共查询到12条相似文献,搜索用时 15 毫秒
1.
This experiment quantified the effects of: (i) heading date of perennial ryegrass, (ii) grazing frequency in spring and (iii) date of silage harvest, on the ensilability of herbages harvested for silage, and on the conservation and estimated nutritive value of the resultant silages. Replicated field plots with two perennial ryegrass mixtures (intermediate‐ and late‐heading cultivars) were subjected to three spring‐grazing regimes (no grazing, grazing in late March and grazing in both late March and late April) and were harvested on four first‐cut harvest dates between 20 May and 21 June. Herbage from each of the four replicates of these 24 treatments was precision‐chopped and ensiled unwilted and with no additive in laboratory silos. Herbage from the sward with the intermediate‐heading cultivar had a higher (P < 0·001) dry‐matter (DM) content and buffering capacity than that from the late‐heading cultivar, whereas water‐soluble carbohydrate concentrations increased (P < 0·001) with more frequent grazing in spring. Later harvesting enhanced herbage ensilability through an increased (P < 0·001) DM content and reduced (P < 0·001) buffering capacity and pH. Fermentation profiles of the silage were not markedly influenced by the cultivar mixture used but grazing in both late March and late April resulted in a more extensive fermentation with the acids produced increasingly dominated by lactic acid. The concentrations of acetic acid, and to a lesser extent, ethanol declined as silage harvest date was delayed. Overall, the relative effects of grass cultivar mixture were smaller than those of spring‐grazing treatment or silage‐harvesting date although on any given harvest date the herbage from the intermediate‐heading cultivar mixture was easier to preserve as silage than herbage from the late‐heading cultivar mixture. Delaying the harvesting of the late‐heading swards by 8 d removed the differences related to growth stage in buffering capacity, pH and DM content. 相似文献
2.
Scenarios of climate changes indicate longer and more frequent spells of mild weather during winter in northern latitudes. De-hardening in perennial grasses could increase the risk of frost kill. In this study, the resistance to de-hardening of different grass species and cultivars was examined, and whether the resistance changes during winter or between years, was tested. In Experiment 1, two cultivars of timothy ( Phleum pratense L.) and perennial ryegrass ( Lolium perenne L.) of contrasting winter hardiness were grown under ambient winter conditions, transferred from the field in January and April 2006 to the laboratory for 9 d with controlled de-hardening conditions of 3°C, 9°C and 15°C. The timothy cultivars were tested at 3°C, 6°C and 9°C in a similar experiment (Experiment 2) in January 2007. De-hardening, measured as decrease in frost tolerance (LT50 ), was less in timothy than in perennial ryegrass and increased with increasing temperatures. The northern winter-hardy cultivar Engmo of timothy de-hardened more rapidly than the less-hardy cultivar Grindstad, but had higher initial frost tolerance in both experiments, whereas there was less difference between cultivars of perennial ryegrass in Experiment 1. Cultivar Grindstad of timothy lost all hardiness in early spring at all temperatures, whereas cultivar Engmo maintained some hardiness at 3°C. Cultivar Engmo de-hardened at a lower rate in 2007 than in 2006, in spite of similar frost tolerance at the start of de-hardening treatment in both years. This indicates that the rate of de-hardening was controlled by factors additional to the initial frost tolerance and that autumn weather conditions might be important for the resistance to de-hardening. 相似文献
3.
Determination of microbial protein in perennial ryegrass silage 总被引:1,自引:0,他引:1
The microbial matter fraction was determined in perennial ryegrass silages of different dry-matter (DM) contents, ensiled with or without Lactobacillus plantarum . 15 N-Leucine and the bacterial cell wall constituent diaminopimelic acid (DAPA) were used as markers for microbial-N. Perennial ryegrass crops with DM contents of 202, 280 or 366 g kg−1 fresh weight were ensiled in laboratory-scale silos and stored for 3 to 4 months. At different times after ensiling, silages were analysed and microbial fractions were isolated. Microbial-N concentration determined with 15 N-leucine reached a maximum during the first week of ensilage. It remained unchanged thereafter, except in silage with a DM content of 280 g kg−1 in which it decreased ( P < 0·01) by 32% during storage. After 3 to 4 months ensilage, microbial-N concentration varied from ≈0·3 to ≈1·7 g kg−1 DM. A negative relationship was observed between microbial-N concentration and silage DM content. Inoculation resulted in an approximately twofold increase ( P < 0·001) in microbial-N concentration. Microbial-N concentrations determined with DAPA were 1·14–2·07 times higher than those determined with 15 N-leucine. However, 19–35% of the DAPA in silage occurred in a soluble form, indicating that this fraction of DAPA was not associated with intact bacteria. 相似文献
4.
