. Therefore, we carried out a below-ground competition exclusion experiment by root trenching and investigated the effects on soil resources, growth, and biomass partitioning of underplanted beech and Douglas fir saplings under target diameter and strip cutting treatments. The exclusion of overstorey root competition by trenching increased the soil water potential in the second year that had a fairly dry growing season and led to significantly higher foliar concentrations of most nutrients, particularly in Douglas fir, indicating an amended nutrient supply. Both improvements were accompanied by an increase in length and diameter increment of the underplanted saplings, appearing in both species only after having surpassed a species-specific threshold light value (Douglas fir 16% of above canopy radiation, beech 22%). We also found significant interactions between trenching and light for specific fine root length and further biomass and morphological parameters. Judged by the much steeper increase in height and diameter growth with increasing light after release from below-ground competition, Douglas fir saplings appeared to be more sensitive to root competition than beech saplings what conforms to older findings for beech. According to our results, a strip cutting seems to be more appropriate than a target diameter cutting treatment to replace a pure spruce stand by a mixed stand with beech and Douglas fir.  相似文献   

17.
The ecological effects of planting exotic Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] in Central Europe are still poorly understood. The aim of this study was to answer the question of whether Douglas-fir affects tree specific arthropod communities in different mature forest types (Douglas-fir, spruce and beech dominated) in Southern Germany. Therefore, arthropod communities of stem and tree crown strata of Douglas-fir and spruce (Picea abies L.) were sampled in the years 1999–2001 using arboreal photo-eclectors and flight interception traps. Statistical analysis was conducted for all species and focused on conifer specialists at three levels: (1) species diversity, (2) guild structure and (3) community structure. Within the stem stratum, species diversity was significantly higher on spruce than on Douglas-fir independent of year and stand composition. This could not be explained by a single feeding guild, rather by species changing strata during the vegetation period. In contrast, species diversity in tree crowns was approximately the same for both conifer species. However, communities in Douglas-fir crowns were conspicuously different from those in spruce crowns, especially in the Douglas-fir dominated stand type. While zoophagous insects exhibited higher activity on Douglas-fir in 2000, xylophagous beetles were more abundant on spruce in 2001. In European beech stands with widely spaced Douglas-fir trees, the site specific and broad-leaved tree related fauna might be maintained. In addition, Douglas-fir with its resource of Adelges cooleyi and crowns that overtop the broad-leaved tree canopy, offer additional resources for several aphidophagous and thermophile species.  相似文献   

18.
The likely environmental changes throughout the next century have the potential to strongly alter forest disturbance regimes which may heavily affect forest functions as well as forest management. Forest stands already poorly adapted to current environmental conditions, such as secondary Norway spruce (Picea abies (L.) Karst.) forests outside their natural range, are expected to be particularly prone to such risks. By means of a simulation study, a secondary Norway spruce forest management unit in Austria was studied under conditions of climatic change with regard to effects of bark beetle disturbance on timber production and carbon sequestration over a time period of 100 years. The modified patch model PICUS v1.41, including a submodule of bark beetle-induced tree mortality, was employed to assess four alternative management strategies: (a) Norway spruce age-class forestry, (b) Norway spruce continuous cover forestry, (c) conversion to mixed species stands, and (d) no management. Two sets of simulations were investigated, one without the consideration of biotic disturbances, the other including possible bark beetle damages. Simulations were conducted for a de-trended baseline climate (1961–1990) as well as for two transient climate change scenarios featuring a distinct increase in temperature. The main objectives were to: (i) estimate the effects of bark beetle damage on timber production and carbon (C) sequestration under climate change; (ii) assess the effects of disregarding bark beetle disturbance in the analysis.Results indicated a strong increase in bark beetle damage under climate change scenarios (up to +219% in terms of timber volume losses) compared to the baseline climate scenario. Furthermore, distinct differences were revealed between the studied management strategies, pointing at considerably lower amounts of salvage in the conversion strategy. In terms of C storage, increased biotic disturbances under climate change reduced C storage in the actively managed strategies (up to −41.0 tC ha−1) over the 100-year simulation period, whereas in the unmanaged control variant some scenarios even resulted in increased C sequestration due to a stand density effect.Comparing the simulation series with and without bark beetle disturbances the main findings were: (i) forest C storage was higher in all actively managed strategies under climate change, when biotic disturbances were disregarded (up to +31.6 tC ha−1 over 100 years); and (ii) in the undisturbed, unmanaged variant C sequestration was lower compared to the simulations with bark beetle disturbance (up to −69.9 tC ha−1 over 100 years). The study highlights the importance of including the full range of ecosystem-specific disturbances by isolating the effect of one important agent on timber production and C sequestration.  相似文献   

19.
We present a field study on the drought effects on total soil respiration (SRt) and its components, i.e., “autotrophic” (SRa: by roots/mycorrhizosphere) and “heterotrophic” respiration (SRh: by microorganisms and soil fauna in bulk soil), in a mature European beech/Norway spruce forest. SRa and SRh were distinguished underneath groups of beech and spruce trees using the root exclusion method. Seasonal courses of SRa and SRh were studied from 2002 to 2004, with the summer of 2003 being extraordinarily warm and dry in Central Europe. We (1) analyzed the soil temperature (T s) and moisture sensitivity of SRa and SRh underneath both tree species, and (2) examined whether drought caused differential decline of SRa between spruce and beech. Throughout the study period, SRa of beech accounted for 45–55% of SRt, independent of the soil water regime; in contrast, SRa was significantly reduced during drought in spruce, and amounted then to only 25% of SRt. In parallel, fine-root production was decreased during 2003 by a factor of six in spruce (from 750 to 130 mg l−1 a−1), but remained at levels similar to those in 2002 in beech (about 470 mg l−1 a−1). This species-specific root response to drought was related to a stronger decline of SRa in spruce (by about 70%) compared to beech (by about 50%). The sensitivity of SRa and SRh to changing T s and available soil water was stronger in SRa than SRh in spruce, but not so in beech. It is concluded that SRa determines the effect of prolonged drought on the C efflux from soil to a larger extent in spruce than beech, having potential implications for respective forest types. This article belongs to the special issue "Growth and defence of Norway spruce and European beech in pure and mixed stands."  相似文献   

20.
[目的]研究外来引进树种日本落叶松林凋落物对土壤养分的影响。[方法]采用分解袋法分别对18年生和24年生日本落叶松林以及周围针阔混交林凋落物的分解和养分释放规律进行了研究。[结果]凋落物分解和养分释放速率均表现为针阔混交林日本落叶松纯林;24年生日本落叶松林18年生日本落叶松林。其中不同林分的凋落物残留率与时间呈指数相关,凋落物年分解系数(K)也表现为针阔混交林(0.555 6)24年生日本落叶松林(0.445 0)18年生日本落叶松林(0.366 2)。凋落物分解速率与初始N元素含量呈极显著正相关,而与C/N比呈显著负相关,高的木质素含量对凋落物的分解有一定影响。C元素、K元素表现为直接释放模式,而研究中C/N比和C/P比相对较高,使N元素和P元素均表现为先富集后释放的模式。各养分元素的残留率总体呈现出18年生日本落叶松林24年生日本落叶松林针阔混交林的格局。[结论]不同林分凋落物分解和养分释放速率差异较大。凋落物年分解系数表现为针阔混交林24年生日本落叶松林18年生日本落叶松林。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号