首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diet of approximately three billion people worldwide is nutrient deficient and most of the world’s poorest people are dependent on staple food crops as their primary source of micronutrients. One component of the solution to nutrient deficiencies is collaboration among plant breeders, cereal chemists and nutritionists to produce staple crop cultivars with increased mineral nutrient concentration. Sixty-three historical and modern wheat cultivars were evaluated for grain yield and concentration of calcium, copper, iron, magnesium, manganese, phosphorus, selenium, and zinc. While grain yield has increased over time, the concentrations of all minerals except calcium have decreased. Thus a greater consumption of whole wheat bread from modern cultivars is required to achieve the same percentage of recommended dietary allowance levels contributed by most of the older cultivars. The decrease in mineral concentration over the past 120 years occurs primarily in the soft white wheat market class, whereas in the hard red market class it has remained largely constant over time. This suggests that plant breeders, through intentional selection of low ash content in soft white wheat cultivars, have contributed to the decreased mineral nutrient concentration in modern wheat cultivars. These results contradict the theory that there exists a genetically based, biological trade-off between yield and mineral concentrations. Therefore, using the abundant variation present in wheat cultivars, it should be possible to improve mineral concentrations in modern cultivars without negatively affecting yield.  相似文献   

2.
To examine the extent to which heat stress during grain filling impacts on the development and yield of winter wheat (Triticum aestivum L.), a 3-year field experiment was conducted on a loess soil with high water holding capacity in the North German Plain. Thirty-two mostly European winter wheat cultivars were exposed to heat stress in a mobile foil tunnel with maximum air temperatures of 45.7, 45.4, and 47.2°C in 2015, 2016, and 2017, respectively. The 14-day post-anthesis heat stress treatment caused an average 57.3% grain yield reduction compared to a close-by non-stressed control. The proportion of green crop area after the heat stress phase varied from 7% to 98% in 2016 and from 37% to 94% in 2017. The green crop area percentage did not significantly correlate with grain yield, indicating that the delayed senescence of stay-green phenotypes offers no yield advantage under terminal heat stress. The water soluble carbohydrate (WSC) concentration of the stems at crop maturity varied between 6 and 92 g/kg dry matter, showing that the genotypes differed in their efficiency at using the stem carbohydrate reserves for grain filling under heat stress. The stem WSC concentration correlated positively with the beginning of anthesis (r = 0.704; p < .001) but negatively with the grain yield (r = −0.431; p < .05). For heat tolerance breeding, the stem reserve strategy, i. e. the rapid and full exhaustion of the temporary carbohydrate storage therefore seems more promising than the stay-green strategy.  相似文献   

3.
Fusarium head blight (FHB) is a cereal disease of major importance responsible for yield losses and mycotoxin contaminations in grains. Here, we introduce a new measurement approach to quantify FHB severity on grains based on the evaluation of the whitened kernel surface (WKS) using digital image analysis. The applicability of WKS was assessed on two bread wheat and one triticale grain sample sets (265 samples). Pearson correlation coefficients between Fusarium‐damaged kernels (FDK) and WKS range from r = 0.77 to r = 0.81 and from r = 0.61 to r = 0.86 for the correlation between deoxynivalenol (DON) content and WKS. This new scoring method facilitates fast and reliable assessment of the resistance to kernel infection and shows significant correlation with mycotoxin content. WKS can be automated and does not suffer from the “human factor” inherent to visual scorings. As a low‐cost and fast approach, this method appears particularly attractive for breeding and genetic analysis of FHB resistance where typically large numbers of experimental lines need to be evaluated, and for which WKS is suggested as an alternative to visual FDK scorings.  相似文献   

