首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To evaluate effects of trimethoprim-sulfamethoxazole (T/SMX) on thyroid function in dogs. ANIMALS: 6 healthy euthyroid dogs. PROCEDURE: Dogs were administered T/SMX (14.1 to 16 mg/kg, PO, q 12 h) for 3 weeks. Blood was collected weekly for 6 weeks for determination of total thyroxine (TT4), free thyroxine (fT4), and canine thyroid-stimulating hormone (cTSH) concentrations. Schirmer tear tests were performed weekly. Blood was collected for CBC prior to antimicrobial treatment and at 3 and 6 weeks. RESULTS: 5 dogs had serum TT4 concentrations equal to or less than the lower reference limit, and 4 dogs had serum fT4 less than the lower reference limit after 3 weeks of T/SMX administration; cTSH concentrations were greater than the upper reference limit in 4 dogs. All dogs had TT4 and fT4 concentrations greater than the lower reference limit after T/SMX administration was discontinued for 1 week, and cTSH concentrations were less than reference range after T/SMX administration was discontinued for 2 weeks. Two dogs developed decreased tear production, which returned to normal after discontinuing administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that administration of T/SMX at a dosage of 14.1 to 16 mg/kg, PO, every 12 hours for 3 weeks caused decreased TT4 and fT4 concentrations and increased cTSH concentration, conditions that would be compatible with a diagnosis of hypothyroidism. Therefore, dogs should not have thyroid function evaluated while receiving this dosage of T/SMX for >2 weeks. These results are in contrast to those of a previous study of trimethoprim-sulfadiazine.  相似文献   

2.
To determine whether measurement of canine thyrotropin (cTSH) would aid in the diagnosis of hypothyroidism, serum samples of 65 dogs with clinical signs suggestive of hypothyroidism were evaluated. Diagnosis was confirmed in 26 dogs and excluded in 39 dogs based on TSH-stimulation testing. Total thyroxine (T4) was significantly lower and cTSH significantly higher in hypothyroid dogs compared to euthyroid dogs. Canine TSH was above (> 0.6 ng/ml) in 15 (57.7%) and below the upper limit of the reference range in 11 (42.3%) of the hypothyroid dogs. All of the euthyroid dogs had a cTSH < 0.6 ng/ml. In all dogs with a cTSH above the upper limit of the reference range hypothyroidism could be confirmed. Therefore, our results show that measurement of cTSH has an excellent specificity (100%) and is a valuable tool in confirming canine hypothyroidism. However, due to the low sensitivity of cTSH assays (60%), it can not be recommended to exclude the disease.  相似文献   

3.
Fifty-eight dogs with generalized dermatologic disease that had not been given glucocorticoids systemically or topically within 6 weeks of entering the study were evaluated for thyroid function by use of the thyrotropin-response test. Dogs were classified as euthyroid or hypothyroid on the basis of test results and response to thyroid hormone replacement therapy. Baseline serum thyroxine (T4), free T4 (fT4), and triiodothyronine (T3) concentrations were evaluated in the 58 dogs. Serum T4, fT4, and T3 concentrations were evaluated in 200 healthy dogs to establish normal values. Hormone concentrations were considered low if they were less than the mean -2 SD of the values for control dogs. Specificity of T4 and fT4 concentrations was 100% in predicting hypothyroidism; none of the euthyroid dogs with generalized skin disease had baseline serum T4 or fT4 concentration in the low range. Sensitivity was better for fT4 (89%) than for T4 (44%) concentration. Significant difference was not observed in serum T4 and fT4 concentrations between euthyroid dogs with generalized skin disease and healthy control dogs without skin disease. Serum T3 concentration was not accurate in predicting thyroid function; most of the euthyroid and hypothyroid dogs with skin disease had serum T3 concentration within the normal range.  相似文献   

