首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Na+/H+逆向转运蛋白调节细胞内的离子平衡,在植物耐盐性起重要的作用。为了研究甜菜液泡膜Na+/H+逆向转运蛋白BvNHX1基因在植物耐盐中的作用,构建了植物表达载体pROKⅡ-BvNHX1转化拟南芥.在含有卡纳霉素的培养基上筛选转化子,并利用Southern和Northern杂交技术检测,进一步证实BvNHX1基因已整合到拟南芥基因组并能正常转录。选取纯合转基因株系进行耐盐性分析实验表明,过量表达BvN-HX1基因的拟南芥在种子萌发和苗期都提高了植株耐盐性,盐处理下转基因植株的鲜重、干重以及地上部分Na+、K+含量均高于野生型对照。结果表明过量表达BvNHX1基因提高了转基因拟南芥的耐盐能力。  相似文献   

2.
[目的]全氟辛酸(PFOA)处理能显著诱导拟南芥Ib bHLH(Ib basic helix-loop-helix)家族4个转录因子bHLH38、bHLH39、bHLH100和bHLH101的转录水平。为了进一步分析这4个基因在响应PFOA中的潜在作用,利用CRISPR/Cas9技术构建了它们的共敲除载体。[方法]以野生型拟南芥基因中的外显子为模板,设计引物,通过两步PCR扩增法将靶向基因连接到CRISPR/Cas9载体上;将构建成功的重组质粒转化到大肠杆菌DH5α感受态细胞中,挑取阳性菌落,PCR鉴定正确后,将其质粒转入农杆菌GV3101感受态细胞中,再次挑取阳性菌落进行PCR鉴定正确后,提取质粒进行表达盒测序。[结果]通过两步PCR扩增法,成功将4个靶点表达盒转入到CRISPR/Cas9载体中,构建了bHLH38、bHLH39、bHLH100和bHLH101的双元CRISPR/Cas9敲除载体。[结论]成功构建的Ib BHLH家族CRISPR/Cas9敲除载体,为后续拟南芥Ib BHLH家族四突突变体材料的获得提供了可用性载体。  相似文献   

3.
张成  何明亮  汪威  徐芳森 《中国农业科学》2020,53(12):2340-2348
【背景】近些年兴起的CRISPR-Cas9基因编辑技术在多种植物中实现了高效的基因打靶,为基因功能研究提供了一种高效快速的方法,但一些CRISPR-Cas9载体编辑效率很低。【目的】通过构建一种由RIBOSOMAL PROTEIN S5 ARPS5A)启动子启动Cas9并带有红色荧光蛋白筛选标记的CRISPR-Cas9载体,提高拟南芥CRISPR-Cas9编辑效率,并利用这套系统对拟南芥木葡聚糖内糖基转移/水解酶基因TOUCH4TCH4)进行编辑。【方法】在pKSE401载体的基础上,以从胚胎发育早期就表现出高转录活性的RPS5A启动子替换35S启动子、以DsRed2替换潮霉素抗性基因,构建拟南芥中使用的CRISPR载体pRSE-WH;以AtTCH4为靶基因,使用CRISPR-P 2.0(http://crispr.hzau.edu.cn)设计靶位点,将所设计的靶点序列在拟南芥参考基因组中比对分析以排除非特异性靶位点,最终筛选出2个靶位点target 1和target 2。化学合成带有接头的靶位点寡核苷酸序列,退火后分别与pRSE-WH载体连接,构建TCR1和TCR2表达载体,采用农杆菌介导的沾花法侵染野生型拟南芥Col-0,以红色荧光蛋白为标记筛选获得T1代转基因阳性植株。通过靶位点扩增测序法判断T1代转基因植株在预期靶位点是否发生编辑,根据测序结果的峰图对编辑情况进行解码,进一步分析突变类型及基因型。【结果】构建了一个在拟南芥中高效编辑的CRISPR载体pRSE-WH。TCR1和TCR2成功地实现了对TCH4的定点编辑,靶点一的编辑效率为80%,靶点二的编辑效率为100%,总编辑效率为86%。根据测序结果的峰图解码了T1代植株的突变结果,纯合编辑、杂合编辑、双等位编辑均有出现。对不同的编辑类型进行统计发现,59株T1代阳性植株中,无编辑8株,占比13.56%,纯合编辑9株,占比15.25%,双等位编辑40株,占比67.80%,杂合编辑2株,占比3.39%。在T1代发生纯合编辑以及双等位编辑的株系中选择了无红光种子进行繁种,并对T2代植株编辑情况进行测序检测,结果发现T1代中的突变成功遗传到了T2代无Cas9株系中。【结论】pRSE-WH在拟南芥中展现了极高的编辑效率,并且通过对种子进行红色荧光筛选,能够简便地获得无Cas9且稳定遗传的T3代突变体。  相似文献   