4.
About 3 billion people may suffer from micronutrient deficiency such as Ca, Fe, Mg or Zn, caused not only by a mineral deficiency in staple food but also by a high content of phytates which bind those minerals and inhibit their absorption. With the aim of evaluating the potential of new cultivars of bread‐making wheat to accumulate those minerals and low phytates, nine advanced breeding lines from an ongoing Portuguese breeding program were studied during 2 years in a field experiment. A wide genetic variability was found between the studied genotypes in all the parameters studied, especially grain yield (ranging on average between 2,027 and 3,209 kg/ha) and grain Mg and Zn concentrations (ranging on average between 1,070 and 1,336 mg/kg, and 23.4 and 30.7 mg/kg, respectively). In global terms, the cultivars with best performance, and therefore, the most potentially suitable to be used in a breeding program, were the Cultivars 3 and 4. However, such a potential varied depending on the analysed trait, and it was clearly influenced by the climatic conditions. The consumption of 100 g of Cultivar‐4 produced under the most favourable conditions might provide a 5.2% of Ca, 26.4% of Fe, 38.9% of Mg and 31.9% of Zn of the recommended daily intakes, with a very good bioavailability for Fe and Ca, but low for Mg and Zn.  相似文献   

5.
Element concentration in wheat grains is an important objective of plant breeding programs. For this purpose, synthetic hexaploid lines (Triticum durum ×Aegilops tauschii) have been identified as potential sources of high element concentration in grains. However, it is not known if these lines reach higher element concentrations in grains as the consequence of a dilution effect due to lower grain yield. In addition, most of the studies carried out with these lines did not evaluate above-ground element uptake. The objective of this study was to improve understanding of grain element concentrations as a function of grain yield, element uptake and biomass and element partitioning to grains in synthetic and conventional cultivars of wheat. One experiment with two standard sowing dates was carried out under field conditions. Biomass, grain yield, and macronutrient(Ca, Mg, K, P and S) and micronutrient (Cu,Fe, Mn and Zn) concentrations in grains and vegetative tissues were measured in two cultivars and one synthetic (chosen from ten lines). The synthetic showed higher element concentration in grains, e.g. between 25 and 30% for Fe, Mn and Zn across sowing dates, than cultivars while grain yield was similar or lower, depending on the sowing date. On the contrary, the synthetic showed lower concentration of Cain grains. This line showed also higher uptake of Fe, Mn, K and P than cultivars. The superior grain element concentration of the synthetic line was not only due to a dilution effect but also to a higher uptake efficiency. Therefore, synthetics would bea valuable source of germplasm for increasing element grain concentration, at least in this case for Fe, Mn, K and P. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
In cereals early vigour has been identified as an important trait affecting drought tolerance, nutrient uptake, weed competitive ability and yield. To further study how this trait has changed following years of barley (Hordeum vulgare L.) breeding for improved yield, landraces and cultivars from Sweden and Denmark were analysed for seedling root and shoot growth in hydroponics. The Swedish and Danish materials, 35 and 39 cultivars, respectively, represented the gene pool used during one hundred years of barley breeding. Besides seedling growth characteristics, straw length, harvest index and 1000-grain weight were studied in field trials over two years in Sweden, Norway and Latvia. From 1890 to 2005 straw length has decreased from 110 cm to 60–70 cm and harvest index has improved from 0.42 to 0.55, with highly significant linear relationships with year of introduction (r = −0.87 and r = 0.89, p < 0.001, for straw length and HI, respectively). Other traits like 1000-grain weight, heading and maturity date have been less affected. Seedling root weight has also decreased by 33.9 and 25% in Swedish and Danish germplasms, respectively. The decrease in shoot weight is similar to that of the root biomass. Seedling root length (longest seminal root) has decreased by about 10%, while specific root length (mm root mg−1 root dry matter) has increased by 28.6 and 19.0% in Swedish and Danish cultivars, respectively, indicating the development of finer roots in modern cultivars. There are indications that during recent years the deceasing trends have been broken by the introduction of new high yielding cultivars with improved seedling growth. In line with this there are also significant positive relationships between both seminal root length (r = 0.60–0.84, p < 0.05–0.001) and root weight (r = 0.62–0.78, p < 0.05–0.001) and grain yield from official variety trials carried out in Sweden in 1995–1999 and in Sweden and Denmark in 1999–2005. Reasons for the previously decreasing trends and the new trend in modern cultivars are discussed as well as the possibility of using hydroponics for selection.  相似文献   