4.
OBJECTIVE: To evaluate the use of recombinant human (rh) thyroid-stimulating hormone (TSH) in dogs with suspected hypothyroidism. ANIMALS: 64 dogs with clinical signs of hypothyroidism. PROCEDURES: Dogs received rhTSH (75 microg/dog, IV) at a dose independent of their body weight. Blood samples were taken before and 6 hours after rhTSH administration for determination of total serum thyroxine (T(4)) concentration. Dogs were placed into 1 of 3 groups as follows: those with normal (ie, poststimulation values indicative of euthyroidism), unchanged (ie, poststimulation values indicative of hypothyroidism; no thyroid gland stimulation), or intermediate (ie, poststimulation values between unchanged and normal values) post-TSH T(4) concentrations. Serum canine TSH (cTSH) concentration was determined in prestimulation serum (ie, before TSH administration). RESULTS: 14, 35, and 15 dogs had unchanged, normal, and intermediate post-TSH T(4) concentrations, respectively. Basal T(4) and post-TSH T(4) concentrations were significantly different among groups. On the basis of basal serum T(4) and cTSH concentrations alone, 1 euthyroid (normal post-TSH T(4), low basal T(4), and high cTSH concentrations) and 1 hypothyroid dog (unchanged post-TSH T(4) concentration and low to with-in reference range T(4) and cTSH concentrations) would have been misinterpreted as hypothyroid and euthyroid, respectively. Nine of the 15 dogs with intermediate post-TSHT(4) concentrations had received medication known to affect thyroid function prior to the test, and 2 of them had severe nonthyroidal disease. CONCLUSIONS AND CLINICAL RELEVANCE: The TSH-stimulation test with rhTSH is a valuable diagnostic tool to assess thyroid function in selected dogs in which a diagnosis of hypothyroidism cannot be based on basal T(4) and cTSH concentrations alone.  相似文献   

5.
Canine thyroid-stimulating hormone (cTSH) was measured in a variety of clinical cases (n= 72). The cases were classified as euthyroid, sick euthyroid, hypothyroid or hypothyroid on non-thyroidal therapy on the basis of their history, clinical signs, laboratory results (including total thyroxine concentrations and, where indicated, thyroid-releasing hormone [TRH] stimulation tests) and response to appropriate therapy. Additional samples were taken during some of the TRH stimulation tests to measure the response of cTSH concentrations following TRH administration. A reference range (0 to 0–41 ng/ml) was calculated from the basal concentrations of cTSH in a group of 41 euthyroid dogs. Six of nine cases of confirmed hypothyroidism had basal cTSH concentrations above the reference range, whereas the remainder were within the normal range. One of these three remaining cases was a pituitary dwarf and did not show a rise in cTSH concentration following TRH stimulation. In contrast, only one of a group of six hypothyroid dogs that had been on non-thyroidal treatment within the previous four weeks had increased concentrations of basal cTSH. This study also found that five of a group of 16 dogs with sick euthyroid syndrome had increased cTSH concentrations. It was concluded that cTSH measurements are a useful additional diagnostic test in cases of suspected hypothyroidism in dogs but that dynamic testing is still required to confirm the diagnosis of hypothyroidism.  相似文献   

6.
Measurement of serum-free thyroxine (fT4) concentration provides a more accurate assessment of thyroid gland function than serum thyroxine (T4) or 3,5,3'-triiodothyronine (T3). Techniques for measuring serum fT4 concentration include standard equilibrium dialysis (SED), radioimmunoassay (RIA), and a combination of both (modified equilibrium dialysis [MED]). This study compared results of serum fT4 measurements by means of SED, MED, and 5 RIAs in 30 healthy dogs, 10 dogs with hypothyroidism, and 31 euthyroid dogs with concurrent illness for which hypothyroidism was a diagnostic consideration. Serum fT4 concentrations were comparable when determined by the SED and MED techniques, and mean serum fT4 concentrations were significantly (P < .01) lower in dogs with hypothyroidism than in healthy dogs and euthyroid dogs with concurrent illness. Significant (P < .05) differences in fT4 concentrations were identified among the 5 RIAs and among the RIAs and MED and SED. Serum fT4 concentrations were consistently lower when fT4 was determined by the RIAs, compared with either equilibrium dialysis technique. Serum fT4 concentrations were significantly lower (P < .01) in dogs with hypothyroidism than in healthy dogs for all RIAs; were significantly lower (P < .05) in dogs with hypothyroidism than in euthyroid dogs with concurrent illness for 4 RIAs; and were significantly lower (P < .01) in euthyroid dogs with concurrent illness than in healthy dogs for 4 RIAs. RIAs had the highest number of low serum fT4 concentrations in euthyroid dogs with concurrent illness. This study documented differences in test results among fT4 assays, emphasizing the importance of maintaining consistency in the assay used to measure serum fT4 concentrations in the clinical or research setting.  相似文献   