P. J. Purcell M. O’Brien A. Navarro‐Villa T. M. Boland M. McEvoy D. Grogan P. O’Kiely 《Grass and Forage Science》2012,67(2):280-298
The selection and feeding of perennial ryegrass (Lolium perenne L.) varieties (PRV) or perennial grass species (PGS) may affect enteric methane (CH4) output because of changes in the fermentation dynamics in the rumen as a result of differences in herbage chemical composition. The objective of this study was to determine the effects of PRV and PGS harvested throughout the growing season on herbage chemical composition, and in vitro rumen fermentation variables and CH4 output per unit of feed using a batch culture technique. Seven PRV (Experiment 1: Alto, Arrow, Bealey, Dunluce, Greengold, Malone, Tyrella) and six perennial grasses [Experiment 2: perennial ryegrass (Navan), perennial ryegrass (Portstewart), cocksfoot, meadow fescue, tall fescue, timothy; defined as PGS], managed under a simulated grazing regime, were incubated for 24 h with buffered rumen fluid in two separate experiments. The CH4 output per unit of feed dry‐matter (DM) incubated was not affected (P > 0·05) by PRV (range of mean values across PRV of 23·9–25·3 (SEM 0·41) mL g?1 DM) or by PGS (25·6–26·6 (SEM 0·37) mL g?1 DM). The CH4 output per unit feed DM disappearing during the in vitro rumen incubation was not affected by PRV (33·9–35·1 (SEM 0·70) mL g?1 DM), and although there was an overall PGS effect (P < 0·05; 37·2–40·3 (SEM 0·71) mL g?1 DM), none of the paired contrasts between PGS were significant when analysed using Tukey adjusted comparisons. This outcome reflected either small‐scale or a lack of treatment effects on individual herbage chemical composition (e.g. 454–483 g NDF kg?1 DM, 215–224 g CP kg?1 DM and 94–122 g water‐soluble carbohydrate (WSC) kg?1 DM across PRV; 452–506 g NDF kg?1 DM, 208–243 g CP kg?1 DM and 73–131 g WSC kg?1 DM across PGS) and in vitro rumen fermentation variables. Hence, these results provide no encouragement that choices among the grasses examined, produced within the management regimes operated, would reduce enteric CH4 output per unit of feed in vivo. However, the technique utilized did not take account of animal × PRV or PGS interactions, such as potential differences in intake between animals, that may occur under farm conditions. 相似文献
5.
The effect of three spring management treatments on the vertical distribution of dry‐matter (DM) yield and morphology of four cultivars of perennial ryegrass (Fennema, Corbet, Foxtrot, Melle) in mid‐season was investigated. The management treatments commenced with cuts on 15 February (Early), 1 March (Medium) and 29 March (Late), each followed by a 28‐day re‐growth period until the next cut and then further 21‐day re‐growth periods after each subsequent cut. This created four mid‐season measurement periods across the management treatments at cut 3 (5 April–17 May), cut 5 (17 May–28 June), cut 6 (7 June–19 July) and cut 7 (28 June–9 August). Tiller and sheath height and their ratio, and leaf lamina length, were measured prior to the four mid‐season cuts (cuts 3, 5, 6 and 7) when measurements of DM yield and proportions of leaf, stem and dead material in three herbage horizons (Lower, 0–8 cm; Middle, 8–15 cm; Upper, >15 cm) were made. There were significant responses in mid‐season to the management treatments involved complex interactions between management treatment and cutting date, which modified seasonal patterns in DM yield and leaf:stem ratio. There were significantly greater tiller heights, tiller:sheath ratios and leaf lamina lengths but lower sheath heights from the Early to Late management treatments. The greatest responses in morphological characteristics occurred in the Middle horizon compared with either the Lower (predominately stem and pseudo‐stem), or the Upper (predominately leafy) horizons. Distribution of DM yield between Middle and Lower horizons but not overall DM yields was significantly affected by management treatment. Morphological differences between cultivars were mostly in the Middle horizon and ranking of the cultivars was similar across the management treatments. The different responses of cultivars Fennema and Melle showed that genotype had a significant effect regardless of management. The leafiest mid‐season swards were achieved by delaying initial spring defoliation in the cultivar which had the lowest stem production. 相似文献
6.