7.
Wheat grain protein content (GPC) is important for human nutrition and has a strong influence on the quality of pasta and bread. The objective of this study was to analyse the introduction of the Gpc‐B1 allele into two Argentinean bread wheat cultivars. Near‐isogenic lines were developed in ‘ProINTA Oasis’ and ‘ProINTA Granar’ using marker‐assisted selection. Gpc‐B1 lines showed a significant (P = 0.01) increase in GPC and a significant (P = 0.001) decrease in grain weight in comparison with control lines without Gpc‐B1. Differences in yield were not significant (P = 0.49) between lines. Gpc‐B1 lines significantly reduced (P = 0.02) straw nitrogen concentration at maturity and significantly increased (P = 0.02) the nitrogen harvest index. When data were analysed by genotype and environment, differences in some analysed parameters were found, indicating that Gpc‐B1 expression may be affected by different genetic backgrounds and environmental conditions. These results suggest that the introgression of the Gpc‐B1 allele into Argentinean wheat germplasm could be a valuable resource for improving GPC with no detrimental effect on grain yield.  相似文献   

8.
This study aimed to reduce the gap of knowledge on white lupin drought tolerance variation, by assessing the grain yield of 21 landraces from major historical cropping regions, one variety and two breeding lines in a large phenotyping platform that imposed controlled severely stressed or moisture‐favourable conditions after an initial stage of favourable growth. Drought stress reduced grain yield by 79%. Genetic correlation coefficients indicated moderate consistency of genotype responses across conditions for grain yield (rg = 0.76), fairly high consistency for straw yield (rg = 0.85) and harvest index (rg = 0.91), and high consistency for flowering time (rg = 0.99). However, low genetic correlation for yield (rg = 0.31) occurred among a subset of genotypes with early phenology. Specific adaptation to either condition implied significant (= 0.05) genotype × condition interaction of crossover type between well‐performing genotypes. Early flowering was an important stress escape mechanism, but intrinsic drought tolerance could be inferred from responses of a few genotypes. Various landraces out‐yielded the improved germplasm under stressed or favourable conditions.  相似文献   

9.
明确不同粒色小麦籽粒铁锌含量和生物有效性及其对氮磷肥配施的响应, 对小麦高产优质高效生产具有重要意义。本文以6个不同粒色(白粒、红粒和黑粒)小麦品种为材料, 在大田条件下研究了不同氮磷肥配比(N1: 90 kg N hm -2; N2: 240 kg N hm -2; P1: 60 kg P2O5 hm -2; P2: 209 kg P2O5 hm -2)对小麦产量、籽粒铁锌含量及其生物有效性的影响。结果表明, 不同品种籽粒铁锌含量和积累量存在年际间差异, 黑粒小麦具有较高的铁锌生物有效性。小麦籽粒产量、铁锌含量及积累量在N2P1处理下最高; 铁锌生物有效性在N2P2或N2P1处理下最高, 两处理之间没有显著差异。红粒小麦扬麦15和扬麦22在N2P1水平下籽粒铁锌含量及其积累量最高, N2P2次之; 黑粒小麦周黑麦1号和紫麦1号在N2P2水平下铁含量及其积累量最高, N2P1次之; 不同品种的铁锌生物有效性多数在N2P1或N2P2水平下最高, 表明适量增施氮肥, 有利于提高籽粒产量、铁锌含量及其生物有效性。在本试验条件下综合考虑产量和效率, N2P1 (240 kg N hm -2、60 kg P2O5 hm -2)处理对提高产量、增加籽粒铁锌含量及其生物有效性效果最佳。  相似文献   

10.
Agroforestry systems are reported as climate‐resilient productive systems, but it is yet unclear how tree shade affects crops performance. The aim of this work was to assess how the phenology, plant traits and grain yield of wheat and barley were affected by shade. In an open greenhouse experiment, we cultivated in pots nine cultivars differing in precocity for each species and imposed three artificial shading levels (S0 ~ 0%, S1 ~ 25%, S2 ~ 50%) at the start of cereal booting. Our results showed that shade speeded up first growth stages in both species, until the starting of milk development. Barley showed consistent phenological responses to the three irradiance levels among cultivars, but not wheat that showed larger phenological differences among cultivars at moderate shade. Deep shade prolonged the time needed for wheat grain ripening. Both species increased grain yield by 15%–20% with shade, driven by shade‐acclimations of plant traits that differed among species. For wheat, grain yield was determined by the assemblage of traits that contribute to yield, such as grain weight, precocity and non‐photochemical quenching, while, for barley, SPAD value, precocity to reach phenological stages, grains per spike and plant height had the strongest influence. These traits varied widely among cultivars and seem of interest to identify best suited cultivars for shading conditions of Mediterranean agroforestry systems.  相似文献   