7.
Thyroid function was assessed in euthyroid dogs (n = 20), dogs suffering from canine recurrent flank alopecia (CRFA, n = 18), and hypothyroid dogs (n = 21). Blood samples obtained from all dogs in each group were assayed for total thyroxine (TT4), thyrotropin (TSH), and thyroglobulin autoantibody (TgAA) serum concentrations. Total T4 and TSH serum concentrations were significantly decreased and increased, respectively, in the hypothyroid group compared with the other 2 groups. No significant differences in TT4 and TSH serum values were found between the euthyroid and CRFA groups. Thyroglobulin autoantibodies were detected in 10, 11.1, and 61.9% of euthyroid dogs, dogs with CRFA, and hypothyroid dogs, respectively. In conclusion, dogs suffering from CRFA have a normal thyroid function, and the determination of TT4 and TSH serum concentrations allows differentiation of these dogs from dogs with hypothyroidism, in most cases. Occasionally, the 2 diseases can be concomitant.  相似文献   

8.
OBJECTIVE: To evaluate thyroid function in healthy Greyhounds, compared with healthy non-Greyhound pet dogs, and to establish appropriate reference range values for Greyhounds. ANIMALS: 98 clinically normal Greyhounds and 19 clinically normal non-Greyhounds. PROCEDURES: Greyhounds were in 2 groups as follows: those receiving testosterone for estrus suppression (T-group Greyhounds) and those not receiving estrus suppressive medication (NT-group Greyhounds). Serum thyroxine (T4) and free thyroxine (fT4) concentrations were determined before and after administration of thyroid-stimulating hormone (TSH) and thyroid-releasing hormone (TRH). Basal serum canine thyroid stimulating hormone (cTSH) concentrations were determined on available stored sera. RESULTS: Basal serum T4 and fT4 concentrations were significantly lower in Greyhounds than in non-Greyhounds. Serum T4 concentrations after TSH and TRH administration were significantly lower in Greyhounds than in non-Greyhounds. Serum fT4 concentrations after TSH and TRH administration were significantly lower in NT-group than T-group Greyhounds and non-Greyhounds. Mean cTSH concentrations were not different between Greyhounds and non-Greyhounds. CONCLUSIONS AND CLINICAL RELEVANCE: Previously established canine reference range values for basal serum T4 and fT4 may not be appropriate for use in Greyhounds. Greyhound-specific reference range values for basal serum T4 and fT4 concentrations should be applied when evaluating thyroid function in Greyhounds. Basal cTSH concentrations in Greyhounds are similar to non-Greyhound pet dogs.  相似文献   

9.
Hypothyroidism was diagnosed in 50 dogs and excluded in 86 dogs suspected of hypothyroidism, on the basis of the results of bovine thyrotropin response tests. Breed, pedigree, sex or neutering status did not significantly influence the likelihood of the dogs being hypothyroid. The hypothyroid dogs were significantly older than the non-hypothyroid dogs referred to the University of Glasgow during the same period. However, when dogs under two years of age were excluded from the statistical analyses there was no significant difference in age between the two groups. The most common clinical characteristics associated with hypothyroidism were metabolic signs (84 per cent of cases), particularly lethargy (76 per cent), obesity or weight gain (44 per cent), and exercise intolerance (24 per cent); and dermatological abnormalities (80 per cent), including alopecia (56 per cent), poor coat quality (30 per cent) and hyperpigmentation (20 per cent). When compared with the laboratory reference limits the most common biochemical and haematological abnormalities were increased concentrations of triglycerides (88 per cent), cholesterol (78 per cent), glucose (49 per cent), and fructosamine (43 per cent), and increased activities of creatine kinase (35 per cent), and decreased concentrations of inorganic phosphate (63 per cent), and a low red blood cell count (40 per cent). When compared with reference limits derived from the euthyroid dogs the most common abnormalities were increased concentrations of gamma-glutamyltransferase (21 per cent), cholesterol (18 per cent), and aspartate aminotransferase (15 per cent) and a decreased red blood cell count (29 per cent), and decreased neutrophils (18 per cent) and decreased activity of creatine kinase (15 per cent). Assessment of cholesterol, creatine kinase, aspartate aminotransferase, gamma-glutamyltransferase, and red blood cell and neutrophil counts may be particularly useful in distinguishing hypothyroid dogs from euthyroid animals with similar clinical signs.  相似文献   