4.
李鹏 《江苏农业科学》2020,48(14):78-82
拟南芥转录因子ILR3(IAA-Leucine Resistant 3)在铁稳态的调节、葡萄糖异硫氰酸盐(glucosinolate,简称GLS)的生物合成和病原体响应方面起到重要作用。为更深入探索该转录因子在植物体内的更多功能,利用YAO基因启动子驱动Cas9在拟南芥中表达,成功获得ILR3基因编辑突变体。测序结果及序列分析结果表明,在ILR3编辑拟南芥中,该基因编码区发生了碱基缺失或插入,导致蛋白ILR3保守结构域丢失。并且,这些基因编辑突变体T2代幼苗与T-DNA插入突变体ilr3-2在缺铁环境下表现出相同的性状,进一步验证ILR3转录因子在植物对铁的吸收及体内平衡的作用,也为深入研究其更多生物学功能奠定了工作基础。  相似文献   

5.
6.
SWEET (sugars will eventually be exported transporters) 基因广泛存在于植物、动物和微生物中,在细胞膜或者细胞器膜形成跨膜孔道,协助糖类物质完成跨膜运输。拟南芥SWEET1/2/3基因属于SWEET基因家族CladeⅠ分支。通过表达谱数据分析发现,SWEET1基因在花器官优先表达,SWEET2基因在营养生长和生殖生长期均有表达,SWEET3基因在花中表达。三个基因在体外鉴定具有葡萄糖转运活性,但由于缺少功能缺失的突变体和功能冗余,它们的生理功能仍不清楚。通过CRISPR/Cas9系统在SWEET1/2/3基因中创建了靶向突变,鉴定获得了sweet1、sweet1/2、sweet3和sweet1/2/3突变体。突变体在营养生长过程中表型与野生型相同,但它们的角果长度显著短于野生型的角果。在高浓度葡萄糖培养基上,sweet1、sweet1/2和sweet1/2/3突变体对葡萄糖敏感,其特征是根更短,高度严重降低,表明 SWEET1/2/3基因在葡萄糖信号中具有功能。对葡萄糖信号通路中关键基因的进一步分析发现,HXK1、KIN10和KIN11在野生型和突变体之间转录和翻译水平没有显著差异。结果表明,拟南芥SWEET1/2/3基因在葡萄糖信号传导和调节角果的发育中起着重要作用。  相似文献   

7.
【目的】分析转拟南芥△1-吡咯啉-5-羧酸合成酶(P5CS1)基因羽衣甘蓝的耐盐性,为获得较强的耐盐性羽衣甘蓝品种及其抗逆育种提供理论依据。【方法】将拟南芥P5CS1基因(AtP5CS1)经农杆菌介导转入羽衣甘蓝植物中,在盐胁迫下,分别检测转基因植株与野生型植株的AtP5CS1 mRNA表达量、幼苗脯氨酸含量、株系根系性状、整株干质量和鲜质量、叶片相对水含量、叶片电导率和整株存活率。【结果】在150 mmol/L NaCl胁迫下,转基因植株的P5CS1基因mRNA可正常表达,与对照相比,转基因株系Y1、Y2的主根和最长侧根长度较长,侧根数目较多,整株干质量和鲜质量较重;而且相对水含量显著高于对照植株(P0.05,下同),脯氨酸含量及存活率均极显著高于对照植株(P0.01),叶片相对电导率显著低于对照植株。【结论】转AtP5CS1基因植株的耐盐表型优于对照,即AtP5CS1基因在羽衣甘蓝中的表达明显改善了转基因植株的耐盐性。  相似文献   