11.
The aims of these field experiments were to investigate the effectiveness of soil application of rubber tire ash in comparison with soil and foliar applications of zinc (Zn) sulfate to increase Zn and decrease cadmium (Cd) concentrations in wheat grain. A two-year field experiment was conducted during the 2007–2008 and 2007–2008 growing seasons at Isfahan research field, Iran. Ten different Zn-efficiency bread wheat cultivars (Triticum aestivum L.) commonly cultivated in different parts of Iran were subjected to no Zn fertilizer addition (control), soil application of 40 kg ha−1 ZnSO4, soil application of 100 (for the first year) and 250 (for the second year) kg ha−1 waste rubber tire ash, foliar application of Zn at the mid tillering stage, and foliar application of Zn at the early anthesis stage. In the foliar application, ZnSO4 was sprayed at a rate of 0.66 kg Zn/ha. Foliar spray of zinc sulfate at early anthesis, in general, had no significant effect on the yield and grain Cd while significantly increased grain Zn concentrations of most cultivars. On average, the foliar Zn treatment at the mid tillering stage (0.66 kg Zn/ha), decreased the mean grain Cd concentration from 0.032 mg kg−1 in the control treatment to 0.024 mg kg−1. While the grain Zn concentrations of some cultivars increased with soil application of Zn sulfate, they were not affected or even decreased in other cultivars. For most studied wheat cultivars, pre-planting application of rubber tire ash in soil resulted in a significant decrease of grain Cd concentrations. The results show that the effectiveness of soil and foliar application of Zn on yield and grain Zn and Cd concentrations greatly depends on the cultivar. The currently recommended rates of soil applications of Zn to ameliorate Zn deficiency are sufficient to increase grain Zn and decrease grain Cd concentrations in some wheat cultivars, while they do not in the others. In this study, soil application of 250 kg rubber tire ash/ha and foliar spray of 0.66 kg Zn/ha at tillering stage were the most effective treatments to ameliorate Zn deficiency and to increase Zn and decrease Cd concentration in grains of most wheat cultivars.  相似文献   

12.
Organic spring wheat (Triticum aestivum L.) producers in the northern Great Plains use cultivars which have been bred for conventional management systems or heritage cultivars released before the widespread use of synthetic fertilizers and pesticides. To investigate the feasibility of organic wheat breeding and to determine common genetic parameters for each system, we used a random population of 79 F6-derived recombinant inbred sister lines from a cross between the Canadian hard red spring wheat cultivar AC Barrie and the CIMMYT derived cultivar Attila. The population, including the parents, was grown on conventionally and organically managed land for 3 years. Heritability estimates differed between systems for 6 of the 14 traits measured, including spikes m−2, plant height, test weight, 1,000 kernel weight, grain protein, and days to anthesis. Direct selection in each management system (10% selection intensity) resulted in 50% or fewer lines selected in common for nine traits, including grain yield, grain protein, spikes m−2, and grain fill duration. The results of this study suggest that indirect selection (in conventionally managed trials) of spring wheat destined for organically managed production would not result in the advance of the best possible lines in a breeding program. This implies that breeding spring wheat specific to organic agriculture should be conducted on organically managed land.  相似文献   

13.
Two field experiments were carried out with seven wheat cultivars (three of them, including a commercial hybrid, released during the last 10 years) representing different eras of plant breeding, to evaluate genetic improvement over the last century in grain yield, height, biomass, harvest index and grain yield components. Plots were fertilized and irrigated, and lodging and diseases were prevented. Main culm height was negatively correlated with the year of release of the cultivars, probably as a consequence of selection for increased lodging resistance. There was no significant association between total above-ground biomass and year of release of the cultivars. On the other hand, grain yield increased as newer cultivars were released. Results indicate that during recent years harvest index has been kept as the main attribute responsible for increases in grain yield. In general, number of grains/m2 was associated with increases in grain yield during the century. However, the newest cultivars showed an increased grain weight. In both growing seasons, cultivars released before 1980 showed a trend towards reduced grain weight, but cultivars released after 1987 had a similar number of grains per m2 with a higher grain weight than their predecessors. This was probably because the most modern cultivars have a longer grain-filling duration with a similar length of growth cycle.  相似文献   