10.
OBJECTIVE: To determine the effects of etodolac administration on results of thyroid function tests and concentrations of plasma proteins in clinically normal dogs. Animals: 19 healthy random-source mixed-breed dogs. PROCEDURE: Blood samples for measurement of serum thyroxine (T4), 3,5,3'-triiodothyronine (T3), free T4 (fT4), and endogenous canine thyroid stimulating hormone (cTSH) were measured twice before as well as on days 14 and 28 of etodolac administration (mean dosage, 13.7 mg/kg, PO, q 24 h). Plasma total protein, albumin, and globulin concentrations and serum osmolality were measured once before as well as on days 14 and 28 of etodolac administration. RESULTS: Etodolac administration did not significantly affect serum T4, T3, fT4, or cTSH concentrations or serum osmolality. Significant decreases in plasma total protein, albumin, and globulin concentrations were detected on days 14 and 28 of administration. CONCLUSIONS AND CLINICAL RELEVANCE: Results of thyroid function tests are not altered when etodolac is administered for up to 4 weeks. Therefore, interpretation of results of these tests should accurately reflect thyroid function during etodolac treatment. Plasma total protein, albumin, or globulin concentrations that are less than the respective reference range in a dog administered etodolac for > or = 2 weeks may be an effect of treatment rather than an unrelated disease process. A decrease in plasma protein concentrations may reflect subclinical injury of the gastrointestinal tract.  相似文献   

11.
Thirty-one dogs with spontaneous hypothyroidism were treated with thyroid hormone replacement therapy (THRT) and monitored for approximately three months. Good clinical and laboratory control was ultimately achieved in all cases with a mean L-thyroxine (T4) dose of 0.026 mg/kg administered once daily. There was a significant increase and decrease in circulating total T4 and canine thyroid stimulating hormone (cTSH) concentrations, respectively, after starting THRT. After commencing treatment, 11 cases subsequently required an increase and three cases required a decrease in dose to achieve optimal clinical control. Median (semi interquartile range [SIR]) circulating six-hour post-pill total T4 (53.6 [27.91 nmol/litre) and cTSH (0.03 [0] microg/litre) concentrations were significantly increased and decreased, respectively, in treated dogs that did not require a dose change; corresponding values in treated dogs in which an increase in dose was required were 29.3 (12.7) nmol/litre and 0.15 (0.62) microg/litre, respectively. However, circulating cTSH measurement was of limited value in assessing therapeutic control because, although increased values were associated with inadequate therapy, reference range cTSH values were common in inadequately treated dogs. Lethargy and mental demeanour were typically the first clinical signs to improve, with significant bodyweight reduction occurring within two weeks of commencing THRT. Routine clinicopathological monitoring was of value in confirming a general metabolic response to THRT, but was of limited value in accurately monitoring cases or tailoring therapy in individual cases.  相似文献   

12.
During the years of 1996-2001, hypothyroidism was diagnosed at the clinic for small animal internal medicine, University of Zurich, in 32 dogs. Most of the dogs were large breeds. The most frequent clinical characteristics observed were exercise intolerance, obesity, dermatological, neurological and gastrointestinal signs. Predominant laboratory abnormalities were a low red blood cell count, increased concentration of cholesterol, triglycerides and fructosamin. 29 dogs had a T4 below the reference range (< 1.5 micrograms/dl), one dog had a T4 at the lower limit thereof (1.6 micrograms/dl). One dog had a T4 within the reference range (3.4 micrograms/dl), another had a very high T4 of 206.8 micrograms/dl; the results of the latter 2 dogs were interpreted as incorrectly increased T4 values due to in vitro interference with T4-autoantibodies. Diagnosis was confirmed in all of the dogs based on TSH-stimulation testing. Endogenous TSH (cTSH) measured parallelly, was elevated in only 60% of the dogs. In about 67% of the dogs, hypothyroidism was associated with thyroglobulin-autoantibodies. Canine hypothyroidism is a rather rare endocrine disorder in Switzerland. The TSH-stimulation test remains the gold standard in confirming the disease; a definitive diagnosis can be challenging for practitioners because bovine TSH, used for the TSH-stimulation test is not licensed for use in dogs. Since assessment of cTSH using current assays shows normal values in a high percentage of hypothyroid dogs, the diagnostic value is only limited. In most of the hypothyroid dogs T4 is decreased, with the presence of autoantibodies to T4, it can be normal or increased.  相似文献   