8.
渗透胁迫调节基因--Na+/H+ Antiporter基因与植物耐盐性   总被引:1,自引:0,他引:1  
Na+/H+ Antiporter基因与植物耐盐性密切相关,其编码产物Na+/H+逆向转运蛋白通过Na+ 外排和Na+ 区隔化来维持植物细胞内较低的Na+ 水平,降低Na+的毒害,从而对植物的耐盐性起重要作用.  相似文献   

9.
运用优化后的CRISPR/Cas9基因编辑载体,创建了2个不同的拟南芥脂肪酸去饱和酶6基因(AtFAD6)突变体,其AtFAD6基因的保守位点氨基酸序列均发生变化,同时终止密码子被提前引入,基因功能丧失.脂肪酸组分分析结果显示,这2种突变体的叶片中单不饱和脂肪酸16:1和18:1大量积累,多不饱和脂肪酸16:3和18:3含量则大幅下降,同时伴随着叶片发黄、地上部生物量显著降低、抽薹提前2~3 d的表型变化.多不饱和脂肪酸18:3作为茉莉酸合成的前体物质,其含量的下降致使突变体中茉莉酸信号标记基因AtVSP1在叶片中的表达量有所降低,而茎中的表达量提高了40%以上.所获得的2个AtFAD6功能丧失型突变体为进一步研究脂类代谢与植物生长发育之间的关系提供了重要的遗传材料.  相似文献   

10.
【目的】研究胡杨质膜Na+/H+逆向转运蛋白(SOS1)通过H2O2信号途径对盐胁迫的感知和适应作用。【方法】克隆胡杨质膜SOS1基因(PeSOS1),并将其转化到拟南芥中,比较野生型和转PeSOS1基因拟南芥在100mmol/L NaCl胁迫下的萌发率,根长,干质量,K+、Na+和Ca2+含量,活体植株根尖离子流(K+、Na+和H+)的流动情况,H2O2的产生和抗氧化酶活性的变化以及抑制剂对根尖离子流的影响,分析100mmol/L NaCl胁迫下异源表达PeSOS1基因拟南芥与野生型拟南芥耐盐性的差异。【结果】在NaCl胁迫下,转PeSOS1基因拟南芥株系的萌发率、根长和干质量明显高于野生型拟南芥;转PeSOS1基因拟南芥K+和Ca2+含量也高于野生型拟南芥,而Na+含量较野生型拟南芥低。100mmol/L NaCl处理后,转PeSOS1基因拟南芥中K+和Na+的平衡(K+/Na+值)与NaCl胁迫前相比下降幅度较小。转PeSOS1基因植株在NaCl胁迫下能更快地产生H2O2,并使抗氧化酶保持较高的活性。SOS1抑制剂阿米洛利(Amiloride)对NaCl胁迫下野生型和转基因拟南芥根尖离子流的变化有明显影响,用质膜NADPH氧化酶抑制剂DPI(抑制H2O2的产生)处理后,转PeSOS1基因拟南芥根尖K+内流减弱,Na+外流和H+内流增强,植株维持K+和Na+平衡的能力减弱。【结论】在拟南芥中异源表达PeSOS1基因可促进H2O2快速产生,维持了SOS1mRNA的稳定性,调控了K+和Na+平衡,并激活了抗氧化防御系统,因而显著提高了其耐盐性。  相似文献   

11.
为研究番茄miRNA在非生物逆境胁迫下的表达模式和功能分析。利用Real-time PCR检测番茄miRNA397在非生物逆境(干旱、盐害、ABA)条件下的表达量变化,发现Sly-miR397响应这些逆境胁迫,尤其在干旱胁迫下表达最明显。故将Sly-miR397过表达载体转入拟南芥中,进行转基因功能验证。结果表明:与野生型相比,转基因拟南芥植株叶片相对含水量下降速率更缓慢,保水能力更好,且在干旱胁迫下,转基因植株的长势明显优于野生型,其最大光合效率、3种抗氧化酶活性SOD、POD、CAT均明显高于野生型,同时胁迫所产生的丙二醛含量明显低于野生型拟南芥。表明Sly-miR397能提高拟南芥对干旱胁迫的耐受性,在植物抗旱过程中起着重要作用。  相似文献   