14.
Scarcity of water is a severe constraint, which hinders the wheat productivity worldwide. However, foliage application of osmoprotectants may be useful in reducing the drought‐induced yield losses in wheat (Triticum aestivum L.). In this study, potential of foliage applied osmoprotectants (proline, gamma‐aminobutyric acid) in improving the performance of bread wheat against terminal drought was evaluated. Both proline and gamma‐aminobutyric acid (GABA) were foliage applied at 50, 100 and 150 mg/L at anthesis stage (BBCH‐identification code‐ 61), in two bread wheat cultivars viz. Mairaj‐2008 and BARS‐2009. After 1 week of foliage application of these osmoprotectants, drought was imposed by maintaining the pots at 35% water holding capacity. Imposition of drought caused significant reduction in the grain yield of both tested bread wheat cultivars; nonetheless, foliage applied osmoprotectants at either concentration improved the chlorophyll contents, accumulation of proline, glycinebetaine and total soluble phenolics and reduced the malondialdehyde contents, which resulted in better stay green, maintenance of grain weight and grain number under drought stress, thus resulting in better grain yield, water‐use efficiency and transpiration efficiency in both wheat cultivars. However, foliage applied proline at 150 mg/L, and GABA at 100 mg/L was most effective than other concentrations of these osmoprotectants. Performance of cultivar Mairaj‐2008 was quite better than cultivar BARS‐2009. In crux, foliar application of proline and GABA at pre‐optimized rate can be opted as a shotgun approach to improve the performance of wheat under terminal drought.  相似文献   

15.
冬小麦种质材料主要农艺性状研究   总被引:9,自引:5,他引:4  
小麦种质资源是小麦育种的重要基础,小麦遗传多样性评价不仅有助于种质资源的搜集、管理和利用,也有利于核心种质的研究。为了合理利用小麦种质资源,降低组配小麦杂交组合的盲目性,选取73份国内外种质材料,在旱地条件种植,以株高、穗粒数、千粒重、有效穗数和产量为指标对其进行了聚类分析。结果表明,在雨养条件下各性状的变异系数大小为:产量>有效穗数>穗粒数>千粒重>株高;产量构成因素与产量的相关程度为:有效穗数>穗粒数>千粒重;供试材料可以分为六类,并对各类种质材料的特点及在育种中的应用作了评述。试验中综合表现较好的4个亲本材料为第Ⅵ组的18th FAWWON-IR-023、18th FAWWON-IR-111、18th FAWWON-IR-027和18th FAWWON-IR-169,可为选育抗旱优质丰产小麦新品种提供优异基因。  相似文献   

16.
Resistances to Septoria tritici blotch (STB) and Fusarium head blight (FHB) are important goals in European wheat breeding. We tested 25 winter wheat cultivars differing in their resistance to both diseases by inoculating Zymoseptoria tritici or Fusarium culmorum either separately on different plots or combined on the same plot. Experiments were carried out across three location × year combinations in four variants: non‐inoculated, STB inoculated, FHB inoculated and STB+FHB inoculated at the respective optimal plant stages. On the individually inoculated plots, mean STB severities ranged from 12% to 70% and mean FHB severities from 0.3% to 67% across wheat cultivars. The resistances to STB and FHB were not correlated. Mean disease severities of the respective inoculation variants, STB vs. STB+FHB and FHB vs. STB+FHB, were not significantly different (P > 0.1), and correlations between both inoculation variants were extremely high (r = 0.98) for STB. In conclusion, breeding populations have to be selected for both resistances separately, but phenotyping can be performed on the same plot without ranking differences of the respective resistance.  相似文献   