F. Driehuis S. J. W. H. Oude Elferink & P. G. Van Wikselaar 《Grass and Forage Science》2001,56(4):330-343
Aerobic spoilage by yeasts and moulds is a major cause of reduced nutritional value of silage and increases the risk of potential pathogenic microorganisms. Recent studies have shown that inoculation with Lactobacillus buchneri inhibits yeast growth and reduces the susceptibility to aerobic spoilage of various ensiled forages. The aim of this study was to determine whether these effects are retained when L. buchneri is added in combination with homofermentative lactic acid bacteria. In three experiments, silages were produced from perennial ryegrass [240–421 g kg−1 dry matter (DM)] inoculated with L. buchneri or L. buchneri plus a mixture of Pediococcus pentosaceus and Lactobacillus plantarum (inoculant PL). Uninoculated silage and silage inoculated with PL alone served as controls. Silages were examined for pH and DM loss in the course of ensilage and chemical and microbiological composition and aerobic stability after 3–4 months. L. buchneri plus PL and PL alone increased the initial rate of pH decline. L. buchneri alone and L. buchneri plus PL enhanced aerobic stability and, in general, reduced yeast and mould counts. In addition, these inoculants increased the final pH and DM loss and the concentrations of acetic acid and 1,2-propanediol (or propionic acid and 1-propanol instead of 1,2-propanediol), and decreased the concentration of lactic acid. The effects of L. buchneri on fermentation products increased with decreasing DM content. In silages of less than 270 g kg−1 DM, L. buchneri increased the ammonia-N concentration. It is suggested that this was associated with the relatively high final pH resulting from the high metabolic activity of L. buchneri in these silages. 相似文献
7.
L. E. R. Dawson R. M. Kirkland C. P. Ferris R. W. J. Steen†‡ D. J. Kilpatrick†‡ F. J. Gordon†‡ 《Grass and Forage Science》2002,57(3):255-267
Abstract Two experiments were carried out in consecutive years to examine the influence of cutting date and restricting fermentation by carboxylic acid treatment on the nutrient intake from grass silage by beef cattle. In year 1, four cutting dates during July and August after a primary growth harvest and, in year 2, five cutting dates of primary growth between mid‐May and early July were examined. Herbage was ensiled either untreated or treated with high levels of acid additive (‘Maxgrass’, mean 8·6 l t?1). Ninety‐six (year 1) or forty‐eight (year 2) continental cross steers were used in partially balanced changeover design experiments with each silage type either unsupplemented or supplemented with 4·5 (year 1) or 5·5 (year 2) kg concentrates head?1 d?1. Silage digestibility declined significantly between initial and final harvest dates (P < 0·001), whereas silage dry‐matter (DM) and digestible energy (DE) intakes were significantly higher in the initial compared with final harvest dates in both years of the study (P < 0·01). Similarly, silage DM and DE intakes, and total DM intakes, of acid‐treated and unsupplemented silages were greater than those of untreated and concentrate supplemented silages, respectively (P < 0·001). The results indicate that earlier cutting dates, and addition of acid to herbage before ensiling, can increase silage DM intake by beef cattle. 相似文献
8.
J. P. Sampoux P. Baudouin B. Bayle V. Béguier P. Bourdon J. F. Chosson K. de Bruijn F. Deneufbourg C. Galbrun M. Ghesquière D. Noël B. Tharel A. Viguié 《Grass and Forage Science》2013,68(1):33-48
An assessment of genetic improvement in turf‐type perennial ryegrass was performed at a network of six locations. A comparison was made of the turf performances of five natural populations, five forage‐type cultivars used for turf seeding until the 1980s and 31 turf‐type cultivars released from 1974 to 2004. Populations and cultivars were also compared in two spaced‐plant experiments and in two seed‐yield trials. Trait regressions on registration year of turf‐type cultivars showed that breeding had been highly successful in improving the turf aesthetic merit (from +8·8 to +12·5% per decade according to seasons), wear tolerance (+5·4% per decade) and crown‐rust resistance (+8·9% per decade) and in lessening the turf height increase rate (?0·43 mm day?1 per decade). Turf winter greenness had been marginally improved, whereas summer greenness and seed yield had not been significantly changed. A multivariate analysis provided evidence that turf density and fineness played a major role in the visual assessment of turf aesthetic merit and that wear tolerance was closely associated with turf density. Conflicting trait associations may have precluded improvements in turf ground‐cover 3 months after sowing, turf winter greenness and turf persistency. 相似文献
9.
Effect of heading date of perennial ryegrass cultivars on tillering and tiller development in spring and summer 总被引:1,自引:0,他引:1
A. S. Laidlaw 《Grass and Forage Science》2004,59(3):240-249
Three cultivars (two diploid and one tetraploid) in each of three maturity groups (early, intermediate and late) of perennial ryegrass were sown in 10 m2 plots, replicated four times, in Northern Ireland in June 1997 in a study of the effect of heading date on tiller development (including initiation to flower) and turnover of tillers produced at specific times in spring in 1998 and 1999. The plots were harvested seven times in each year. Annual dry‐matter production was similar for all groups in each year. In spring and early summer of both years, tiller density of the diploid cultivars was 1·5 times greater than that of the tetraploid cultivars and the mean tiller density over all swards in June was about 0·40 times greater than that in April. Maximum proportions of reproductive tillers in the early, intermediate and late maturity groups, determined from apical dissections, were found in early April, mid‐May and early June, respectively. Although a high proportion of tillers, which were present when annual observations commenced in spring, was decapitated at the first harvest in the early group, the previous population density was maintained by rapid production of new tillers during May, including those from suppressed tiller buds during reproduction. It is concluded that the relationship between heading date and rate of tiller turnover (including flowering) at specified times in spring is important in sward management throughout the early part of the growing season and should be taken into account in tiller‐based grass growth models. 相似文献
10.