12.
旨在模式生物拟南芥中获得玉米漆酶ZmLac5基因过表达转化体,以研究该基因功能。分离玉米自交系掖478根部总RNA,反转录PCR法获得玉米漆酶基因ZmLac5全长,测序与序列分析表明,ZmLac5 cDNA的开放阅读框为1 758 bp,编码一个由586个氨基酸组成的蛋白质。同源性比对和进化树分析显示该基因与高粱Sb03g039570.1和谷子Si000813m在进化上亲缘关系较近。采用In-Fusion试剂盒构建了过表达载体pCUB-Ubi::ZmLac5,通过电击法将过表达载体导入根癌农杆菌LBA4404中,并成功转化拟南芥(Columbia ecotype),获得PCR阳性T1代植株62株,转化率为1.28%,T2代阳性植株60株。本研究为基于模式生物体过表达分析该基因生物学功能奠定了分析基础。  相似文献   

13.
以野生型拟南芥为材料,采用PCR技术克隆得到了拟南芥AtWRKY33基因起始密码子ATG上游1 629 bp启动子序列,并利用该启动子驱动GUS基因在野生型拟南芥中表达,对获得的转基因拟南芥采用重金属Cd处理不同时间,进行GUS染色及定量分析。结果表明:AtWRKY33基因启动子与GUS融合表达载体成功构建并正常启动GUS基因表达;拟南芥植株中的AtWRKY33基因在根中大量表达;定性与定量实验均显示经重金属Cd处理后的拟南芥幼苗中AtWRKY33基因随着时间增加而被显著诱导表达。说明该基因响应重金属Cd胁迫。  相似文献   

14.
【目的】探讨类黄酮合成途径关键基因黄酮醇合酶基因(FLS)在芍药Paeonia lactiflora花色调控中的作用。【方法】克隆获得芍药Pl FLS基因,对其进行生物信息学分析,构建Pl FLS基因的过表达载体,通过农杆菌介导的Floral-dip法进行拟南芥遗传转化研究。【结果】生物信息学分析表明,芍药Pl FLS基因氨基酸序列与茶树相似性较高,存在2个功能结构域,但不存在信号肽位点。芍药Pl FLS蛋白预测模型揭示了其蛋白三级结构中存在1个2–氧代戊二酸配体,并与多条肽链相连接。试验成功获得了转Pl FLS基因纯合拟南芥植株,GUS染色和PCR鉴定证实了目的基因已经整合转基因植株基因组,q RT-PCR分析显示,相对于野生型,Pl FLS基因在遗传转化植株中显著高表达(P0.05)。色谱分析结果显示,转Pl FLS基因拟南芥植株叶片中花黄素含量显著增加(P0.05)。【结论】成功构建转Pl FLS基因拟南芥,并证明Pl FLS基因可以显著影响拟南芥类黄酮合成途径。  相似文献   

15.
【目的】构建拟南芥转录因子Dof1基因的原核表达载体,进行原核表达并制备其蛋白抗体。【方法】利用RT-PCR方法从拟南芥中克隆转录因子Dof1基因,将其连接到原核表达载体pET-32a(+)上,构建重组原核表达载体pET32a(+)-Dof1,经酶切鉴定和测序验证后将其转化至大肠杆菌BL21中,经IPTG诱导后,纯化重组蛋白,以分离到的重组蛋白为抗原免疫小鼠制备抗血清,检测植物中Dof1蛋白表达水平。【结果】成功构建了拟南芥转录因子Dof1基因的原核表达载体pET32a(+)-Dof1,在28℃、1mmol/L IPTG诱导6h的大肠杆菌中可高效表达分子质量约为42ku的重组蛋白,其分泌到细胞质中,不形成包涵体;Western-blotting检测结果证明,制备的抗血清有较好的抗原-抗体识别反应。【结论】成功实现了Dof1基因的原核表达,制备出的重组蛋白Dof1多克隆抗体可用于植物Dof蛋白表达水平的检测,可为Dof1基因的进一步研究奠定基础。  相似文献   

16.
HOG1(high osmolarity glycerol,HOG1)是酵母中参与耐高渗透压调控的重要基因。根据已发表的酿酒酵母序列,设计特异引物,扩增到完整的HOG1基因;构建植物表达载体pBI121-HOG1,通过农杆菌介导转化拟南芥,获得转化植株种子。对收获的T0代种子进行卡那霉素抗性筛选,并通过PCR和RT-PCR对抗性苗进行检测。结果表明,构建的载体成功转化拟南芥,并获得了13份转HOG1基因苗。  相似文献   