17.
Decreased micronutrient concentration in cereal grains caused by excessive application of phosphorus (P) fertilizer may contribute to reduce their nutritional quality. To help correct this problem in maize grain, a 3-year field experiment was conducted to determine how P application rate affects micronutrient partitioning in maize shoots and other plant organs and micronutrient bioavailability in grain. Phosphorus application significantly decreased shoot zinc (Zn) and copper (Cu) concentrations at all growth stages but had no effects on shoot iron (Fe) and manganese (Mn) concentrations. As the P application rate increased, shoot Zn and Cu contents decreased, and shoot Fe and Mn contents increased. The ratios of pre-anthesis to post-anthesis mineral contents were not affected by P application rate except Zn. P application increased the percentage of Zn that was allocated to grain and decreased the percentage that was allocated to other tissues, but had no effects on the allocation of other micronutrients among tissues. The bioavailability of Zn, Cu, Fe, and Mn in grain decreased as P application rate increased. Overall, taking account of grain yield and nutrients concentration, P fertilizer rates should range from 12.5 to 25.0 kg P ha−1 under the local condition. It can be concluded that not only grain yields, but also nutritional quality, should be considered in assessing optimal P rates in maize.  相似文献   

18.
The variation in grain compositional traits related to Chinese fresh white noodle (CFWN) quality was examined in 25 leading Chinese common wheat cultivars and advanced lines. Large variations were observed in flour yield, flour particle size, protein and ash contents, farinograph and rapid visco-analyzer (RVA) parameters, flour colour components, and polyphenol oxydase (PPO) activity. An improved sensory method was proposed for adequately evaluating CFWN quality of common wheat flour based on methodology used in the Japanese quality scoring system for white salted noodles, but with major modifications in the score weight given to each noodle quality parameter. Large differences in CFWN quality were observed among Chinese wheat cultivars. The correlation coefficients (r) between starch paste breakdown (RVA) and noodle viscoelasticity and smoothness were 0.63 and 0.59, respectively, suggesting that in breeding wheat for high CFWN quality, the starch pasting properties are of major importance. Low ash content was significantly correlated (r = – 0.66) with bright white noodle colour.  相似文献   

19.
The common ‘three‐pistil’ (TP) wheat mutation line expresses TPs in a floret normally containing TPs forming three grains set close back‐to‐back. The developmental origin of the TP trait in common wheat had been diagnosed non‐destructively using the blue aleurone trait. The aleurone colour of F2 seeds grown in F1 plants of cross TP/UC66049 was evaluated. Due to xenia, the hue of blue grain colour depended on dose of the Ba1 gene for blue aleurone in the triploid endosperm. The TP trait produced four types of segregation in three‐seed clusters: (i) white grain only, (ii) two white grains and one blue, (iii) one white grain and two blue, and (iv) three blue grains only. The observed frequency of blue–white seed within clusters followed the binominal distribution 3Cr (0.75)r·(0.25)3–r, where r is the number of colour variants in three‐seed clusters (r = 0–3). Intrafloret segregation of seed colour and F2 segregation derived from aleurone colour of F3 seeds indicated an independent origin of the TP trait.  相似文献   

20.
Improving the level and stability of grain yield is the primary objective of wheat breeding programs in the Eastern Gangetic Plains (EGP) of South Asia. A regional wheat trial, the Eastern Gangetic Plains Yield Trial (EGPYT), was initiated by CIMMYT in collaboration with national wheat research programs in Bangladesh, Nepal, and India in 1999–2000 to identify wheat genotypes with high and stable grain yield, disease resistance, and superior agronomic traits for the EGP region. A set of 21 wheat experimental genotypes selected from a regional wheat screening nursery in South Asia, three improved widely grown cultivars (Kanchan, PBW343 and Bhrikuti), and one long-term cultivar (Sonalika) were tested at 9–11 sites in six wheat growing seasons (2000–2005) in the EGP. The 21 experimental genotypes were different in each year, whereas the four check cultivars were common. In each year, one or more of the experimental genotypes showed high and stable grain yield and acceptable maturity, plant height, and disease resistance compared to the check cultivars. Three improved cultivars have already been commercially released in the region through EGPYT and many germplasm lines have been used in the breeding programs as parents. Identification of wheat genotypes with high-grain yield in individual sites and high and stable yield across the EGP region underlines their value for regional wheat breeding programs attempting to improve grain yield and agronomic performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号