13.
A 178-kg, 14-yr-old captive female American black bear (Ursus americanus) was examined because of lethargy, inappetance, obesity, and alopecia. Serum chemistry and complete blood count values were within normal limits. Based on serum levels for total thyroxine (T4), free T4 by equilibrium dialysis (fT4ED), and canine thyroid-stimulating hormone concentrations, using assays validated for domestic dogs, hypothyroidism was diagnosed presumptively, and therapy with levothyroxine sodium (0.022 mg/kg p.o. b.i.d.) was initiated. Haircoat, body weight, appetite, and activity level improved within 30 days. The levothyroxine dose was decreased twice (to 0.018 mg/kg p.o. b.i.d. and then to 0.011 mg/kg p.o. b.i.d.) during the course of treatment based on monitoring of serum T4 and fT4ED concentrations. After euthanasia for severe refractory lameness, postmortem examination revealed bilateral thyroid lobe enlargement and a fluid-filled cyst within the right lobe. Histologically, colloid goiter was present in both lobes, and a follicular cystadenoma had replaced one third of the cranial pole of the right lobe. The goiter and cystadenoma likely contributed to the hypothyroid condition in this bear and fT4ED was a more sensitive indicator of hypothyroidism than was T4. The recommended canine dosage of levothyroxine may be too high for the treatment of hypothyroidism in American black bears; 0.011 mg/kg p.o. b.i.d. may be a more appropriate dosage.  相似文献   

14.
Serum thyroxine (T4) and 3,5,3'-triiodothyronine (T3) concentrations were determined every 3 h for 12 h beginning at 8 a.m. in 20 healthy euthyroid dogs, 19 dogs with hypothyroidism, and 18 euthyroid dogs with atopic dermatitis. Status of thyroid function was based on history, physical findings, results of thyrotropin response testing, and requirement for thyroid hormone replacement therapy. Mean serum T4 and T3 concentrations did not vary significantly between blood samplings within each of the three groups of dogs. Between groups of dogs, mean serum T4 concentration was significantly (P less than 0.05) higher at each blood sampling time in healthy euthyroid dogs and euthyroid dogs with atopic dermatitis when compared to dogs with hypothyroidism. There was no significant difference in mean serum T4 concentration at any blood sampling time between healthy euthyroid dogs and euthyroid dogs with atopic dermatitis or in mean serum T3 concentrations at any blood sampling time between any of the three groups of dogs. Random fluctuation in serum T4 and T3 concentrations was found in dogs in all three groups. Random fluctuations were more common with serum T3 versus T4 concentrations. Consequently, sensitivity (0.88 versus 0.52), specificity (0.73 versus 0.45), predictive value for a positive test (0.75 versus 0.32), predictive value for a negative test (0.87 versus 0.65), and accuracy (0.80 versus 0.47) were better for serum T4 concentration than serum T3 concentration, respectively, when all blood samples were analysed. Measurement of serum T4 concentration was more accurate than serum T3 concentration in assessing the status of thyroid gland function.  相似文献   

15.
Thirty-eight dogs with orthopedic disorders received etodolac, an NSAID, at 10.0 to 13.3 mg/kg PO once daily for 14 to 19 days. Mean total thyroxine (T4), free thyroxine (fT4), and canine thyrotropin (cTSH) values before and after etodolac administration were compared using paired t-tests. A significant (P <.05) decrease in T4 values occurred after etodolac administration with 21% of these values falling below the reference range. A significant (P <.05) increase in cTSH following etodolac administration, but none of the values was above the reference range. No significant changes occurred in mean fT4 values; however, 10% of the values fell below the reference range. In conclusion, T4 and fT4 test results should be interpreted with caution in dogs receiving etodolac.  相似文献   

16.
The purpose of the study reported here was to validate measurement of free thyroxine (fT4) concentration in equine serum by equilibrium dialysis (fT4D), and to compare values with fT4 concentration measured directly and with total T4 (TT4) concentration. The fT4D, fT4, and TT4 concentrations were measured over a range of values in euthyroid horses and horses made hypothyroid by administration of propylthiouracil (PTU). Concentrations of fT4D (<1.8-83 pmol/L) were consistently higher than those of fT4 (<1-40 pmol/L). There was a significant (P < .001) regression of fT4D on fT4 in 503 samples from normal horses (y = 2.086x - 0.430). In baseline samples from 71 healthy euthyroid horses, fT4 concentration ranged from 6-21 pmol/L (median, 11 pmol/L; 95% confidence interval [CI]10.5-11.8 pmol/L), and fT4D concentration ranged from 7-47 pmol/L (median, 22 pmol/L; 95% CI 20.9-25.1 pmol/L). Free T4D, fT4, and TT4 concentrations were also measured in 34 ill horses. Horses consuming PTU and ill horses had significantly (P < .05) lower serum concentration of TT4, fT4, and fT4D than did clinically normal, healthy horses. If serum samples from ill horses were further subdivided into samples from horses that lived and samples from horses that died, fT4D concentration was not significantly different in ill horses that lived, compared with that in healthy horses, whereas fT4 concentration was still significantly decreased in ill horses that died (P < 0.001). We conclude that measurement of fT4 concentration by equilibrium dialysis is a valid technique in the horse, and its use may provide improved ability to distinguish nonthyroidal illness syndrome from hypothyroidism in that species.  相似文献   