17.
CBF/DREB基因是一类植物特异性转录因子,通过调控下游抗逆相关基因的表达,在植物逆境胁迫应答过程中发挥重要作用。为了研究新型的禾本科模式植物二穗短柄草DREB基因的功能,克隆BdDREB1G的cDNA序列,分析该基因在各种非生物胁迫条件下的表达,构建过表达载体,获得转基因拟南芥。结果表明:高温、低温和水杨酸胁迫处理显著诱导BdDREB1G的表达,暗示该基因响应高温和低温胁迫。初步观察结果说明,该与野生型拟南芥相比,转基因植株生长发育迟缓。这些为研究该基因响应非生物胁迫的功能奠定基础。  相似文献   

18.
为研究垃圾渗滤液的综合毒性,通过盆栽实验探讨了渗滤液对拟南芥早期、成熟期和后期生长发育的影响。结果表明:垃圾渗滤液会影响拟南芥整个生命期的生长情况,低浓度(0.1%)、短时间(24 h)的渗滤液暴露会促进拟南芥早期的萌发及根系生长,分别为对照的256%和324%,而高浓度(10%)、长时间(≥48 h)暴露则产生抑制作用,48 h的抑制效应分别为对照的67%和36%;在相同暴露时间下,芽长随暴露浓度变化不明显,仅在48 h呈现出差异,说明拟南芥幼苗的根系比芽更为敏感。不同浓度的渗滤液还会影响成熟期拟南芥的生长发育,诱导叶片氧化损伤并呈现浓度和时间双重依赖性,进而损伤其抗氧化防御系统。此外,高浓度(20%)渗滤液对晚期阶段拟南芥抽薹率和角果数的抑制效应较为明显(P0.01),在暴露15 d后分别为对照的45%和43%。研究结果说明拟南芥可有效、简单、重复性地监测渗滤液的毒性,为渗滤液的植物监测提供理论依据。  相似文献   

19.
目的研究镁毒害胁迫下拟南芥生理过程及响应南方根结线虫侵染的变化及相关分子机理。方法以贫营养的蛭石为培养基质,通过盆栽试验分析镁毒害胁迫(15 mmol/L MgCl2)下拟南芥叶绿素合成变化及拟南芥对南方根结线虫侵染抗/感性变化;通过转录组测序策略分析镁毒害胁迫下拟南芥基因上、下调变化关系;对表达差异显著的基因进行实时荧光定量PCR验证。结果镁毒害胁迫下,拟南芥叶绿素合成受到显著影响,其叶片叶绿素含量均显著或极显著低于对照(P<0.05或P<0.01)。拟南芥线虫敏感性分析显示:镁毒害处理组接种线虫30 d后,根内发育形成的雌成虫数及根表形成的根结数均显著多于对照(P<0.05),表明镁毒害胁迫增加了拟南芥对南方根结线虫侵染的敏感性。转录组测序结果显示:镁毒害胁迫下,拟南芥中8个与氨基酸、碳水化合物、脂类、维生素和次级代谢产物等代谢相关的基因显著上调;下调基因中,有5个基因均属于信号转导过程,分别涉及茉莉酸生物合成通路和茉莉酸介导的防卫反应通路。实时荧光定量PCR验证表明:分别用2个内参基因校正后,各上、下调基因表达趋势一致,与转录组测序数据吻合。结论镁毒害胁迫干扰了拟南芥植株以叶绿素合成为代表的正常生理过程,抑制了拟南芥细胞茉莉酸生物合成和信号传导相关关键基因的表达,增加了拟南芥对南方根结线虫侵染的敏感性。镁可能是参与拟南芥中茉莉酸介导抗南方根结线虫防卫反应的重要矿质元素。  相似文献   

20.
石斑鱼生长激素基因的合成及其在拟南芥中的表达   总被引:4,自引:0,他引:4  
为了使石斑鱼生长激素基因适合在植物中表达,重新合成了石斑鱼生长激素基因,对其密码子进行了优化,把合成的基因构建于植物表达载体pBI121上并转化模式植物拟南芥,获得了30个转基因抗性植株。对24株PCR阳性苗进行Northernblotting分析,结果表明,鱼类生长激素基因可以在转基因植物中表达,其表达在不同的转基因植株中存在明显差异,表达最强的植株与最弱的植株相比,二者表达量差异达到43倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号