Seed growth of three perennial ryegrass cultivars sown on two dates and treated with trinexapac ethyl straw shortener 下载免费PDF全文
First‐year crops of diploid perennial ryegrass (cvs. Meridian, Bronsyn and Grasslands Impact) were sown on 1 April and 14 May 2008. Applications of trinexapac ethyl (TE) plant growth regulator at 0, 200 and 400 g a.i. ha?1 were used to shorten stems to examine the impact of seed growth. Seed filling followed a consistent sigmoidal growth pattern with a lag phase of 127°C days, and linear duration of 390°C days. Time to 95% of final seed weight was 517°C days. Seed yield increases from TE were from higher numbers of first‐grade seeds m?2, achieved by a higher rate of seed filling during the linear phase of 0·115 mg per °C day per spike. For all cultivars, the maximum stem dry weight occurred at 310–400°C days post‐anthesis, which suggest the stem was a strong sink. As seeds developed, their demand for assimilate increased and they drew more from the stem. At harvest, stem weights from TE treatments were 25% heavier than at anthesis, while untreated ‘Bronsyn’ and ‘Grasslands Impact’ stems were similar to those at anthesis. Thus, stems treated with TE contributed assimilates to increase seed yield but were still a net sink with assimilates in the stem at harvest. Trinexapac ethyl rate induced an inverse relationship between seed yield and stem height. This showed that competition for assimilate between stems and growing seeds limited the seed yield. Management or genetic factors that reduce stem height are likely to increase seed yields of perennial ryegrass. 相似文献
11.
Increasing the residual water‐soluble carbohydrate (WSC) concentration in silage may improve the nutritional value but impair aerobic stability. Our aim was to determine whether the residual WSC concentration and aerobic stability of low dry‐matter (<135 g kg?1) perennial ryegrass silage could be manipulated through the judicious use of additive and cultivar. Seven additive treatments, including three innovative treatments, were compared across four consecutive harvests of the cultivars AberDart (bred to accumulate high concentrations of herbage WSC) and Fennema (control). The standard of fermentation of silage ensiled without additive (untreated) ranged from very bad to excellent. Application of ammonium tetraformate, at 3 and 6 L t?1, or homofermentative lactic acid bacteria (LAB) alone had an inconsistent effect on the fermentation and aerobic stability, and negligible effect on residual WSC concentration. A mixture of Lactobacillus buchneri and homofermentative LAB was not an effective silage additive, producing generally poorly fermented silage. An antimicrobial mixture of sodium benzoate, sodium propionate, sodium nitrite and hexamethylenetetramine, applied at 2·5 and 5 L t?1, frequently improved the standard of fermentation, but the effects were subject to the application rate. The high application rate was the most effective additive evaluated at improving the fermentation and increasing residual WSC concentration and consistently produced silage of excellent standard of fermentation. However, the antimicrobial mixture was not effective at protecting against aerobic instability. The effects of additive treatment were largely inconsistent across cultivars. Overall, AberDart had a negligible effect on the silage fermentation, residual WSC concentration and aerobic stability compared with Fennema. 相似文献
12.
A comparison between cutting and animal grazing for dry‐matter yield,quality and tiller density of perennial ryegrass cultivars 下载免费PDF全文
Perennial ryegrass (Lolium perenne L.) evaluation trials are often conducted under simulated grazing to identify the most productive cultivars. It is unclear whether simulated grazing identifies the most productive cultivar for animal‐grazed swards. Ten cultivars were established as plots and managed concurrently under simulated grazing (SG), animal grazing (AG) and conservation (CON). The experiment lasted 3 years with dry‐matter (DM) off‐take, digestibility, tiller density and ground‐cover score recorded in all years. A good relationship existed between DM off‐take under SG and CON (R2 = 0·73). The relationship between SG and AG was strongest in year 2 and 3 (R2 = 0·53 and 0·55 respectively). High DM production was observed in SG swards in year 1; this was weakly related to the DM production of the AG sward. Across the 3 years, the CON treatment had higher yields than either of the other two treatments and was poorly correlated to DM yield under AG, confirming that cultivars should be evaluated under a similar defoliation frequency to their intended use. Tiller density declined quickest under CON and slowest under AG. Some reranking of cultivars occurred between defoliation managements. The results show that simulated grazing is a useful indicator of DM yield performance of animal‐grazed swards. 相似文献