17.
It is not uncommon for a hypothyroid dog to be receiving concurrent corticosteroids. As hypothyroid dogs receiving thyroid supplement need periodic monitoring, knowledge of whether prednisone alters thyroid hormone concentrations would be useful to determine whether testing can or should be done while the dog is receiving therapy and whether dose adjustments are appropriate. In this study, the effect of short-term anti-inflammatory prednisone was determined in dogs with naturally occurring hypothyroidism. Eight adult dogs were given prednisone (1.0 mg/kg, orally) daily for 7 days and then on alternate days for 14 days. Serum total thyroxine (T(4) ), free T(4) (fT(4) ), and thyroid-stimulating hormone (TSH) were measured on days 7, 21 and 28 and compared with baseline data. Total T(4) concentrations were significantly decreased after 7 days of anti-inflammatory prednisone, but were not significantly altered from baseline on days 21 or 28. Free T(4) and TSH concentrations were not significantly altered from baseline at any point during the study. Two dogs had decreased total T(4) concentrations on day 7, which may have resulted in an alteration in thyroid supplementation. Results showed that administration of prednisone at a dosage of 1 mg/kg, orally, once daily for 7 days decreased total T(4) , while fT(4) was unchanged, suggesting that fT(4) may be less affected by daily prednisone administration. Anti-inflammatory doses of prednisone administered every other day did not interfere with thyroid hormone monitoring.  相似文献   

18.
Thyroglobulin autoantibody (TGAA) was measured in serum from dogs with hypothyroidism (n = 42), non-thyroidal illness (NTI) (n = 77) and clinically healthy dogs (n = 70) using a commercially available enzyme immunoassay kit. Precision studies were consistent with good intra-assay and inter-assay repeatability. TGAA positive results occurred in 15 of the 42 (36 per cent) hypothyroid and four healthy dogs of the remaining 147 animals resulting in a lower incidence of false positive results than obtained with previous TGAA assays. The presence of TGAA was not influenced by age, sex, neutering or pedigree status. Of the four apparently healthy TGAA -positive dogs, two had additional clinicopathological evidence of hypothyroidism. TGAA was positive in 43 per cent of hypothyroid dogs with unexpectedly normal serum c TSH concentrations and was particularly useful in the classification of these cases.  相似文献   

19.
Plasma von Willebrand factor antigen concentration was determined in 15 dogs with suspected hypothyroidism, in 1 dog with hyperthyroidism, and in 14 euthyroid dogs. The mean +/- SEM von Willebrand factor:antigen concentration in hypothyroid dogs (47.1% +/- 12.6%) was significantly decreased (P less than 0.0005), compared with that in euthyroid dogs (94.7 +/- 5.6%). Four hypothyroid dogs were given thyroxine for 1 month and all 4 had an increase in von Willebrand factor:antigen concentration. The plasma von Willebrand factor:antigen concentration was 200% in the hyperthyroid dog. Seemingly, reduced concentrations of plasma von Willebrand factor:antigen can be found in dogs in association with congenital von Willebrand disease or with von Willebrand disease acquired through hypothyroidism.  相似文献   

20.
Thirty adult, client-owned dogs were diagnosed with hypothyroidism based on history, physical examination findings, hematologic and biochemical abnormalities, thyrotropin (TSH) response testing, endogenous canine thyrotropin (cTSH) concentration, or both, and total serum thryoxine concentration. All dogs received levothyroxine (L-thyroxine) at an initial dose of 22 μg/kg PO sid in either a tablet (13 dogs) or chewable form (17 dogs). Energy expenditure of each dog during apparent rest was estimated with an open-flow indirect calorimetry system by determining the rates of carbon dioxide production and oxygen consumption. Energy expenditure of apparent rest (EE) was lower in untreated hypothyroid dogs compared with reference values for EE. After treatment with L-thyroxine, EE of the hypothyroid dogs was significantly ( P < .05) higher than pretreatment values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号